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AUTHOR'S PREFACE

‘Lastly, 1 stand ready with a pencil in one hand, and a sponge In
the other, to add, alter, insert, expunge, enlarge and delete,
according to better information. And If these my pains shall be
found worthy to pass a second impression, my faults | will confess
with shame, and amend with thankfulness to such as will
contribute clearer intelligence unto me’
Preface to 'The History of the Worthies of England’
Thomas Fuller (1662)

Such, as technical author of the Official Handbook of Mascot Version 3.1, has been my attitude over the
past two and a half years to the scientific worthies of the Mascot 3 Definition Team; albeit my pencil and
sponge are of an electronic variety. Some sections of the handbook, having stimulated particular
controversy among the Team or having been more than normally misunderstood by me or having been
especially savaged by the pre-publication reviewers, have been 'found worthy’ of a whole long series of
impressions. But it has all been well worth the effort from my point of view. When, in 1984, | commenced
work as a freelance lecturer and writer, | could hardly have expected the good fortune of becoming
involved in such a stimulating and rewarding project. | am grateful to all concerned.

1 would like to express my thanks, first of all, to the Royal Signals and Radar Establishment for financing
the task of writing the Handbook. My gratitude is specially due to Ken Hayter and Keith Oliver who shared
the job of Technical Authority for the project. | would also like to thank the Royal Military College of
Science, and particularly Tony Sammes as head of the Computing Science Group, for performing project
administration. To the members of JIMCOM | am greatly obliged for their faith in ratifying my original
appointment as author and for their forbearance in accepting a series of revised target completion dates
which seemed at times to be diverging to infinity. | would like to thank all those who, in the course of the
limited public review of the draft Handbook, provided helpful comments leading to clearer exposition and
pointed out many typographic, grammatic and orthographic errors.

Finally, to the members of the Definition Team itself and especially to Hugo Simpson, Ken Jackson, Tony
Riddiough and Bill Tayior, | owe an immense debt of gratitude. Throughout my period of involvement i.
the work, they have striven to communicate their ideas to me and to correct my misconceptions with
unfailing patience. While rightly insisting that the concepts of Mascot 3 be presented to the world with
technical accuracy and appropriate relative emphasis, they have allowed me to take full responsibility in
matters of presentation and have tolerated my occasional stylistic idiosyncrasy with commendable
resignation.

George Bate

Wantage, May 1987
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PREFACE

The development of complex, computer based systems poses major problems to the people involved.
These problems encompass both managerial aspects, concerned with control of the overall
development, and technical aspects concerned with the interaction of the individually designed
components of the system. Mascot offers a wide-ranging and homogeneous approach to the
development of such systems. It provides significant contributions to the solution of both managerial and
technical problems.

Hi rical Backgroun

Mascot was originated by Ken Jackson and Hugo Simpson over the period 1971 to 1975. After the initial
implementation work was completed, the Royal Signals and Radar Establishment (RSRE) formed the
Mascot Suppliers Association (MSA) in order to effect the transfer of Mascot technology into industry.
The MSA, which consisted of individuals from several companies and MOD establishments, produced, in
1978, an 'Official Definition of Mascot'. This document described what came to be known, retrospectively,
as Mascot 1 and provided a definitive reference for implementors and teachers of Mascot while ideas and
methods continued to evolve.

In 1980 a sub-committee of the MSA, drawing its membership from the following:

Admiraity Surface Weapons Establishment

Royal Military College of Science

Royal Signals and Radar Establishment

Computer Analysts and Programmers (Reading) Ltd
Ferranti Computer Systems Ltd

GEC Computers Ltd

Software Sciences Ltd

Systems Designers Lid

drafted a much more comprehensive presentation of the Mascot concepts as 'The Official Handbook of
Mascot'. This handbook, which was reissued in 1983, constitutes the standard reference for Mascot 2
and has received an extensive distribution. A companion volume to the 1983 issue, 'Additional Features
to Integrate Mascot with Coral 66', provides a formal syntactic description of a set of extensions to the
MOD standard programming language which make it a suitable vehicle for Mascot applications. This
language was named AF Coral 2.

The drafting of these documents was one of the last actions of the MSA before it was disbanded, having
achieved its major objectives. Responsibility for maintaining the Mascot standard, in so far as it is intended
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for use in government projects, was taken over by the Inter Establishment Committee on Computer
Applications (IECCA). A joint committee of the MOD and the Dol, IECCA is composed wholly of official
representatives. In order that the liaison with industry and the computing community generally, so
successfully initiated by the MSA, could be maintained and extended, another organisation, the Mascot
Users' Forum (MUF), was set up in 1980. Informal symposia, open to all actual and potential Mascot users,
suppliers and supporters, are arranged by the MUF and some 80 official, industrial and academic bodies

have been represented.

To provide a convenient basis for the continued technical development of Mascot, IECCA and the MUF
formed, in 1981, the Joint IECCA and MUF Committee on Mascot (JIMCOM). It is under the aegis of
JIMCOM that the work on Mascot 3, the subject of this present version of the Official Handbook, has been
carried out. This new Mascot definition has been developed by a team in which the following have been

principal contributors:

Lawrence Collingbourne {Systems Designers plc)
Gerry Docherty (YARD Lid)

Giles Forster (MOD -EQC)

Ken Jackson (Systems Designers plc)

Tony Riddiough (Software Sciences Ltd)

Hugo Simpson (British Aerospace plc)

Bill Taylor (Ferranti Computer Systems Lid )

The enormous contribution of Georgé Bate who was the technical author responsible for transiating the
ideas from the development team into a consistent, coherent text is gratefully acknowledged.
Acknowledgement is also due for the support of RSRE. Finally the contribution of the people who
commented on the draft versions of the Handbook is gratefully acknowledged.

Han k Organisation _an nvention

This Handbook has been written principally for the benefit of users and potential users of Mascot. The
presentation is therefore broadly tutorial. However, within this general approach an attempt has been
made to be as helpful as possible both to the implementors of Mascot and to those concerned with
assessing and evaluating the resulting implementations. There are three major sections. The first of
these is introductory, providing the background to the present stage of Mascot development and
presenting, in an informal manner, the main innovations of Mascot 3. Then follows the Official Definition
which is the essential core of the book. It contains both descriptive passages suitable for those requiring
an overall understanding of the ideas and rather more formal material intended to be used for reference
purposes. Finally, there is a section devoted to guidance in the use of Mascot. It is of course only through
practical experience that the optimum application of the Mascot 3 features will emerge but the advice
given here reflects the rationale upon which they have been devised.
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The new concepts which this handbook introduces into the Mascot philosophy demand an extended
technical vocabulary for their description. Devising acceptable and consistent terminology has not proved
easy. There are a limited number of possible words available (if we reject the idea of coining entirely new
ones) and they are all inseparable from their existing associations in both technical and everyday usage.
The importance of the glossary which appears at the end of the handbook can, therefore, hardly be
emphasised too strongly. It contains definitions of all the Mascot technical terms. In order that the reader
will be aware that a word is being employed in a precise sense, all such instances are signalled throughout
the Definition by the use of bold type. This will help to make more comprehensible those passages in
which technical terms have had to be used before being fully explained in the text. It will be advisable,
even for those already familiar with earlier versions of Mascot, to consult the glossary regularly while
reading through the handbook for the first time.

The only other typographical convention is the use of bold italic for text which would otherwise need to
be in quotation marks. Examples include identifiers used in sample program fragments and names

invented for the syntactic elements of the design representation language.

Mascot designs have two parallel forms of representation: graphical and textual. The former presents no
problem here. Its conventions are well defined and are summarised in an appendix. There is no barrier to
their standard use in all Mascot applications. The textual form, however, does raise difficulties. The
Mascot tradition of programming language independence is retained in Mascot 3 even though, for many,
the choice in the past has been 'any language provided it is Coral' and in the future will presumably be
‘any language as long as it is Ada”". Neither of these languages is ideal as a vehicle for expressing the
textual form of the Mascot design representation though either will serve in practical use.

The solution adopted has been to invent a design representation language to fulfil a twofold purpose.
First, it serves here to define and explain the design constructs in a rigorous and consistent manner and
can be used for a similar purpose in future publications. Second, it is proposed as the notation in terms of
which practical Mascot 3 designs will actually be devised and communicated. While it is very desirable that
some automatic means of translation, such as a pre-processor, should be made available for mapping
these designs into particular programming languages, there is no implication that this is an essential
prerequisite to the use of Mascot. Experienced programmers have long recognised that the language 'in
which they program’ need not be the (more or less inadequate) implementation language which has to be
used for other, often non-technical, reasons. The same considerations apply here and the sole criterion
must be, as in the past, that the concepts described in the Mascot Definition are capable of being
expressed in the chosen implementation language.

The design representation language is broadly Pascal-like in that, where a suitable Pascal convention

exists, it has been adopted. This choice was made partly on the grounds that Pascal is widely familiar to
the international computing community and partly because of its use as the base language in the
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development of the NATO preferred programming language, Ada’. The syntax of the language itself has
been defined by means of the type of syntax diagrams first employed by Wirth to describe Pascal. The
author's experience of teaching programming languages at a variety of levels has produced a strong
conviction that such diagrams provide the best available means of combining rigour with
comprehensibility. A complete set is presented, for ease of reference, in appendix A which also presents
the syntax in BNF together with an index to the Handbook itself. Where differences occur between the
syntax diagrams used in the text and the corresponding diagrams in Appendix A, those in the appendix
constitute the full definition.

* Ada is a registered trademark of the U.S. Government - Ada Joint Program Office
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1. INTRODUCTION

Mascot is a Modular Approach to Software Construction Operation and Test which incorporates:

a) a means of design representation

b) a method for deriving the design

c) a way of constructing software so that it is consistent with the design

d) a means of executing the constructed software so that the design structure
remains visible at run time

e) facilities for testing the software in terms of the design structure.

Of particular importance in the design representation is the ability to represent, directly, concurrent
functions and the data flows between them. An equally important facet of the method is the fact that
individual components in the design structure are de-coupled from each other. This has a significant
impact on both the design method and the testing strategy and leads directly to a form of ‘component
technology' familiar in all other branches of engineering. It causes a design to be expressed as a structure
(or assembly) of interconnected components each of which is of a specific type. Thus each component
type has its own characteristics and embodies constraints on where and how it may be connected to
other component types. But, and this is a critical feature, no component refers directly to another
component. Such interconnection information is specified in a separate form rather like an engineering

drawing.

The software structure, by its insistence upon decoupling, also has a significant impact upon the
components' potential for re-use and specifically makes the creation of test systems very much more
straightforward.

Mascot can be and has been used in a wide range of application areas. It is however aimed primarily at
real-time embedded application areas where the software is complex and highly interactive.

1.1 Structure, Modularity and Managemen

One important motivation for the provision of modularity stems from the need to employ a team of people
on one single job. In such circumstances it is essential that each member of the team can be allocated a
job to do which contributes to the overall success of the project. Many modularity schemes have been
devised to address this problem. Most of them involve creating an overall design and then carving up the
design into chunks which can be allocated to an individual team member. A key feature of Mascot is that,
because the design is expressed as an interconnected network of otherwise independent components,
each component can be developed in isolation from the others. Then the developed components can
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be brought together into assemblies or sub-assemblies at a later stage in the secure knowledge that,
because the interconnection constraints have been policed during development, the components will fit
together and will have a high probability of working together correctly.

Thus, through a modularity scheme based on sound and secure component technology, Mascot
provides not only the basic ingredients for sound team management, but also allows the use of traditional
approaches to engineering management.

1.2 Derivation of Mascot

1.2.1 Historical (see also the Preface to this Handbook)
The antecedents of Mascot can be traced back to the period 1965 -1970. During this time the originators
of Mascot were involved respectively with the development of control programs for an automatic
computer controlled radar and a multi-access operating system for the control of on-line experiments in
real time, and the in-service maintenance of various operational, embedded, real-time RAF systems. This

A early experience ih tackling the problems of embedded real-time systems culminated in the successful
development of a Iérge air defence system. It was during this last project that the originators came
together and began to investigate the possibility of creating an alternative and well defined method of
software development. These investigations led to Mascot.

1.2.2 Technical
Much of the motivation behind Mascot lay in the apparent preoccupation with control-flow design which
was prevalent in the late 60s. For complex real-time systems it was obvious that there could not be a
unique control flow design which satisfied all the functional requirements because of the highly
stochastic nature of the inputs. Therefore the originators looked to their training as electrical engineers
for inspiration. Here they discovered that concurrency was a key feature together with the notion of data
flow or information flow from one stage to another. For example, in a radio receiver RF signals are
amplified by the RF stage and the output is detected by the demodulator stage. The demodulator output
is fed to an audio amplifier and its output is fed to the loudspeaker. Thus there is the notion of information
flowing from one (concurrent) stage to the next and the very important concept of well defined interfaces
between stages to decouple the design of one stage from the next. There is no notion of control flow
because each stage is performing its own special function ali the time. Thus this model of analogue
electrical circuits became the foundation for the Mascot design representation and method of software
construction.

