

Putting Microsystems Design on a Strict diet Alex Yakovlev

microSystems

EEE School

Energy Theme Lunchtime Talk 26 January 2015

The more you get The more you give!

Agenda

- Why do we explore energy/power issues in uSys?
- Energy Theme in our Research Layers
 - Basic: concepts, principles, theories, models
 - Applied: themes, design methods, tools, systems, exploitation routes
- Research projects:
 - Recent and ongoing (Holistic, SAVVIE, PowerProp, PRiME, A4A)
 - Key academic and industrial collaborations
 - Future plans
- Key Challenges

Why do we explore energy/power issues in uSystems?

"Propaganda"

 The energy consumption by the world ICT ecosystem amounts to 1,500 TWh per year, which is about 10% of the world electricity generation (or combined total of Germany and Japan) [M.P. Mills report 2013, "Cloud begins with Coal", http://www.tech-pundit.com/]

Where Electricity Is Consumed in the Digital Universe

- Issues: Battery life, electricity bills, power inaccessibility, overheating, noise's ...
- A wealth of events, papers, etc. in the ICT domain bears adjectives: energy-efficient, energy-aware, energyconscious, green, energysaving, ...

Motivation comes from:

• Electronics Technology Evolution

- Approaching end of the road on device scaling in CMOS
- Unsustainable growth in power consumption

Society and Applications

- Energy generation, conservation, utilisation
- Health, Aging, Well-being
- Environment, Climate
- Transport, Urban
- "Specific EEE/CS App Trends": implantable devices, wearable devices, IoT, Cloud, Big Data, Smart Grid ...
- Bringing Energy & Information together has always been an intriguing intellectual challenge!

Example: Walls Alive (condition monitoring)

• Energy field (thermal, mechanical vibration, etc)

low

energy density

high

Example: condition monitoring

Network of sensors for spaced and temporal energy mapping

Example: condition monitoring

Sensor node structure

System architecture

Energy Theme in our Research Layers

Energy in our Basic Research

- Energy & Information Processing:
 - Models of Energy and Entropy
 - Concepts of efficiency (e.g. "energy per compute")
 - Nature is a massive computer in which energy is captured in different forms and quantities and constantly being transformed
 - Information processing (Computing and Comms) increasingly gleans and learns from observations in Nature as it moves closer to Nature (at least, for 4* REF papers!)

Energy in our Basic Research

- Relationship between Power and Timing
 Power-driven timing (Freq ~ Vdd)
- Computing is largely decision making (e.g., is the value of input 0111 or 1000?)
 - Decision-making is about choice; it takes time and energy
- Energy & Information are Resources
 - Resource representation (e.g. token-based computing)
 - Modelling methods: graphs, flows, concurrency, partial orders

Energy Efficiency (measurements on real silicon - asynchronous 8051)

"Grand-prix" race with a fuel limit

The goal: Given a finite amount of fuel, maximize the total number of laps made all the cars on the circuit. Unknown parameters: What is the optimum engine power? What is the optimum number of cars on the circuit?

Experiment:

a. A ring micropipeline with 5 stages is used in the experiment.

b. Simulation Results are obtained with different parallelism (1, 2, 3, 4 tokens), in different working voltages (1.0V, 0.8V, 0.6V, 0.4V, 0.35V, 0.25V, 0.2V, 0.16V), and under different amount of energy (600pJ, 700pJ, 800pJ).
c. A run stops when the energy is fully consumed.

- *d*. The amount of computation is counted for each run.
- *e*. A unit of computation is defined as one pulse generated in the pipeline.

Ring pipeline with a given energy budget

Conclusions:

- The higher the concurrency the greater the amount of computation and the smaller the amount of leakage.
- At sub-threshold voltages, the amount of computation is STRONGLY affected by degree of concurrency, due to the effect of leakage.
- Above threshold, the amount of computation that is practically insensitive to the degree of concurrency.

Energy in our Applied Research

- Performance, Energy, Reliability (PER) Interplay:
 - In systems themselves (e.g. power-proportional computing) and in system design (e.g. powerproportional modelling and analysis)
- Low-Power Systems Design:
 - Event-based computing and asynchronous logic
 - "Reference-free" sensing (sensing using energy of the sensed signal)
 - Power-gating, "adiabatic" computing, near- and subthreshold computing

Power proportionality

Service-modulated processing

Energy-modulated processing

Power-efficient, Reliable, Many-core Embedded systems (PRiME Project)

PRIME: PER modelling

- Building analytical models using actual experimental data: Intel's Xeon/Core, Altera FPGA, ARM-based Odroid and async CPU/SRAM
- Incorporating PER models into high level scalable models
- The models are used in Run-Time management of many-core systems

Energy in our Applied Research

- System design for autonomy and survival under variable and intermittent power:
 - Electronics for energy-harvesting
 - Mixed-criticality systems
 - Multi-layered system architectures (cf. neural systems in biology)

Holistic approach to EH electronics

Our View on EH Systems

Staying alive in variable, intermittent, lowpower environments (Savvie Project)

Asynchronous Design for Analogue Electronics (A4A Project)

Asynchronous control for Bucks

Asynchronous control for Bucks

(a) Complex gate asynchronous implementation

Key Collaborations

- Energy harvesting: Bristol, Imperial and Southampton
- Low power and asynchronous systems: Manchester, IHP (Germany), CEA-LETI (France), UPC (Spain), USC (USA)
- Models and Tools: Newcastle CS
- Industrial: ARM (iCASE studentship in electronics design for IoT), Dialog Semiconductor (Async design tools for power management electronics),

Key Challenges

- Theory and design tools for wide-band powered electronic systems
- Introducing non-volatility (seamless stateretention) into electronics systems for on-chip power management and survival
- Working at near-noise levels (e.g. for CMOS: <=50mV); scavenging from inner and external noise
- Design automation for mixed-signal electronics (avoiding many hours of simulations)

Power efficiency and regularity

- Modern systems rely on highly regular (periodic) power sources they "invest" some power into power regulation
- Future systems will have to operate in a wide dynamic range, paying the price in efficiency in a particular band

Vision for Future

Power-modulated multi-layer system

- Multiple layers of the system design can turn on at different power levels (analogies with living organisms' nervous systems or underwater life, layers of different cost labour in resilient economies)
- As power goes higher new layers turn on, while the lower layers ("back up") remain active
- The more active layers the system has the more power resourceful it is