From the outset, the originators held the view that writing sequential programs (or modules) was not a
problem - or rather it was not a problem which Mascot would address! Instead Mascot would concentrate
on what was perceived to be a more difficult problem, namely that of representing concurrency and data
flow in embedded real-time systems.
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1.3.1 General
One of the key problems with software is its intangibility and this is especially true of large systems.
Hence, a way of describing the software is required which presents just sufficient detail for the purpose.
This usually involves a top-down presentation so that an overall view can be given at first. Further, more
detailed, views follow until the lowest level of detail, which is usually the source text in an appropriate
programming language, is reached. The key requirement of a design representation medium is this ability
to present a design at appropriate levels of detail. '

In Mascot the starting point was to represent the design graphically with emphasis on the presentation of
data flow and concurrency. From such a diagram one can gain an overall impression of what each
component has to do and how the overall functionality of the software system is achieved. Also from the
diagram it is possible to write down an equivalent textual representation of the whole system structure
and of the individual components required to build that structure. Then the other details of the
components can be added as the design effort proceeds. Once components have been built, test
systems can be created in which the components can bé tested. Finally the complete design structure
can be built for system testing.

These characteristics are evident in both Mascot 2 and Mascot 3. In the following sections we describe
first the Mascot 2 method and then indicate how and why Mascot 3 differs. A fuller introduction to Mascot
3 design representation can be found in section 2.1. Here we merely touch upon the salient features of
both Mascot 2 and Mascot 3 in order to make the comparison and to identify the motiviation for updating
Mascot 2.

1.3.2 Mascot 2
The basic notion in Mascot is that the flow of data through a system, from input sensors to output
actuators, is controlled solely by a set of concurrent software processes. These processes are known as
‘activities' and are separately scheduled by a run-time system usually referred to as a Mascot 'kernel'. Data
enter and leave the system through 'devices' which are software accessible registers in the hardware with
which the software system communicates. The data are moved around the system and transformed by
activities. Mascot activities thus need to co-operate with each other by passing data but they are not
allowed to communicate directly; their immediate communication is with special modules, provided for this
purpose, called ‘Intercommunication Data Areas’ and usually referred to as IDAs. IDAs are passive
components which exist only to satisfy the intercommunication requirements of activities. They contain
data areas which are completely private to the IDA and support the intercommunication requirements by
providing a procedural interface which can be used by activities. Thus the designer can design in terms of
concurrent processes which are purely sequential (ie activities) and IDAs which are passive but
encapsulate the interactions between the activities.
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This represents a significant separation of concerns:

- activities are sequential processes concerned primarily with perfoming a
single function and communicating with a (usually small) set of IDAs

- IDAs contain any data sharable by activities. Access to the data is provided by a
procedural interface whose constituent procedures must ensure the integrity
of the data in the IDA by using the synchronisation facilities of the Mascot
kernel.

Two distinct classes of IDA have been identified in Mascot: the ‘channel' and the 'pool'. The channel is
used to pass data between activities on a ‘producer/consumer basis. Producer activities send messages
via an input interface and consumer activities receive messages via an output interface. There can be a
buffer of messages in a channel at any instant. These are messages which have been sent but not yet
received (ie they are currently in transit). This property of a channel is useful in relieving the consumer
activity of the necessity of running in synchronism with the producer activities.

The pool is used to hold data which may need to be referred to by activities and, in particular, in cases
where the frequency or pattern of references to the data is corhpletely independent of the frequency or
pattern of operations which bring it up to date. Thus there could be many references without any change
being made to the data or the data might be changed many times between successive references.

It is important to realise that Mascot does not provide a specific and fixed set of IDAs. Facilities are
provided for a designer to define and build the specific types of IDAs required by his application.

The graphical representation used for Mascot 2 is known as the ACP (Activity, Channel, Pool) Diagram.
An example is given below together with a key to the symbols used. Note that the producer/consumer
characteristic of channels is indicated by connecting one side of the symbol to producer activities and
connecting the other side to the consumer activity. The direction of data flow is indicated by the arrow
heads.
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The ACP diagram depicts the instances of the activities, channels and pools required. The types of the
components can also be depicted on the ACP diagram (usually by enclosing the type in parentheses).

As mentioned earlier activities do not refer directly to IDA instances. Instead they are defined and coded
in ‘terms of the set of IDA types with which they need to communicate. During the software construction
process the activities are created(ie manufactured) and then 'connected’ (i.e. assembled) to the set of
IDA instances required by the design and expressed in the ACP diagram. The unit of construction in
Mascot 2 is the 'subsystem'. This is merely a collection of activities which have been connected to their
IDAs at the same time. The subsystem is also the unit which can be controlled at run time by being
started, terminated, halted or resumed. This provides the facility for evolving a Mascot network. The
operational network consists of the set of subsystems which have been formed' and 'started’. By forming
new subsystems, terminating old subsystems and starting the new subsystems it is possible to change

an operational system as time passes.

1.3.3 Mascot 3
Motivation for the development of Mascot 3 has stemmed from two considerations. First, experience of
Mascot 2 in practical use has inevitably revealed, within its proper province of application, some areas of
weakness which it is desirable to remedy. Second, the émerging prospect of implementing systems for
large, multiprocessor networks has brought with it a need for more powerful and flexible means of design
expression than those available in Mascot 2. The aim has been, therefore, both to consolidate and to
extend the Mascot method.

Perhaps the most significant refinement which Mascot 3 brings to existing Mascot concepts concerns the
manner of expressing network connections. Mascot 2 networks are formed from system elements which
have been created from templates held in a constructional database. Every activity template contains a
fixed number of external connections each of which is expressed as a reference to an IDA template. An
assembly of inert activities is converted into a network of communicating activities by supplying IDAs of
the appropriate type, created that is from appropriate templates, to store information and control its
transmission in each of the data flow paths. The choice of valid network configurations is thus constrained
by a type checking mechanism based on the fact that activity templates contain direct references to IDA
templates. Such an arrangement allows much greater flexibilty than one in which the references are to
specific IDA instances.

Although this Mascot 2 style of expressing design definition is very flexible it does contain one major
restriction, namely that an activity template depends upon IDA templates. In Mascot 3 this dependency
has been changed so that the inter-dependency between activities and IDAs is focussed on the interface
which exists between them. This interface exists implicitly in Mascot 2 and consists of the set of access
procedures implemented in the IDA. In Mascot 3 the procedural interface is specified explicitly and is
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called an 'access interface'. Thus in Mascot 3 an activity template is specified in terms of its requirement to
use one or more access interfaces. A component derived from that template may be connected to a set
of IDA components (derived from their templates) subject to the condition that the access interfaces
provided by the IDA are those required by the activity.

The terminology introduced into Mascot 3 to describe these ideas is that an IDA 'provides' an access
interface at a 'window' and an activity 'requires' an access interface at a ‘port’. Thus activities can have
several ports, as indeed they could in Mascot 2. However, in Mascot 3, IDAs can provide several windows
whereas in Mascot 2 an IDA could provide only a single window.

This greater degree of design decoupling provides several advantages in terms of design expression
and eliminates some of the causes of inefficiency in Mascot 2 design. First, an activity may be connected
to any IDA type provided that the port to window connectivity constraint is satisfied (ie that the access
interface required at the port is that provided at the window). This means, for example, that for test
purposes an activity can be connected to an IDA which is of a different type from the one to which it is

connected in an operational network.

Second, the ability of an IDA to provide more than one window means that, in Mascot 3, a channel can
provide two interfaces, one for the writers and one for the readers. The same idea can be extended to
pools where a set of access interfaces can be provided each encompassing a limited capability
corresponding to the particular requirements of the activities using it. The use of multiple windows by the
designer is also valuable in identifying how the functions of a system are distributed in relation to the IDA's
position in the network.

A third major advantage concerns the freedom, in Mascot 3, to design IDAs which provide several
windows of the same type. Thus a special significance can be attached, within the IDA, to any of these
windows. For example, one window might be given priority over the others or actions within the IDA can
be made dependent on the location of the caller within the connected network. The ability of an IDA to
provide several windows, combined with the decoupling arising from separate definition of the access
interface, is considered to be one of the key contributions of Mascot 3.

Another major departure from previous Mascot philosophy is the adoption of hierarchical structure. A
Mascot 2 design is conceived in terms of a flat, data flow network whose nodes consist of alternate data
processing and data communication elements. While higher level descriptions may be used in the
process of devising the network, they have no permanent standing and are not recognised as design
entities by the supporting constructional database. The final, essentially two-dimensional structure may
be partitioned into an arbitrary patchwork of subsidiary networks, the adjacent members of which share
common communication elements. These are the Mascot 2 subsystems which subsequently constitute
units of control at run time.
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In Mascot 3, the role of the subsystem has been greatly elevated. While it continues to represent a
subsidiary network, it no longer possesses shared components but may be used as a network node in its
own right. As such it is capable of being connected to either processing or communication elements and
so may perform the function of either or behave as a mixture of the two. It may also possess lower level
subsystems among its components so as to facilitate an hierarchical form of design expression. At the
same time, with appropriate database support, it makes it possible to develop and capture a design,

progressively.

The modules of text which represent subsystems (and systems) in the Mascot 3 database contain,
between them, all the information needed to establish the content and connectivity of the complete
network. The processing of these modules, supported by all the remaining modules which define the
system, leads to the construction of a template from which a complete collection of application software
can be created and loaded into appropriate locations in the target hardware. They thus embody all the
information which, in the Mascot 2 method of software construction, is provided at the stages of system

element creation and subsystem formation.

Whereas in Mascot 2, therefore, the connectivity of the software network is not established until the last
stage of construction, in Mascot 3 it is established as the first stage. The advantage of the Mascot 2
approach is that it readily supports evolutionary construction, the ability to make adjustments to the
network without regenerating the system or even terminating its execution. This may be less easy to
achieve in Mascot 3 but a compensatory gain, in addition to hierarchical design expression, is the facility
of validating the overall design structure in terms of the inter-module dependencies before any detailed
implementation coding has been submitted to the database.

It will be clear from the earlier discussion that a Mascot 3 subsystem is a composite entity. It defines a set
of interconnected components. Most other design elements have composite as well as simple forms. For
example, a composite IDA defines a network of internal, component IDAs. This is made possible by
another extension of the Mascot philosophy which allows IDAs to communicate with each other directly
without an intervening active element. Such relatively complex constructions are particularly useful where
the IDA is required to control communication between activities located in different parts of distributed
hardware.

The fundamental notion in Mascot 2 that activities must only communicate via IDAs is retained in Mascot 3.
However, because Mascot 3 IDAs can have ports, it is possible that the interaction between any two

activities may involve more than one IDA.

The concept of composite templates in Mascot 3 extends to sequential as well as network
decomposition. An individual thread of execution, an activity, may be composed of a number of
separately created components which communicate with each other through well defined procedural
interfaces. These components share with the simple form of activity the ability to make external network
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connections. Since the components may themselves be composite the facilities exist for hierarchical
expression of this level of the design also. o "

The Mascot model for device handling is essentially unaltered in Mascot 3. It is, however, catered for in a
more formal manner by the provision of a new class of design element, called a server, which is dedicated
to communication with hardware devices. It is similar to the generalised, Mascot 3 form of IDA but is the
only design element which communicates with devices and to facilitate this is allowed to contain an

interrupt handler.

1.4 Method

In Mascot 2 the method could be divided into three phases:

a) Network Design - which created the ACP diagram and identified the purpose
of each component

b) Component Design - in which each component was designed and coded

) Integration and Test - in which each component was tested first individually
and then in conjunction with other components

In Mascot 3 the same set of phases can be identified but there are some additional tasks within each:

a) Network Design in Mascot 3 is an iterative process involving (potentially)
the creation of an hierarchy of subsystems, IDAs and servers.

b) Component Design in Mascot 3 can involve the decomposition of activities
into lower level components

C) Integration and Test in Mascot 3 is similar to Mascot 2 except that it must
take account of the additional levels of decomposition.

1.5 Development Environment

The Mascot 3 development environment is far less specific than that defined for Mascot 2 . This is
primarily because Mascot 3 is considered to be more capable of being used as a stand alone design
method than Mascot 2. An important contributory factor here is the need to work with languages such as
Ada which do not allow the intimate integration that has been possible with, say, Coral 66. Therefore, the
Mascot 3 development environment has been defined in terms of a set of functions to control the
progressive capture of a design. These functions are known as the 'status progression commands' and
allow a template in Mascot 3 to be first 'registered’, then 'introduced’, and finally ‘enrolled'. These
operations work primarily on one specific template, but they aiso require a specific status to be achieved
by other templates upon which that template depends.
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1.6 Execution Environment

The execution environment of Mascot 3 is again very much less specific than for Mascot 2. None of the
facilities specified have been significantly changed, but, in recognition of the existence of languages
which directly support concurrency, the Mascot run-time facilities (ie those provided by the Mascot kernel)

are no longer mandatory.
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2.1 AN INFORMAL INTRODUCTION

2.1.1 Introduction
This part of the Official Definition of Mascot, 'Design Representation’, contains the quintessence of the
Masca} approach. it is the portion of the Handbook to which those familiar with the earlier (1981) edition
will wish to give closest attention in order to gain an understanding of the ideas which have been
developed during the past five years. An attempt has been made to present these new concepts with the
rigour and completeness befitting a formal definition while, at the same time, making it ag easy to read as
possible. Opinions will differ as to how successfully these objectives have been attained but it is a safe
assumption ihat most readers will find some of the material relatively demanding. Hence the need for an

informal introduction.

The exposition in this section is neither rigorous nor complete and should not be taken as definitive.
While it is, of course, accurate as far as it goes, it is in no sense a substitute for the sections which follow
but rather is intended to establish a framework within which the detail, presented later, may more readily
be understoqd. It concentrates on the simpler aspects of each topic in order to introduce the principal
concepts and terms. The Definition describes a set of facilities judged sufficiently powerful, in their
entirety, for use in addressing the design of extremely complex computer systems. Here, however, the
more complex constructions and most of the supplementary features are omitted in the interests of
displaying the essential simplicity of the underlying ideas. In practice, the users of Mascot will adopt as
many of its features as may be required for the application in hand.

2 i resentation

The architecture of Mascot designs is expressible in two equivalent forms: graphical and textual. Each
one may readily be derived from the other. For example, a design which is conceived and developed in
the graphical form may be transformed, in a wholly mechanical manner, into the textual form and hence
progressively captured in the Mascot database to establish the structure of the software.
Implementation is then completed by specifying details of the interfaces through which the components
of the system communicate, together with the data types with which they are concerned, and by
supplying the executable code expressed in whatever implementation language has been adopted.
Alternatively, a system might be designed directly in the textual notation and the graphical form
subsequently derived from it to become the central feature of its design documentation and to provide a
primary medium of discussion for everyone involved with the system throughout its lifecycle.

One of the prime features of the Mascot method is concurrency. A typical design defines, in an
hierarchical manner, a set of parallel co-operating processes. At the higher levels of the hierarchy these
parallel threads of execution are bunched together in cbnstructional units called subsystems.
Progressive expansion of the subsystems separates the larger bunches into smaller ones and

eventually, at the lower levels, teases out the individual threads. These individual units of concurrency in
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a Mascot design are known as activitles. They are executed in a standard run-time environment
provided by a collection of context software whose functions are implicitly available to the application
software. The interface between the context and the application software is expressed in a form which
is generally compatible with the style of the application software modules and is known as the context
interface.

The hierarchical nature of this structure permits the design to be viewed at various levels of abstraction,
examination of any one of which immediately highlights the second salient feature of the Mascot design
representation. This is data flow. Each level of the design is conceived as a network through which data is
transmitted from one active entity (subsystem or activity) to another. The ultimate sources and sinks
of this information are provided by a set of hardware devices which are regarded as being outside the
Mascot system but with which communication may take place through a class of software design
elements called servers which are dedicated to this purpose.

2.1.3 A Sample line Design
In Section 5.1 of the Handbook the approach to the development of a Mascot design is described in
detail. For our purposes here we will suppose that a design has already been completed to the point at
which the overall software structure has been established. The diagram is drawn and there exists in the
Mascot database a module, that is a named textual representation, for each of the design elements
that has been used. Furthermore, all the inter module references have been checked and found valid.

We are not concerned with what our imaginary system is designed to do. Identifiers have deliberately
been chosen for their inherent lack of meaning, or else to be so general as to achieve the same effect, in
order that there shall be no temptation to be distracted by this question. This would, of course, be as
reprehensible in a real design as failing to use meaningful identifiers in a sequential program. In practice it
is recommended that template names reflect the function provided by the template; wheras
component names should reflect the purpose of the component in the network which contains it.
The only purpose of the system we are about to examine, however, is to demonstrate aspects of Mascot
design representation. It should not, in particular, be taken as exemplifying specially recommended
practice.

The natural place to begin is with the diagram representing the top level of the design.
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This diagram shows our example system. It corresponds to what, in the Mascot method, is called the
'initial design response'. It shows, on the outside of the system, the set of hardware devices the
system is required to interact with. It shows, on the inside, a set of high level design components which
represent the initial design of the system. The system itself is symbolised by the round cornered
rectangle which identifies the boundary between hardware and software and indicates the flow of data
into, out of and within the system in very broad brush terms. The name of this particular system is
| example_sys. It consists of five communicating components three of which, like the system itself,
are symbolised by round cornered boundaries and represent subsystems. Throughout the Mascot
graphical convention round corners generally indicate active entities and, although occasional
exceptions can occur, it is normally safe to assume that a subsystem contains at least one of the
concurrent threads of execution which constitute the active constituents of the system. The threc
components, s1, s2 and s3 may therefore be thought of as being executed in parallel.

The two remaining components of system example_sys illustrate the feature which, more than any
other, distinguishes Mascot from other approaches to the problems of large scale concurrency. In order
that asynchronously executed processes may exchange information in a secure manner, it is necessary
to provide mechanisms to effect mutual exclusion and cross-stimulation for use at the points where data is
transferred to or from common storage areas. As explained inSection 4.2 of the Handbook, failure to do
this may lead to information becoming corrupt and failure to do it adequately may result in the processes
becoming deadlocked. In many approaches to the organisation of parallel, co-operating processes, these
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fundamental mechanisms are not made directly available by the run-time system. Instead, a set of higher
level operations/facilities such as monitors, message passing or rendezvous arevprovided. In Mascot the
view was taken that, in order to obtain the optimum performance which is always vital in in embedded
systems, it was best for the run-time system to make the low level facilities directly available. This has the
advantage of making the run-time system small and efficient. It also gives the designer freedom to design
exactly the right set of higher level operations required for his application. The design entity in which all
these requirements are satisfied is called an intercommunication data area or, more succinctly, an
IDA. It is the responsibility of IDA designers to implement the required operations as access
procedures (or functions) within an IDA. These operations use the low level synchronisation facilities
to maintain both data flow and data integrity. A further contribution is made to system integrity by ensuring
that only IDAs contain data which can be the subject of interaction from several acivities and that only
IDAs may use the low level synchronisation facilities. The most general form of IDA is represented
graphically by a rectangle; s/ and si2 are examples.

The thin lines, bearing arrow-heads, which link the subsystem and IDA symbols into a network are lines
of data flow known in Mascot as paths. Thus, data flows from subsystem s2 to subsystem s3 along
the two paths, labelled ack and rec respectively, which enter and leave the IDA si2. InIDA sif a
merging of information flow occurs with paths put and trans, from s1 and s3, entering and path sig
to s2 leaving. It will be seen that in one instance a path, get, links two subsystems directly. However,
as we shall discover, this does not reflect any failure to carry out the necessary synchronisation. The
concepts of both paths and IDAs will be discussed in greater detail later when our example system has
been expanded to reveal the lower levels of its structure.

We shall eventually return to this system diagram and examine the module (textual unit) which is
equivalent to it. For the moment, leaving some of its detail unexplained, we shall consider what further
information is needed for software construction. Obviously it is necessary to know how to create the
components. A pattern, or in Mascot terms a template, is required for each of the three subsystems
and two IDAs. Consider, for example, the component labelled s3. The identifier subsys 3 which
appears inside the corresponding symbol is the name of the template from which this subsystem is

created. Expansion to a further level of decomposition reveals the graphical representation of its internal
composition.
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It will be seen that the template's external connections match those of the component which it
describes. Data flows into the subsystem along a path labelled rec and out along paths labelled get
and trans, respectively. All three of these paths are connected, internally, to one of the template's
two components, s4, which is immediately recognisable as another subsystem. The second
component, called sv and represented by a D-shaped symbol, is an example of a server. This is the
design element, referred to earlier, which is able to communicate with external, hardware devices. A
device is represented here by a hatched rectangle joined to the server by a broken line. We shall return
to this diagram later but, for the present, further discussion will once again be postponed in favour of
performing one more level of decomposition. In order to show what is required for the creation of
component s4, itis expanded to reveal its template, subsys 4.
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No further network decomposition is possible in this branch of the hierarchy. The components of
subsystem subsys_4 include two individual activities, represented by the two large circular
symbols labelled a7 and a2. Activitles, as already indicated, are fundamental processing elements.
Each one is to be regarded as implementing a separate parallel thread. Any further analysis of them can
only be in terms of sequential, rather than network, decomposition.

The template, subsys 4 also contains two IDAs. They are represented by slightly modified versions
of the simple rectangular symbol seen earlier in the system diagram. This shows them to be special
cases corresponding to the channels and pools of previous versions of Mascot. The channel is
characterised by a destructive read operation; data flowing through it is temporarily accommodated in
internal storage which may become full as a result of repeated write operations or empty as a result of
repeated read operations. In a pool it is the write operation which is destructive. Its contents consist of a
collection of variables which are given initial values when the system commences execution and which

may subsequently be examined and updated.

2.1.4 Th mmunication M |
Having now looked briefly at the graphical representation of these three hierarchically related levels of the
imaginary design, we shall now consider each in more detail. For this purpose it will be convenient to
proceed from the lowest level upwards, examining the modules which represent the various
templates as we go. But first it is necessary to deal with a topic which is so fundamental to Mascot as to
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demand separate treatment. So far, data flow through a network has been taken for granted. It is now

time to examine the Mascot communication model in more detail.

The fundamental concepts are illustrated in the diagram below which shows a simplified fragment of the

subsystem subsys 4.

al

Here we have the simple case of a producer activity, a2, supplying data to a consumer activity, a1.
The IDA (a channel), connected between the two activities and represented by a modified
rectangular symbol labelled ch, acts as a temporary repository for items of data en route from a2 to af.
An intermediate storage buffer, together with coding to operate on it, is encapsulated in the IDA. ¢ch
might, for example, contain a procedure which adds an item of data to the buffer and a procedure which
removes items from the buffer. It is in the coding of such procedures, known as access procedures,

that the mechanisms for effecting cross-stimulation and mutual exclusion are employed.

Procedures encapsulated by IDAs are made selectively available for use by activities through the
concept of windows. These are represented graphically by the small, filled rectangles labelled sw and
fw which appear, each at the end of a path, just inside the boundary of the IDA symbol. A window of
an IDA makes externally available a sub-set of the interactions which the IDA is able to provide. The
nature of the interactions provided at a particular window matches the type of the path connected to it.
This is indicated on the diagram as an identifier labelling the path. Thus sw and fw are connected to
paths of type send and fetch, respectively. ' |

The type of a path is defined in a module called an access Interface. This is classified as a
specification as distinct from the templates which define the types of Mascot components such as
activities, IDAs, servers, subsystems and systems. It contains sufficient information to allow the

2.1 Informal Introduction 2-7 Mascot Version 3.1




corresponding set of interactions to be invoked. Typically this includes procedure headings and,
indirectly, definitions of the data types which appear in their parameter lists. The types of the two labelled
paths in our subsystem fragment, for example, might be defined as follows:

ACCESS INTERFACE send ;

WITH flow_data ;

PROCEDURE insert ( item : flow_data ) ;
END .

ACCESS INTERFACE fetch ;

WITH flow_data ;

PROCEDURE extract ( VAR item : flow_data ) ;
END .

The WITH clause which appears in each of these modules is a reference to the common source from
which they obtain their definition of the data-type flow_data needed in both of the access
procedures. This is provided by a speclfication known as a definition which might, in this instance,
take the following form:

DEFINITION flow_data ;
TYPE
flow_data = RECORD

END;
END .

Definitions are the means by which other Mascot modules, whether representing specifications or
templates, share data-type definitions. Depending on the particular programming language being
employed, Mascot implementations may impose additional rules concerning the naming of definitions
and the point in the progressive elaboration of a design at which they are required to be present in the
database.

Coding capable of implementing procedures Insert and extract is included in the template,

chan_1, which defines the IDA ch. In outline, chan_1 looks like this:

CHANNEL chan_1 ;
PROVIDES sw:send;
fw :fetch ;

ACCESS PROCEDURE insert ( item : flow_data ) ;

END ;
ACCESS PROCEDURE remove ( VAR item : flow_data ) ;

END :
- fw.extract = remove
END .
After the heading, which names the template, a PROVIDES section lists all the windows of the IDA,

giving each a name and a type which relates it to an access interface. The procedures which
implement the interactions specified in the Interfaces are identified in the body of the IDA by the
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language word ACCESS. Other procedures might be declared in the template together with data
structures such as the storage buffer and its associated pointers. These program entities would all be
local to IDAs (such as ch) created from the template and inaccessible to all other components.

This example demonstrates the two ways in which the correspondence between the access
procedt;res and the window specifications may be established. In the case of procedure insert the
correspondence is established implicitly by name. Procedure remove, on the other hand, is explicitly
identified with the access Interface procedure specified as extract. This is achieved through an
access equivalence list at the end of the module. Thus while simple cases can be dealt with simply, an
unrestricted facility exists whereby internally defined procedures may be allocated between the
windows of the IDA. "

Returning to the fragmentary subsystem diagram, it will be seen that each of the two paths that we
have been discussing connect, at the ends remote from the IDA windows, to small, filled circles
labelled sp and fp, respectively. These are situated just inside the boundaries of the two activity
symbols and are known as ports. They are the means of expressing the requirement of an activity for
the interactions specified in an access Interface. For a valid network connection to be established
between a port of one component and a window of another, they must refer to the same access
interface. Appropriate ports are specified in the activity templates a_temp 2 and a_temp _1
as follows:

ACTIVITY a_temp_2 ;
REQUIRES sp : send ;

END .

ACTIVITY a_temp_1 ;
REQUIRES fp : fetch ;

END .
Thus objects, such as a2, created from a_temp_2, contain coding to invoke the interactions
specified in access interface send. The port name is used as a selector:

VAR

val : flow_data ;
BEGIN

sp.insert{ val ) ;
With the interconnections as described, activity component a2 would, by this means, invoke
execution of procedure Insert in the IDA component ch. Similarly activity a7 would invoke

procedure remove (recall the access equivalence list) of ch by:

2.1 Informal Introduction 2-9 Mascot Version 3.1



VAR
next : flow_data ;
BEGIN

fp.extract( next ) ;
Furthermore, the flow_data items can be transmitted, in this way, from one activity to the other via a

buffer in IDA ch which is not directly accessible to either.

2.1.5 A Subsystem ntaining Activiti nd IDA
These, then, are the principal features of the Mascot communication model. All the internal features of
template subsys 4 should now be understandable from the diagram which, for convenience, is

reproduced below.

subsys 4

out

In addition to the interactions just described in detail, a7 also transfers information into the pool p1
along a path of type put. Each of these internal paths has a port at its activity end and a window at
its IDA end. Notice that in this example data in some paths flows from a port to a window and in others
from a window to a port. Data flow in both directions along the same path is also possible.

All the remaining connections on this diagram pass through the subsystem boundary. They represent

the external dependencies of subsystems created from this template. As we have seen, the external
dependencies of actlvities and IDAs are expressed as ports and windows. The same is true of
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subsystems which may possess both ports and windows. This one, for example, has three ports
and one window as may be seen more clearly in the higher level diagram, representing the template
subsys_3, of which it is a component. '

All the coding of a subsystem template is encapsulated in its components and, consequently, each
of the template's ports or window must be connected directly to a port or window of its
components. Indeed, it is reasonable to regard the specification of a subsystem port or window as
a method of making a port or window of one of its components available for connection outside the
subsystem. This is illustrated on a diagram by 'port to port' and ‘window to window' connections.
Thus the window gw4, of type get, on the boundary of subsystem subsys 4 is equated to the
window gw of the same type belonging to the pool p1. The two names are, of course, local to their
individual templates and arbitrarily chosen. Their types, however, must refer to the same access
interface if the equivalence is to be valid. Similarly each of the three ports of subsys 4 echoes a
pdrt of the same type belonging to one of its component actlvities.

Remembering that the program coding for our imaginary design has not yet been written, we will now
examine some of the modules from the Mascot database which represent the templates and
specifications we have been discussing in their graphical form. We will begin with a_temp_2, the
template from which a2 is to be created.
ACTIVITY a_temp_2 ;
REQUIRES sp:send;
olp :out;

p:rec;
END .

The local declarations and the program coding which implements this thread of execution will eventually
be added after the three port specifications. The external interactions of objects created from the
template are limited to those specified in the access Interfaces send, out and rec, to which it
refers. The corresponding specifications take the form illustrated earlier (forsend and fetch ) and so
need not be included here.

The channel template chan_1, which depends on another access interface, fetch, is
represented textually as follows:
CHANNEL chan_1 ;
PROVIDES sw:send;

fw : fetch ;
END .

When the contents of the specifications send and fetch have been completed, access

procedures and private data storage can be added to chan_7 and correspondence established
between the procedures and the various interactions provided at the windows.
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The existence in the database of access Interfaces put, trans and get, together with any
necessary supporting definitions, permits the external dependencies of the remaining template
modules to be validated in the following form:

ACTIVITY a_temp_1 ;
REQUIRES fp:fetch;

tp:trans;
pp :put;
END .
POOL pool_1 ;
PROVIDES pw :put;
gw:get;
END .

We are now in a position to inspect the template text of subsys_4 itself. It is presented below in its
entirety.

SUBSYSTEM subsys_4 ;

PROVIDES gw4 :get;

REQUIRES m4 :rec;
otp4 : out ;
tp4 :trans ;

USES pool_1, chan_1, a_temp_1, a_temp_2 ;
POOL p1 : pool_1 ;.
CHANNEL ch :chan_1 ;
ACTIVITY at : a_temp_1 (fp =ch.fw,
tp = tp4,
pp= plpw);
ACTIVITY a2 : a_temp_2 (sp = ch.sw,

otp = otp4,
p=rp4);

gwd = pl.gw
END .

After the module heading, which establishes the template's name, comes what is known as the
speclfication part. This defines the dependency of this module on the existence of a number of
access Interfaces. In other words it specifies the subsystem's ports and window. The features of
this part should, by now, be entirely familiar.

Then follows what is known as the implementation part. This is something new because none of the
modules we have examined earlier contain any implementation. It starts with a USES section which is
simply a list of all the templates needed to create the components of this subsystem. There is one
for each activity and one for each of the IDAs and we have already examined all four of them. After the
USES section the following four lines of the module specify what components are to be included
and how they are to be connected together.
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There are to be two IDAs called p1 and ¢h created from templates pool 1 and chan_1,
respectively. Examination of these two templates shows that the resultant components each
possess two windows which may be referred to as p7.gw, p1.pw, ch.sw and ch.fw. The
connectivity of the network is established by using these window references in the specifications of
the activity components which follow on the next two lines of the module. These indicate that there
are to be two activities called a7 and a2 created from templates a temp_1 and a_temp_2,
respectively.

The lists in parentheses define the network connections by means of the formal = actual' convention.
The port names on the left of the equivalences (fp, tp and pp in the case of a_temp_1) are
-analogous, in this context, to the formal parameters of a procedure. The corresponding ‘actual
parameters’ specify the points in the network to which each port is to be connected. Where the
connection is direct to an internal window, a reference to that window is given in the form indicated
above. Where there is a 'port to port’' connection passing out of the template, the name of the
appropriate port on the boundary of the subsystem is given. Thus, in the specification of activity a7,
the connections are:

port fp <-------——- > window ch.fw
port tp of 81 <---------- > port ip4 of template
port pp <---------- > window p1.pw

and in the specification of actlvity a2 :

port sp <---------- > window ch.sw
port oip of a2 <---——-——-- > port oip4 of template
port ip of 82 <-—--------- > port rpd of template

This caters for all the network connections apart from the single ' window to window’ case. The last line
of the module takes care of this by equating the subsystem window with that named gw belonging
to the IDA p1. Thus 'port to port’ and ' window to window' connections are dealt with differently in
subsystem templates. The former are handled through the activity 'parameter list' and the latter
through equivalence statements.

2.1.6 A b tem Containinga Another Subsystem and a Server

We are now in a position to consider the template text of subsys 3 which utilises subsys 4 to
create one of its components. Here, again, is the diagram:
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The template for the second component of this subsystem in its partially completed state is:

SERVER serve_1 ;
PROVIDES otw : out ;
END .

Servers are closely related to IDAs. The main difference is that they provide means of interaction with
peripherals. Consequently, as well as access procedures, which can be invoked by activities
connected to an appropriate window, servers may also include handlers. These are sections of code
which can be connected to hardware interrupts and which are entered for execution, on a pre-emptive
basis, whenever the appropriate interrupt occurs. The function of the handler is typically to control data
transfer and the operation of a hardware device. Transfer between the buffer and active Mascot
components such as actlvities and IDAs is achieved in ihe normal way via a path connected to a
window of the server. This particular server template specifies a single window, otw, which is of
type out.

We have now looked at all the templates needed for the components of subsys_3 . Here is the
template of this subsystem:
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SUBSYSTEM subsys_3 ;

PROVIDES gw3 :get;
REQUIRES mp3:rec;
tp3 :trans ;

USES subsys_4, serve_1 ;
SERVER sv : serve_1 ;
SUBSYSTEM s4 : subsys_4 ( 4 =1p3,
: otp4 = sv.otw,

tp4 =1p3);

gw3 = s4.gw4
END .

This should readily be understandable in the light of our earlier discussion of template subsys 4.
«The specification part specifies a window and two ports in terms of access interfaces get, rec

and trans all of which we have already considered. The implementation part lists the required
compohent templates before specifying the two components and their interconnections. There is
to be a server called sv created from template serve 1 and a subsystem called s4 created from
template subsys_4 . The connections to the ports of s4 are:

port ip4 of s4 <--—---mmm- > port ip3 of template
port oip4d <--—--—-—--- >* window sv.otw
port tp4 of 84 <----—------> port tp3 of template

The equivalence statement connects the window gw4 of the component subsystem s4 to the
window gw3 of the template.
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21,7 A System

Finally in our tour of this imaginary design, we retum to our starting point: the system diagram.
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A module to represent a system template is very similar to one for a subsystem. There are,

however, no external network dependencies. In other words a system does not specify any ports or
windows. On the basis of what we have already learned, and assuming the existence of the necessary
additional supporting templates and specifications, it is easy to understand system

example_sys .
SYSTEM example_sys ;

USES subsys_1, subsys_2, subsys_3, sida_1, sida_2 ;
IDA sit : sida_1;
IDA si2 : sida_2 ;
SUBSYSTEM s2 : subsys_2 ( sp2 = si1.sw,
ap2=si2.aw);
SUBSYSTEM s3 : subsys_3 ( tp3 = sil.tw,
m3 =si2w);
SUBSYSTEM s1 : subsys_1 ( pp1 = sit.pw,
gp1=s3.gw3) ;
END .
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In this informal survey of the features of the Mascot scheme of design representation we have discussed
the function of ports, windows and paths and examined examples of two kinds of specification
(access Interfaces and definitions) and five kinds of template (activities, IDAs, servers,
subsystems and systems). This selection corresponds roughly to the set of features in the mandatory
subset of the definition. Study of the full definition will reveal many extensions to these basic concepts
and, in particular, the optional availability of composite forms of most of the templates and
specificatlons presented here in their simple form.

21.8 A C ite_Activit

A composite module is one which is further decomposed in terms of lower level modules. Systems
and subsystems. clearly come into this category. They do not, in themselves, introduce coding but
merely describe a set of related components. Composite forms of activities, IDAs and servers are
described in the following sections. To complete this introduction we will look at just one of these forms:
the composite activity. This is chosen because it exemplifies sequential decomposition rather than
the network decomposition which we have already seen. An activity whose implementation is complex
may be designed as a set of components which, in the executing system, communicate via procedural
interfaces. The Mascot design representation provides both graphical and textual conventions to
describe this form of construction.

We return now to a slightly modified form of the diagram representing subsys 4.

subsys 4
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This is the lowest level of the hierarchy that we have so far visited. The modification is that the
component symbol a7 has been drawn with a thick boundary like that for the subsystem. The
implication is that the corresponding module is a composite one. To investigate its structure we must
expand the symbol to reveal a lower level template diagram.

The coding of component a7 is to be divided into four separately developed modules. One of them,
labelled r, is a design element known as a root. Every composite activity contains exactly one root
as this is the component which contains the initial entry point of the coding. This particular root is
created from a template called main which in turn possesses a port of type trans connected, via a

port to port connection, out through the boundary of the activity template.

The other three components; su1, su2 and su3 are subroots created from templates sub1,
sub2 and sub3, respectively. These are essentially collections of procedures and a composite
activity may possess any number of them. Their relationships with the root and with each other are
represented graphically by lines bearing hollow arrow heads and known as links. They indicate here that
r calls procedures, directly, in each of the subroots and that su7 and su2 both make calls on
procedures in su8. Just as the types of paths in a nhetwork take the textual form of access
interfaces, so link types are represented in the Mascot database by specifications calied
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subroot interfaces. Here is one of the three needed for the new version of template a_temp_1:

SUBROOT INTERFACE sii ;
END.

The contents of such modules, when complete, will be similar to those of access interfaces.
Principally, they are used to specify the headings of procedures which subroots make available to the
root and to other subroots.

We can now examine the template, main, from which the component r is created.

ROOT main ;
REQUIRES t : trans ;
NEEDS s1:sil;
s2:si2;
s3:8i3;
END .
The port is specified exactly as in a simple activity. The NEEDS section specifies the links which are
connected to components of this type in terms of the subroot Interfaces. Coding will, of course, be

added to this module before the final END.

We now turn to the template, sub?, for component su71. This is a subroot possessing a port
together with links both entering and leaving.

SUBROOT sub1t ;
REQUIRES p : put ;
GIVES sit ;
NEEDS s :si3 ;

END.

The new feature here is the GIVES section. It specifies the subroot interface which this subroot

implements. Every subroot implements precisely one such interface.

Template sub3 which, however, possesses no ports and no outward going links. It provides
procedural interactions but does not make use of any.

We have now examined all the specifications and templates that are needed for the design of the

composite activity a1. Here, in its complete form, is the template a_temp_1.
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ACTIVITY a_temp_1 ;

REQUIRES fp :fetch;

tp:trans;
Pp :put;

USES main, sub1, sub2, sub3 ;
SUBROOT su3 : sub3 ;
SUBROOT sut : sub1 { p =pp,

s=su3);
SUBROOT su?2 : sub2 (f =1p,
s=su3);
ROOTr:main (t=1p,
s1 = sui,
§2 = su2,
s3=su3);
END.

Following the specification part, identical with that of the earlier version, comes the Implementation
part. This begins with a USES section which lists the root and subroot templates needed to create
the components. Then follows a specification of each component with its network and subroot
connections. The former are all port to port connections and are dealt with in the same manner as in
subsystems. The remaining parameters specify which subroots implement each of the the subroot
interfaces specified in the corresponding NEEDS sections.

With this discussion of the Mascot facilities for the sequential decomposition of individual threads of
execution we come to the end of this informal introduction to the Mascot scheme of design
representation. All the principal concepts have been discussed and, if they have been understood, the
formal definition which follows should present no insuperable difficulties.
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In the remainder of this chapter all the design
representation features of Mascot, mandatory
and non-mandatory, are discussed. Together
with the relevant parts of Appendices'A, D and
E, it constitutes a formal definition of this aspect
of the method.
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2.2 A NOTE ON PRESENTATION STRATEGY

In determining the order in which topics should be presented in this part of the Handbook it was
considered important to focus particular attention on the subset of features mandatory in any Mascot 3
implementation. Not only are these features presented first but they are described without reference to
the existence of the remaining features which make up the full definition. As a consequence of this
strategy many of the diagrams defining the syntax of the Mascot design representation language appear,
in the first few sections, in a simplified form. Where this is the case the simplified diagram has been
identified as such by means of a rectangular frame. There are features of these framed diagrams whose
significance may not be immediately clear. These include the apparently gratuitous use, for example, of
the word simple in the name of a syntactic entity or the employment of an entity which expands directly
into another. These matters can be clarified by reference to Appendix A. The mandatory subset is
identified from the full set of Mascot features in Appendix E. ' '
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2.3 PATHS. PORTS AND WINDOWS

The Mascot method addresses the problems of creating application software which consists of
collections of communicating, parallel processes executed on processor configurations of arbitrary
complexity. For any particular Mascot application, the software design is embodied in a set of
hierarchically related templates. At the lowest level of each branch of the hierarchy, element
templates provide patterns for fundamental softiware objects capable of performing either a data
processing or a data communication function. A path between a pair of these entities denotes the
existence of a set of operations (usually involving data transfer) provided by one of the participants for
use by the other. All such transactions thus involve a passive component, concerned with information
storage and transmission, and an active component, concerned with information processing. The nature
of the interactions associated with any particular path is defined, in procedural terms, by a textual unit
(module) called an access Interface. Thus an access interface is a specification defining a set
of opérations, implemented by the passive component and which, when invoked by an active partner,
transmit data in either or both directions.

Data-type definitions and constants relevant to these interactions may also be supplied to both
participants from the access Interface. By associating definitions with a communication route in this
way, conformity with the semantic rules of strongly typed implementation languages is made possible and
consistency of usage between separately created communicating objects is ensured. This data-typing
information is held separately in another kind of specification, known as a definition, from where it
can be incorporated into those access Interfaces which require it.

Every path in a Mascot network is connected at one end to a port of a component. Ports are normally
possessed by activities, which are the fundamental processing elements of a Mascot system, and
by subsystems which may fulfil a similar role at a higher level of the design. They may, however, also
occur in the fundamental communication element, the IDA. A port, as specified in a template, is a
named reference to an access interface. It expresses, in terms of the access Interface, a
requirement to invoke data transfer {(and other) operations which are implemented outside the
component in which the port is specified. Establishing, in the specification, the type of the port to
which a path is to be connected, thus determines the group of operations which are required.

At the other end of each path, in a communications component (usually an IDA or a subsystem
performing a data communications role) is a window. A window as specified in a template is, like a
port, a named reference to an access Interface. It specifies, in terms of the access interface, a set
of operations to be provided. These operations may be invoked by other components connected to the
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window. Establishing, in the specification, the type of the window to which a path can be connected,
thus determines the group of operations which are provided. Notice that whereas each port in a
network is connected by a single path to the provider of the interactions which are required, any
number of paths may be connected to a window. This is to say that any number of components,
which possess matchingports, may invoke the interactions provided at a particular window.

Both activities and IDAs may be used at any depth within an hierarchy of subsystems. In the
network diagram, a port may therefore be separated by the boundaries of a number of enclosing
symbols, from the source of the operations for which it expresses a requirement. A window may similarly
be separated from the nearest port along a given path. In these circumstances, the requirement
expressed by the port and the provision expressed by the window are propagated along the
communicating path through a series of identical ports and windows established in the higher level
constructs .

raphical Representation

The interactions between components readily lend themselves to diagrammatic representation in terms
of static data flow networks in which the node symbols represent either individual elements or lower
level networks. A path is the route along which information is transmitted from one particular element
or network to another. lts diagrammatic representation is a thin line connecting the two symbols
together. This is normally labelled with the name of the access interface which constitutes the type of
the path and carries a solid arrow head to indicate the direction of data flow.

put > < get

exchange

The diagram below shows an active component, on the left, connected via a path to a passive
component, on the right, with a port at the active end of the path and a window at the passive end.

put

g |

Thus a port is represented in a Mascot network diagram by a small filled circle connected to a line
representing a path. The port symbol may be labelled with an identifier, unique within the template

2.3 Paths, Ports and Windows 2-24 Mascot Version 3.1




which possesses it, which is used to distinguish between ports. The path itself, as we have seen, is
labelled with the name of the access interface which defines its type so that, from an external point of
view, a port represents a network connectivity constraint. As ports may function as either sources or
sinks of data, the solid arrow head which indicates the direction of data flow may point either away from a
port or towards it.

On a Mascot network diagram, a port symbol is placed just inside the boundary of the template or
component to which it belongs.

et ut
| < ) | ’

In cases where data are transmitted, along a path, across one or more boundaries, the port symboi is

repeated at each boundary. This reflects the necessity of respecifying the port in the text of each

g2 2 ut
get { ) P >

Different activities at the same or different levels of the hierarchy may share a set of operations

template.

provided by a common source. The diagram may be simplified in such cases by merging the paths. This
is illustrated in the diagram below which shows two activities reading data from a common source and
incorporated, at the same level, within a subsystem.

2.3 Paths, Ports and Windows 2
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get g1

Performing the operations, defined by means of a port and its associated access interface, demands
the execution of code. This code is contained in the passive communication element of a Mascot
system, the IDA, and is executed in response to direct invocation by one of the active processing
elements. On occasions, especially where distributed processing hardware is involved, one passive
component may need to use the operations implemented by another in order, for example, to propagate
information from one hardware unit to another. It is thus necessary that communication components
should be permitted to possess ports so that this type of requirement may be met. Despite the
presence of a port on the boundary of the symbol shown below, it nevertheless represents a passive
component and consequently is drawn with square corners. '

t

I trigger

A window is represented in a Mascot network diagram by a thin, filled rectangle connected to a line

>

representing a path. The window symbol may be labelled with an identifier, unique within the
template which possesses it, which is used to distinguish between windows. The path itself, as we
have seen, is labelled with the name of the access Interface which defines its type so that, from an
external point of view, a window, like a port, represents a network connectivity constraint. As windows
may function as either sources or sinks of data, the solid arrow head which indicates the direction of data
flow may point either away from a window or towards it.

On a Mascot network diagram, a window symbol is placed just inside the boundary of the template
or component to which it belongs.

2.3 Paths, Ports and Windows 2
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put 'Ip gl get.

In cases where the operations provided transmit data along the path, across one or more boundaries,
the window symbol is repeated at each boundary. This reflects the necessity of respecifying the
window in the text of each template.

put p2 4 p1 g1 I 92 ¥ get

An IDA inside a subsystem may provide operations to satisfy the common requirements of several
port bearing activities or subsystems. The diagram may be simplified in such cases by merging the
paths together. This is illustrated in the diagram below.

g1 et

< >
get
g
et

< >

g2
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Textual Representation

The module which defines the operations, required by a port, provided by a window, and hence
defines the interactions along a path is the access Interface. This is a specification. In the
mandatory subset of the Mascot definition, the contents of an access interface are procedure
headings. These provide sufficient information for interactions to be invoked by an active component.
For each procedure heading in the Interface, a corresponding complete procedure, known as an
access procedure, appears in the template for the passive component. The syntactic structure is
shown in outline below:

access _interface
—id  ACC_iNnt_name_part

(—'F simple_acc_int_spec_part

It consists of a hame part , which establishes the class of the module and gives the specification a

name:

acc_int_name part

R R e e

CCESS INTERFACE ©

s s s

identifier je——p

&

and a specification part which takes the following form:

simple_acc_int_spec part

with_section

proc_headings —

The specification part optionally begins with a * WITH section' which expresses the dependency of
this module on other modules. The simplest interfaces (those which refer only {o data-types which
are basic to the implementation language) contain no dependencies, and the specification part then
reduces to a set of procedure headings.
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The following is an example of a simple access Interface with no external dependencies.

ACCESS INTERFACE send_1 ;
PROCEDURE secure ;
PROCEDURE release ;
PROCEDURE transmit (i : integer ) ;

END .

The ' WITH section' of an access Interface contains a list of references to definition
specifications and so implements the mechanism, referred to above, by which definitions may be

shared by several interfaces.

with ion

definition_ref

WITH flow_data, table ;

The syntactic structure of a definition, which has no graphical representation, is as follows:

Jefinit

—P1 def_name_part

L def_spec_part

def name_ part

SN NN S R RN A

DEFINITION

identifier |

def spec part

with_section __]

def_detail_pan j——
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The content of a definition module is limited to the definitions of symbolic constants and data-types. It
is beyond the scope of this Handbook to define precisely how types are defined in a definition
module and how these types can be used by other modules, since this impinges on the syntax and
semantics of the implementation language selected. However, a particular implementation may:

(1) insist that any data-type used in the interface will be defined in a definition
module of the same name and named in the ' WITH section', or

(2) allow any data-type used in the Interface to be undefined, on the assumption that it
will be defined in one of the definition modules named in the ' WITH section', or

(3) insist that any data-type used in the Interface is already defined in one of the
definition modules named in the ' WITH section'.

The following examples illustrate the use of definitions.

DEFINITION colour ;

TYPE :
. colour = (red, green, yellow, blue) ;
END .

DEFINITION palette ;
WITH colour ;
CONST
max =10 ;
TYPE
palette = ARRAY[1 .. max] OF colour ;
END .

ACCESS INTERFACE spectrum ;
WITH palette ;

PROCEDURE paint( shade_card : palette ) ;
END .

Ports
The textual representation of a port is shown, in syntactic form, below:

acc_int_ref_list

2.3 Paths, Ports and Windows 2
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acc_int_ref list

identifier |

O+

acc_int_ref b@-‘—b

-

The following are examples of individual port specifications:

REQUIRES g :get;
pa, pb : put;

where get and put are the names of access Interfaces defining two sets of operations required in
this template. The formal port names g, pa and pb are used for two main purposes. First they are

used, in network modules, to express the connectivity of the components. Second, in a simple
module, they must be used to identify a particular port procedure. The syntax of such a referenc_:e is as
shown below:

port_identifier —DO—D procedure_identifier

where the procedure identifier after the '." is specified in the access Interface which defines the type

of the selected port.

Windows

The textual representation of a window is shown, in syntactic form, below:

acc_int_ref_list

where the form of the list is the same as that shown above for port specifications.

The following are examples of window specifications:

PROVIDES g :get;
pa, pb : put ;
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where get and put are the names of access Interfaces defining two sets of operations which this
module makes available to the outside world. The implication of these specifications is that the module
implements, directly or indirectly, the procedure headings in the bodies of the access interfaces get
and put.

The formal window names g, pa and pb are used for two main purposes. First, they are employed, in
network modules, to express the connectivity of the components. Thus a construction such as:

ida_identifier —-DQ-D window_identifier

is used to refer to a specific window of a specific IDA component.

Second, the following construction:

window_identifier —-PQ—D procedure_identifier

(similar to that already discussed in connection with ports) may be used in establishing the

correspondence beiween access procedures and the procedures made available at specific
windows. References of this type are to be found in the access equivalence lists described in
Section 2.6. '
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2.4 SYSTEMS AND SUBSYSTEMS

D ipti

Mascot supports progressive development of a design, from outline to completion, with checks
performed for logical consistency at each stage. The detailed arrangements whereby this is achieved are
described in Section 3.1. In this section we examine the design feature which makes hierarchical,
top-down design expression possible in Mascot: the concept of systems and subsystems. These
design elements perform a constructional role. Known formally as networks, they define, for part
(subsystem) or all (system) of a Mascot application, the components which are to be created and how
they are to be connected together.

In choosing the order of presentation of topics in this Definition, it has been judged desirable that the
decompositional aspects of Mascot should be treated before embarking on detailed descriptions of the
various forms of system component. Inevitably, then, this section is concerned with the construction of
systems from building blocks whose nature remains to be fully revealed. This should present no
insuperable difficulties provided that the general principles covered in Section 2.1 have been
understood.

In its initial stages, a Mascot design may consist simply of a set of subsystems representing the principal
functional or geographical units of the application. Since subsystems may possess ports and
windows, they can be interconnected by paths which, through their associated access interfaces,
define the nature of the interactions that are to take place. Subsequently, the details of the
subsystems are added in the form of templates for networks of activitles, IDAs and.servers
together with other, lower level, subsystems. It is this last feature, the ability to include subsystems
within subsystems to any depth, which facilitates an hierarchical form of design expression. As a design
entity a subsystem may play the role either of a processing or a communication element or of a mixture
of the two.

As will be seen below, the graphical representation of a subsystem would lead one to suppose, on the
basis of a familiarity with the rest of the Mascot graphical conventions, that it necessarily incorporated cne
or more independently scheduled threads of execution. However exceptions can arise. Since the
existence of a subsystem is established before its internal design is carried out, there is always the
logical possibility that subsequent decomposition will show that no component activities or
subsystems are required. This is an allowable form and, where it arises, the subsystem is functionally
identical to either a composite IDA or a composite server (both of which are the subject of later
sections). /
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A system is a hetwork which encompasses the whole of the application. Explicitly or implicitly, it
constitutes a complete description of the software. It is the highest or outermost level of the hierarchical
design expression. Consequently it differs from a subsystem only in having, by definition, no external
dependencies other than those which may be satisfied during system building (see later Section 2.8). All
communication with hardware or software objects in its external environment is implicit. In the remainder of
this section, attention will be directed largely to subsystems of which the system will be treated as a
special case.

raphical Representati

A subsystem is represented in a Mascot network diagram by a closed curve with rounded corners. As

it is by nature a composite entity, it is drawn as a thick or double line or in such other distinctive form as

may have been adopted as a suitable convention. The shape is usually that of rounded rectangle.

External dependencies are shown by lines which pass through the boundary of the symbol and where
| these represent paths they terminate in either a port or a window symbol.

The diagram below shows a subsystem as it might appear in the early stages of design. Its external
dependencies are determined but not its internal structure.

subsys 5

This particular example possesses two ports and a window and its purpose is to process two input data
streams to produce a single output stream. The next diagram displays the internal structure of the
template subsys_5.

2.4 Systems and Subsystems 2

34 Mascot Version 3.1




subsys 5

trans

trans_1

Two activities, 8 and at, created from templates act and act_1 respectively, are connected to the
two externally visible ports which evidently receive the two input streams. Each activity is connected
via a separate path to a separate window of the IDA m. These two internal paths are represented by
distinct access Interfaces, frans and trans_1. Finally it is IDA m, created from the template
merge, which provides the externally accessible window.

subsys 5 is a simple example but is relatively general in possessing both ports and windows.
subsys_6 below, on the other hand, has only ports and therefore externally resembles an activity.

subsys 6

chan

pW from

aw

Conversely, subsys_7 externally resembles a pure communication element.
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subsys_7

As a final graphical example, triplex, to seasoned Mascot users an old friend in a new guise, illustrates a
subsystem with embedded subsystems in its structure.

triplex

dw

dictionary

look_up

The thick lines of the symbols dup_1 and dup_2 reveal these components to be of a composite
nature. They are subsystems and, furthermore, they are both instances of the same template,
duplicate. Notice that the design would have to be expanded to at least another level down to reveal
the components which actually provide the facilities, defined in access interface get, provided at
the three subsystem windows. triplex itself possesses a port, in, and three windows, out1,
out2 and out3 all of type get.

Mascot 2 users may be inclined to wonder at the complication of the well known elementary example of
triplicated_expansion. Under what circumstances would it be necessary to use a subsystem rather
than an eminently simple activity to duplicate a data stream without transformation (for such is the
traditional version of this example)? The explanation arises from the applicability, mentioned in the
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Introduction, of Mascot 3 to very large distributed computing systems. If each of the three data streams
associated with the two instances of subsystem template duplicate fall under the jurisdiction of
different processors with private and shared memory units, something considerably more complicated

than a two-statement activity may be needed.

Textual Representation
The syntactic structure of a Mascot subsystem template is shown, in outline, below.

subsystem
-—P1 subsys_name_part

(-h subsys_spec_part
(-D network_imp_part

The name part establishes the class of the module and gives the template a name.

subsys name_ part

SUBSYSTEM

AR IR

identifier >

For example:
SUBSYSTEM subsys_5 ;
The specification part specifies the network dependencies. Its syntax, in the mandatory subset, is

defined in the diagram below.

subsys_spec part

—~—P»] window_spec —)
L port_spec .......:

C >

The form of port and window specifications is defined in the preceding section of the Handbook. For
subsystem subsys 5 the specification part is:
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PROVIDES g4 :get;
REQUIRES p4:get;
¢4 :com;

An important point to understand is that the subsystem template contains no algorithmic coding. It
merely defines the nodes and interconnections of a network. As explained above, the modules which
represent its component parts, the nodes, are activities, IDAs and servers together with other
subsystems. The interconnections are paths whose types are defined by access Interfaces. All
the information needed to create the components and connect them together is provided in the
module's implementation part. Its syntactic structure is shown below.

network imp part

template_ref

L equivalence_list J

It begins with a USES section which lists all the templates needed for the components of the

[b component_part

subsystem. This list may not include a system template.

USES act, act_1, merge ; { subsys_51}
USES act_2, act_3, chan; { subsys_6}
USES act_4, ch, ch_1 ; { subsys_7}
USES exp, copy, duplicate, dictionary ; { triplex }

Next comes the component part in which components derived from the templates mentioned in
the USES section are specified.

component_ part

—»»| component_class _’@_‘@j
(b template_ref

connection_spec
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There are, including the two special varieties of IDA, six different classes of component which can be

included in a subsystem.

Each component is individually introduced by the appropriate language word : ACTIVITY, IDA,
CHANNEL, POOL, SERVER or SUBSYSTEM and given a name. These names are the
component names that, in the graphical form, appear just outside the corresponding symbols. The
template reference which follows is the name of the template from which the component is to be
created. The component class must be the same as the class to which this template belongs.
Where there are ports, their connections must be specified in the following manner:

connection_spec

port_window_connect

port_port_connect

\ @4 /

This is equivalent to a set of actual parameters in the call of a procedure. To continue the analogy, the

ports specified in the component templates correspond to the formal parameters. For every port a
connection to a matching window must be established, either explicitly or by way of another matching
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port on the boundary ot the enclosing template.

-.)I port_ref b@ ]
L. component_ident pO-) window_ref |ep

port_port_connect
—»{ port_ref b@ »| boundary port_ref }—p

Thus the interconnection information consists of a list of identities expressed in the ‘formal = actual’
convention. Where the connection is an internal one, the reference is to an explicit internal window.
Window names must be qualified with the name of the component which provides them. Where the
connection is an external one, the 'actual parameter is the formal name of a port on the boundary of the

subsystem.

Returning to the subsystem diagram for triplex, it is now possible to derive the equivalent textual
representation. Its specification part is:

PROVIDES out1, out2, out3 : get ;
REQUIRES in : get ; '

and its components are :

POOL look_up : dictionary ;
SUBSYSTEM dup_1 : duplicate ;
SUBSYSTEM dup_2 : duplicate ;
ACTIVITY e:exp( g=in,

ep = dup_1.p,

dp = look_up.dw);
ACTIVITY c :copy ( g = dup_1.g2,

cp = dup_2.p) ,

The port specifications of the exp template are:

REQUIRES g : get; ep: put ; dp : dict;
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and that of the template copy :
REQUIRES g :get;cp:put;

Notice that the port to port connection is represented by specifying in as the connection
corresponding to the port g of activity e. That is, instead of specifying an explicit window to satisfy
this requirement, the port of the actlvity is identified with that of the enclosing subsystem. A
corresponding window would have to be provided within any system or subsystem having a triplex

component.
The next aspect of subsystem templates to be discussed is the representation of (boundary)
window to (internal) window and (boundary) window to (boundary) port connections. These are

dealt with by means of an equivalence list (not to be confused with the access equivalence list
used in IDA templates to establish a correspondence between windows and access

procedures).

q—bl boundary_window_ref —D@-Tr component_ident j
Lp@.rwindow__ref

boundary_port_ref
~ O ‘

Using subsys_7 as an example :

p3=cpw;
g3 = c1.gw1

In the case of triplex, all the externally visible windows are provided by subsystems.
out! = dup_1.g1 ; ‘

out2 = dup_2.g1 ;
out3 = dup_2.92

To illustrate to boundary window to boundary port connection, a path straight through subsys_§8
(below) would be defined thus:
g=pP

41 Mascot Version 3.1

2.4 Systems and Subsystems 2



subsys_8

()
-/

The following examples summarise the features of subsystem modules.

SUBSYSTEM subsys_5 ; { name part}
{ specification dependencies }

PROVIDES g4:get; { window specification }
REQUIRES p4 :get;
c4:com; { port specifications }

{ implementation dependencies )
USES act, act_1, merge; { component templates }

{ components and Interconnections }
IDA m : merge ;
ACTIVITY a:act( p=p4,

tp=miw);
ACTIVITY at1 :act_1( c=c4,
tp1 = miw1);

{ equivalence list }

g4=mg '
END .

SUBSYSTEM subsys_6 ; { name part)
{ specification dependencies }
{ PROVIDES .......... ; no window specifications }
REQUIRES g2 :get;
p2 :put; { port specifications }
{ implementation dependencies )
USES act_2, act_3, chan; {component templates }
{ components and interconnections }
CHANNEL c : chan;
ACTIVITY al :act. 2( gp=92,
PP =Cpw);
ACTIVITY a2 :act 3( gpt =c.gw,
pPP1=p2);
{ no equivalence list }
END .
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SUBSYSTEM subsys_7 ; { name part}

{ specification dependencies }

PROVIDES p3:put;
03 :get; { window specifications }

{ REQUIRES ................. ; no port specifications }

{ implementation dependencies }
USES act_4,ch,ch_1; {component templates }

{ components and interconnections }
CHANNEL ¢ :ch;
CHANNEL c1 :ch_1;
ACTIVITY a : act_4 ( gp=c.gw,

pp= cl.pwl);
{ equivalence list }
p3=c.pw;
g3=ctgwl
END .

SUBSYSTEM triplex ; { name part)

{ specification dependencies }
PROVIDES outt, out2, out3 : get ; { window specifications }
REQUIRES in : get ; { port specification }

{ implementation dependencies }
USES exp, dictionary,

copy, duplicate ; { component templates }

{ components and Interconnections }
POOL look_up : dictionary ;

SUBSYSTEM dup_1 : duplicate ;
SUBSYSTEM dup_2 : duplicate ;
ACTIVITY e : exp( g=in,

ep = dup_1.p,

dp = look_up.dw) ;
ACTIVITY ¢ : copy( g = dup_1.g2,

¢p = dup_2.p);

{ equivalence list }
outl =dup_1.91;
out2 = dup_2.91 ;
out3 = dup_2.g2

END .

Finally in this section we turn to systems. As explained earlier, a system is simply a subsystem with
no ports or windows. In the graphical form no paths cross the boundary of a system symbol which is
otherwise identical to that representing a subsystem. The system diagram below uses three of the

subsystems which have been discussed above.
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The syntax which describes the textual form of a system is a modification of that for a subsystem to

take account of the absence of ports and windows and the fact that no equivalence list is

required.

system

-1 system_name_part

G

system_imp_part
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identifier [|———

template_ref

Lb component_part f—pn

The list of templates in the USES section may not include a template for a system.

Using system total as a basis, the following example summarises the features of a system module.

SYSTEM total ; { name pait }

{ implementation dependencies }

USES a, subsys_7, triplex, subsys_6, drive_1, drive_2, drive_3 ;

{ component templates }

{ components and interconnections }

SERVER i1 : drive_1 ;

SERVER i2 : drive_2 ;

SERVER i3 : drive_3 ;

SUBSYSTEM ss1 : subsys_7 ;

SUBSYSTEM ss2 : triplex (in=s51.g3) ;

SUBSYSTEM ss3 : subsys_6 ( g2 = ss2.out1,

p2=ilp);

SUBSYSTEM ss4 : subsys_6 ( g2 = ss2.out2,
. p2=i2.p);

SUBSYSTEM ss5 : subsys_6 ( g2 = ss2.out3,
p2=i3p);

ACTIVITY a1 :a(p=ss1.p3);
END .
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2.5 ACTIVITIES

Description

Mascot application software is conceived in terms of a set of independent threads of execution which is
mapped onto a hardware configuration containing an arbitrary number of processors. There are normally
fewer processors than there are computational threads and it is the responsibility of the scheduling
function of the Mascot Context software, acting either pre-emptively or in co-operation with the
application software, to allocate the available processing power appropriately. The unit of scheduling for
this purpose, an individual process, is known as an activity.

Thus activities are the fundamental processing elements in a Mascot application. Conceptually, all
activities are executed in parallel. In practice, when any two communicating activities are considered,
there may be literal parallelism resulting from their being mapped onto distinct processors or
pseudo-parallelism if they share the same processor. In the latter case, depending on the mode of
scheduling being employed, the synchronisation problems arising from their use of common data may be

identical with those met with in true parallelism.

it is a principle of the Mascot philosophy that the mechanisms necessary to safequard the integrity of data
communicated between activities should be embodied not in the activities themselves but in a
separate communication element. This is the intercommunication data area or IDA which is discussed in
detail in a separate section. It encapsulates the shared data area and normally provides access to it
through a procedural interface. Mascot activities therefore never communicate with each other directly
but always through the intermediary of an IDA. In such transactions the activity is the active participant
which invokes the operations specified in an access interface and provided by the passive IDA.

A consequence of this approach is that an activity's influence on the remainder of the application
software is restricted to its interactions with the IDAs to which it is connected. In particular, it is
uninfluenced by the existence of any other component. Its part in the overall application is limited to
using, processing and transmitting the data which flows to it along the paths of the network.

A Mascot system consists of a network of activities and IDAs. Each of the activities present has
been created from an activity template. In some cases several of the activities may have been
created from the same template. Since each template is a distinct design entity, developed
independently, it is important that there are means of exercising control over the formation of a network.
The validity of the connections must be capable of being checked during the construction process. The
formal arrangements whereby a Mascot database records the status or degree of validation of each
module is described in Section 3.1.
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The validation is carried out i;n terms of access interfaces. An activity template establishes a
network connection point by specifying a port. Each port implies a connection to a path of a particular
type whose associated access interface specifies a set of data transfer or other operations. The
coding necessary to implemeht these operations is provided by an IDA possessing a window of
matching type. Valid activity to IDA connections are ones for which this type checking proves

successful.
Graphical Representation

An activity is represented in a Mascot network diagram by a closed curve with rounded corners and
drawn with a thin line. Normally, in accordance with historical convention, the curve is a circle. External
network dependencies are shown by lines which pass through the boundary of the symbol and
terminate, just inside the activity boundary, in the port symbol.

The diagram below shows an activity template. The name of the template, and of the module
which represents it, is act_temp and this identifier is placed inside the activity symbol. As a general
rule the name of an activity should clearly reflect its function. The activity possesses two ports, g and
p and, as the labels on the two connected paths indicate, the external requirements which they
represent are specified by access interfaces get and put, respectively.

act_temp
get

g P

An activity component, as opposed to an activity template, would be represented as part of a
network . In this case the symbol would represent a particular component created from a template
and would be given a name distinct from that of the template itself. This name is placed outside the
activity symbol. Examples are to be found in Section 2.4.

Textual Representation

In the mandatory subset of the Mascot definition, an activity module takes the syntactic form shown, in
outline, below.
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activity
—] act_name_part

Pl act_spec_part ﬁ

—P simple_act_imp_part

identifier  |——

For example:

ACTIVITY act_temp ;

The specification part specifies the network dependencies. Its syntax is defined in the diagram
below.

act_spec parf

port_spec :
D

>

The form of port specifications is defined in a preceding section of the Handbook:
REQUIRES p :put;g:get;

Finally, the implementation part defines, explicitly or implicitly, the coding of this parallel thread of
execution. lts syntax is shown in Pascal style below:

impl im

with_section ]

program_part e
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&

In its simplest form it consists solely of a block representing a set of private declarations and a sequence
of program statements. The program part may define procedures, variables and constants etc. which

are local to the actlivity.

Definitions of globally used data-types and symbolic constants are normally specified in definition
modules (described in Section 2.3). They are made available for use in an activity module through
the WITH section of its implementation part. This simply lists the names of the relevant

specifications.

WITH dataflow_types, real_constants ;

The following outline example summarises the features of activity templates described above:

ACTIVITY act_temp ; { name part}
{ specification dependencies }
REQUIRES p:put;
g:get; {port specifications }
{ Implementation dependencies } .
WITH dataflow_types, real_constants ; { global definitions }
{ local declarations }

- { activity coding with initial entry point}

END .
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2.6 INTERCOMMUNICATION DATA AREAS (IDAs)

Description

Any scheme for the organisation of co-operating parallel processes must include mechanisms for the
control of data intercommunication. Where these mechanisms are imposed, globally, by a run-time
system they may often present themselves as a constraint on the software design process. The Mascot
philosophy is to provide the designer with the means to create precisely the communication facilities that
are required between any two activities in the system. Previous sections of this Definition have '
described how the external network dependencies of an activity are expressed in terms of the
procedure specifications which constitute the body of an access interface. These procedures, which
perform the necessary data transfers, are implemented in a Mascot design element called an
intercommunication data area or, more shortly, an IDA. Wherever information is transmitted between
activities it is communicated through an intervening IDA; wherever common information is shared by
activities it is stored in an IDA. Thus, in general, IDAs encapsulate both the shared data and the
custom designed access mechanisms necessary to safeguard the integrity of information being held in or
propagated through the IDA.

An IDA is a passive element. The code which it contains is never scheduled for execution in its own right.
The independent threads of execution which form the run-time manifestation of activities simply pass
through the IDA coding at points where intercommunication is taking place. Several such threads may
simultaneously be active, or temporarily suspended, within an IDA which thus encapsulates the critical
occasions where activities require concurrent access to the same data structure. When these
circumstances arise they may involve more than one activity utilising the same access mechanism, and
therefore actively using the same section of IDA code, or alternatively, several different access
mechanisms may be operating concurrently on the same items of data. The Mascot method, while leaving
the software designer firmly in control of the means of solving the system's concurrency probiems,
restricts the location of the coded solutions to this one type of component.

An IDA, therefore, is an encapsulated data type whose detailed physical representation is hidden from its
users and whose component values may be manipulated indirectly through a procedural interface. It fulfils
two principal purposes in a Mascot network. By providing mutual exclusion wherever necessary between
activities competing for the use of a common resource, it safeguards the integrity of data. By providing

cross stimulation between co-operating activities, it maintains the propogation of data in the network.

Through experience with earlier versions of Mascot, two simple classes of IDA have been found to be
particularly useful. The first of these provides for uni-directional transmission of data from one or more
producer activities to one or more consumers. it is known as a channel and is characterised by a
destructive read operation and a non-destructive write. As a consequence it can become empty of data
and, as its capacity is finite, it can also become full. The other specially useful type of IDA is known as a
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pool. In this caseé it is the write operation which is destructive and the read non-destructive. A pool is
therefore a suitable kind of IDA to represent a table or dictionary which activities periodically consult or
update. Many of the sirhpler Mascot networks can be built sétisfactorily from activities, channels and
pools. The graphical forms ef such networks are normally referred to as ACP (Activity-Channel-Pool)
diagrams.

In general, active and passive components, activities and IDAs, alternate along the paths of a Mascot
network. Certainly adjacent activities never occur. However, it is sometimes necessary for data to be
projected directly from one IDA to another. Typically this requirement might arise where the two IDAs are
to be accommodated in separate storage units addressable by separate processors. Mascot caters for
this contingency by allowing IDASs to possess ports as well as windows. Thus an IDA may use access
mechanisms as well as providing them and so may be connected, by a path, to another IDA.

Graphical Represehta:ion

An IDA, in its most general form, is represented in a Mascot network diagram by a rectangular shape.
The square corners of the symbol indicate the passive nature of the componentit represents.
Throughout the Mascot graphical notation, an exclusively square cornered symbolic outline certifies that
decomposition, to any depth, will not reveal an active element. A rounded corner, on the other hand,
affirms the probability, but not the certainty, of one or more independently scheduled threads of
execution being involved.

External network dependencies are denoted by lines which pass through the boundary of the symbol.
These lines are terminated, within the boundary, by a window symbol. The diagram below shows an IDA

template.
put ida_temp get
— =
t
transmit

The name of the template is ida_temp and this identifier is placed inside the rectangular IDA symbol.
As a general rule the name of the template should clearly reflect its function. The IDA possesses two
windows, p and g, represented by the filled rectangular symbols with which two of the externally
connecting paths terminate. The labels on these paths show that the procedures provided by the IDA
at the corresponding windows are specified in the access interfaces, put and get, respectively.
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A third path, labelled transmit, is shown crossing the bottom boundary of the symbol and this
terminates in the pori, t. The procedures specified in the‘ corresponding access interface, transmit,
may be used by the IDA coding in order to project information directly to or from another IDA. This mode
of data transfer takes place only when a thread of execution passes through the IDA.

An IDA component, as opposed to an IDA template, would be represented as part of a network. In
this case the symbol would represent a particular component created from a template and would be
given a name distinct from that of the template itself. This name is placed outside the IDA symbol.

Examples are to be found in Section 2.4.

Two alternative graphical representations are available for channels and pools (described earlier) and

these are shown below.

chan_temp

__.;Ip gl._> wi w2

pool_temp

The standard rectangular symbol is slightly modified in each case to make it more reminiscent of the

original Mascot 2 channel and pool symbols.

Textual Representation

In the mandatory subset of the Mascot definition, an IDA module takes the syntactic form shown, in

outline, below.

ida

ida_name_part

—
Lb ida_spec_part —)

simple_ida_imp_part
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The name part establishes the class of the module and gives the template a name. It also
distinguishes between a generalised IDA and the two special cases: channel and pool.

p{ identifier |r————

Examples are:
IDA ida_temp ;
CHANNEL chan_temp;
POOL pool_temp;

The specification part specifies the network dependencies. Its syntax is defined in the diagram
below.

ida_spec_part

—3pi Window_spec __)
port_spec —j

>

The form of the window and port specifications is defined in a preceding section of this Handbook.
Notice that at least one window must be specified.

PROVIDES p:put;

g:get;
REQUIRES t : transmit ;

The implementation part defines, explicitly or implicitly, all the coding contained in the element. Its
syntactic structure is defined below.
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with_section —) : ‘ '

declaration_part .

access_equivalence_list

In its simplest form it consists solely of a declaration part.. Program objects to which external access is
provided, via a window of the IDA, are distinguished from purely local entities by the use of the word
ACCESS in their declarations. Ignoring, for the moment, the WITH section an elementary example
might begin:
CONST
bufsize = 100 ;
VAR
buffer : ARRAY[1 .. bufsize] OF data_flow_type ;
in_pointer, out_pointer : integer ;

inq, outq : controlq ;
ACCESS PROCEDURE put_data ( item : data_flow_type ) ;

ACCESS FUNCTION get_data : data_flow_type ;
in this IDA, a data buffer is declared together with a pair of pointers and two control variables, Ing and
outq, whose significance in the Mascot method of process synchronisation is explained in the relevant
section of this Handbook. In conformity with the principle of data hiding, all these variables are entirely
private to the IDA. The procedure declaration section must include an implementation of every
procedure made externally available in the IDA's PROVIDES list. Thus if this was:

PROVIDES p :put; g:get;
then, access interface put might contain the specification :

PROCEDURE put_data (i : data_ flow_type ) ;
and access interface get, the specification :

FUNCTION get_data : data flow_ fiow_type ; .

The purpose of the window identifiers, p and g, will be explained shortly.
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Three other special procedures may be included in the declaration part and identified by the words
INITIALISATION, RESET and TERMINATION respectively. Their execution is invoked by system
control functions as described in Section 4.6 of the Handbook. Any other procedures declared here are
local to the IDA. They can only be executed as a result of being called from either get_data or
put_data . The procedures get data and put data themselves are of course invoked from
activities connected by paths to the appropriate window. They constitute the mechanism whereby
access is obtained to the hidden data buffer.

There is a need to establish the correspondence between the access mechanisms in an IDA and the
procedures which the windows indicate are to be provided. This may be achieved by identity of names
as in the above example, or alternatively by the optional access equivalence list shown in the
implementation part of the syntax.

access equivalence_list

_'_r.‘_p window_ref —FO-F identifier j

internal_identifier

port_ref -DO-P- identifier
NP window_ref —b@b- port_ref
~ O

Thus, there is provision for equating each identifier in each window with a corresponding identifier

declared inside the IDA; this is known as window-to-local equivalence. In addition where, for example,
data propagation takes place directly between two connected IDAs, an identifier in a window may be
equated to an identifier in a port so that it is a second IDA which provides the functionality; this is known
as window-to-remote equivalence. For the particular case where all the functionality of a window is to be
provided externally there is a shorthand form which equates all the features of the window to those of a

matching port' in a single access equivalence statement; this is known as window-to-port equivalence.

Two examples of window-to-local equivalence are:

p.put_data = put_data ;
g.get_data = get_data
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In general, using this notation, the corresponding procedure names need not be the same. Indeed, like
the names of corresponding formal and actual procedure parameters, they may be expected to be

different in other than simple instances of IDAs.
If our example IDA possesses a port:

REQUIRES t : put ;

it could be equated with the matching window:

p=t

implying that the the access Interface procedure put_data is to be provided from elsewhere.
Alternatively, an individual procedure in the window may be equated to a procedure in the port:

p.put_data = t.put_data

It will be observed that, in the above example, data-types are used which are not defined in the IDA. This
will normally be the case with data-types and symbolic constants which are used in more than one
module. In order to supply such global definitions, a specification module, known as a definition
and described in Section 2.3 of the Handbook, is provided for them. It is the purpose of the WITH
section in the implementation part of the simple IDA to import such additional global definitions that
are needed but which are not inherited from an interface.

WITH data_type_defs, control_type_defs ;

The following outline example summarises the features of simple IDAs described above :

IDA ida_temp ; { name part}

{ speclfication dependencies }

PROVIDES p:put;
g : get; { window specifications }

REQUIRES t : transmit ; { port specification }

{ implementation dependencies }
WITH .......... ;. { global definitions }

{ local declarations }

ACCESS PROCEDURE .......... ; { to match all procedures }
{ specified }
ACCESS FUNCTION .............. ; { in the windows provided }

{ access equivalence list }
END .
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2.7 SERVERS

A Mascot application interacts with its environment via a set of peripheral devices attached to the
processor or processors on which it is running. These devices generally appear to the software as
sources, sinks or tempdrary repositories of data. In some cases, however, they appear as initiators of
signals, acquainting the software with information concerning external events. The range of processors
for which Mascot systems are likely to be implemented possess a variety of different interrupt handling
architectures. Absolute standardisation is therefore not possible and this section of the Definition is
intended to establish guidelines as to what Mascot facilities are provided to allow devices to be handled in
a manner appropriate to the application.

In order to enhance the portability and flexibility of a Mascot system, it is desirable that the application
dependent details, relating to specific devices and to the architecture of particular computers, should be
localised. This requirement is met by a Mascot design element called a server which encapsulates the
mechanisms that control and transfer data to and from a particular device. Servers communicate with
other Mascot components through access interfaces which enable them to be treated, as far as
possible, like IDAs. The aim is to hide the application dependent details in the same way as the physical
representation of shared data structures is hidden.

The constituent parts of a server vary according to the characteristics of the device with which it is
concerned and the uses to be made of this device by the application software. The interactions it
provides will normally include 'driver' mechanisms to allow control signals and/or data to be sent to the
device. When an interrupt occurs, the action of the Mascot scheduling function is overridden by hardware
and control is transferred to a section of code encapsulated in the server and known as a handler. It is
the handler which transfers information between the, frequently volatile, data registers of the device

and the internal data structures of the server which are accessible to the Mascot network via windows.

Servers share many of the attributes of IDAs; they may possess both windows and ports. They differ
from IDAs, however, in being the only Mascot design elements which may include handlers and other
code which communicates directly with devices. Where the mechanisms used for device interaction are
not available to the application software but are provided by low level procedures within the environment,
the use of these procedures is restricted to code encapsulated by a server.
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raphical Repr ntation

A template for a server is represented in a Mascot network diagram by a D-shaped symbol as illustrated
below.

devi_server q get

enable

init

This template is called dev1_server and possesses two windows, g of type get and e of type
enable, and a single port, / of type Init. The various forms of connection are shown in their
conventional positions. The rounded edge of the server symbol faces towards the device, windows
are placed on the opposite, square cornered edge and ports on one of the sides of the symbol (top or
bottom of the D). The orientation of the complete symbol may' be chosen to suit the layout of the
diagram. The diagram also shows the device controlled by the server. This is represented here by a
hatched rectangle but a schematic sketch of the hardware would be equally acceptable. The presence of
the device symbol and its connection to the server are optional.

Textual Representation

In the mandatory subset of the Mascot definition, a server module takes the syntactic form shown, in
outline, below.

server

server_name_part

—
Lb ida_spec_part —-—)
(—b simple_server_imp_part
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server_name part

identifier j=——

The name part identifies the class of the module and gives the template a name. For example:
SERVER devi_server ;

The specification part is identical with that of an IDA as described in the previous section of the

Definition. Reference to that section shows that ports may be included and that at least one window

must be specified. Without the latter it could convey no information to the network and, therefore,

perform no useful role.

The syntactic structure for the implementation part of a server is shown below.

simple server imp_pant

with_section —j

server_dec_part

access_equivalence_list

First an optional WITH section allows globally accessible data type definitions to be imported from
definition specifications. The explicit contents of the server template are contained in the
succeeding declaration part. . This is similar to that of an IDA. It shares with the IDA the requirement
that its procedure declarations include implementations (distinguished by the word ACCESS) of the
procedure headings offered by its one or more windows. Correspondence between the access
interface headings and the internally declared procedures is established, as for IDAs, either by name
identity or by means of an access equivalence list, the form of which is described in the previous
section of the Definition. INITIALISATION, RESET and TERMINATION procedures may also be
included (see Section 4.6 of the Handbook).

Unique to this type of template, is the abilty to declare handlers. These routines are distinguished
from other procedures by use of the design language word HANDLER in place of PROCEDURE.
Now follows an outline example, based on the earlier graphical example, of a complete module
representing a server.

2.7 Servers 2-59 Mascot Version 3.1




SERVER dev1_server ; { name part }
{ speclfication dependencies }
PROVIDES g:get;
e : enable ; { window specifications }
REQUIRES i:init; { port specifications }
{ implementation dependencies }

WITH ............. ; { global definitions }
{ local declarations )}
ACCESS PROCEDURE ............ ; { including all procedures }
{ specified }
ACCESS FUNCTION ............. ; { in the windows. provided }
HANDLER .............. ;  { handler declaration }

{ access equivalence list }
END .
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2.8 TEMPLATE CONSTANTS

This feature is not part of the mandatory subset of the Mascot definition.

Collections of objects, of any kind, although all created from the same template, may nevertheless be
required to behave differently from each other in minor ways. These individual secondary characteristics
may be bestowed by specifying, in the template, constants whose values are to be supplied to
individual components of this type. Such constants constitute another form of external dependency
and are known in Mascot as template constants.

The range of template constant types is dependent on the implementation language, but could be
expected to include any of the implicit data types of the language. The use made of these values is again
dependent on the implementation language but they could typically be used for:

- device addresses (in a server)

- interrupt levels (in a server)

- buffer sizes (any simple template)

- iteration control (any simple template)
This latter use might for instance govern the number of terms in a series to be evaluated and hence the

accuracy and computation time of a resutt.

Just as network paths may be carried, via ‘port to port' or 'window to window' connections, across

the boundaries of composite design elements, so template constants may be transmitted in a
similar way to individual components. Indeed powerful use of the facility may be made by bringing
template constant dependencies out to the enclosing system to be supplied dynamically during
system building (see Section 3.2 of the Handbook).

Template constants may be specified either individually or in the form of arrays, in any template.
Graphical Representation

A template constant is distinguished from a communication bath, in a Mascot network diagram, by the
absence of any terminating symbol (such as those representing ports and windows) inside the
boundary of the template or component to which it belongs. Taking an activity template as an
example: '
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integer

act_temp_a
g p

The template act_temp_a possesses a template constant, of type integer, known internally as m.
Supposing act_temp_a to be used to generate a component of a surrounding subsystem whose
instantiation is to supply the value of m, this would be indicated graphically as shown below:

!10'

integer

subsys_9

act_temp_a
g P

get

This diagram shows that the template constant, which is to be known as k in the subsystem, is to be

given the value 70 when the subsystem is itself created. Similar diagrammatic conventions apply to all
other types of template.

Textual Representation

Reference to the complete syntactic descriptions (to be found in Appendix A) of any of the Mascot
templates shows that template constants may be specified at the beginning of their specification
parts . In the case of a subsystem, for example, the complete syntactic structure of its specification
part (as opposed to that previously presented for the mandatory subset) is:
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ubsys_spec_pa

——P| temp_const_spec —)
L window_spec _)
¢

port_spec
D

>

The additional syntactic structure is shown below:

temp_const_spec

const_spec_list p——p

const_spec list

identifier

implicit_ type —b@w—b

integer_type

Using the graphical example above to illustrate the textual form, the activity template would include:

ACTIVITY act_temp_a ;
CONSTANT m : integer ;

END.
" The enclosing subsystem transmits the constant through the connection specification of the
component derived from template act temp_a . This is the same notation as that used to provide
port to window and port to port connections. The complete syntax for a connection_spec is:
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nnection
s—»] temp_const_ident \

-D@—-r-<-——> port_window_connect

\—3p! port_port_connect

0

The additional structure required to identify template constants is:

iden y—> constant \

constant

-4 const_identifier

const_identifier

em n

This identifies a template constant with either its ultimate value or with another constant identifier at a
higher level. Thus, the subsystem in our example would contain:

SUBSYSTEM subsys 9 ;
CONSTANT k : integer ;
k;

)

ACTIVITY act : act temp(  m
o]
g

END.

and the system:
SYSTEM sys ;
SUBSYSTEM s : subsys 9 (k=10 .......... );

END .

Mascot Version 3.1
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Finally, an array of template constants might be specified as:

CONSTANT c : ARRAY[1..10] OF char ;
and its values provided by a construction similar o an Ada positional aggregate:
c = ('a', lbl, lcl, Idl’ lel’ ifl, lgl, lh', Ii!’ 'i‘ )

Alternatively, the array name ¢ may be equated with that of an assignment compatible array at a higher
level of the design hierarchy.
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2.9 LIBRARIES

Description
This feature is not part of the mandatoiy subset of the Mascot definition. '

In Section 2.12 of the Handbook it will be seen that facilities exist in Mascot for the sequential
decomposition of activities. The products of decomposition are roots and subroots whose
relationships to each other, and to the adjacént parts of' the data flow 'rietwdr‘k,’ are ‘formally shown on the
diagram. This feature is limited to activities but all simple templates are open to procedural
decomposition in terms of libraries which may be shared by any number of templates. A library,
which may' be instantiated in any composite module, consists of a set of externally accessible
procedures encapsulated with other purely private declarations. It does not contain static data and
consequently cannot be used as an IDA.

A Mascot library implements one or more library interfaces specifying which of the program objects
declared in a given library may be used by templates possessing a LIBRARY statement which refers
to that interface. Candidates for including such a specification are simple IDAs, libraries, simple
activities and the simple components of composite activities. It is clear, therefore, that

libraries, like IDAs, must be capable of supporting multi-threaded operation. However they must not
allow interaction between the threads and so are not involved in problems of process synchronisation.

Graphical Representation

Neither libraries nor library interfaces are represented on Mascot network diagrams.

Textual Representation

Library Interface

A library interface specification has the following outline syntax:

library interface

——P! lib_int_name_part

Lb lib_int_spec_part
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lib_int name part

identifier b

lib_int spec part
with_section

proc_headings }—p

The optional WITH section allows global type and symbolic constant definitions to be imported to the
library Interface.

Notice that variables are not allowed in a library interface. Some examples follow:

LIBRARY INTERFACE trig_functions ;
"FUNCTION sin ( x : real ) : real
FUNCTION cos ( x :real ) : real ;
FUNCTION tan (x :real ) : real ;

END . ®

%

DEFINITION complex ;

TYPE
somplex = RECORD
real_part : real ;
imaginary_part : real
END ;
END .

LIBRARY INTERFACE complex_1 ;
WITH complex ;
FUNCTIONadd ( x, y : complex ) : complex ;
FUNCTION sub ( x, y : complex ) : complex ;
END .

LIBRARY INTERFACE complex_2 ;

WITH complex ;
FUNCTION div ( x, y : complex ) : complex ;
FUNCTION mult x, y : complex ) : complex ; |

END . i
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Libraries

The outline syntactic structure of a library module is shown below

library

-t library_name_part

library_spec_part

L) library_imp_part

identifier |re——

The specification part permits the specificatioh of template constants and requires that the library
interface, for which this template describes an implementation, should be identified in a GIVES

section.

library spec parnt

temp_const_spec _j

library_int_ref

Where a library is to give more than one Interface, the interactions provided in the specifications
must be distinguishable from each other.

it can be seen from the syntax of the inplementation part , given below, that definition and library
dependencies may be included
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-~ with_section

L library_spec

\ _LV declaration_part >

A library specification may appear in any activity, IDA, server or library template. Thus in the
complete Mascot definition, an activity implementation part takes the form in Pascal style:

impl im

—~> with_section
C_b library_spec

program_part

—
)

The additional structure is a list of library interfaces:

libr.

library_int_ref

The remainder of the library implementation part takes the form of a set of declarations which may
not, however, include variables. This reflects the fact that static variables are not allowed in a library. In
some implementation languages this prohibition might be expressed in a different manner. The
procedure declarations must include all the procedures specified in the given interfaces. The

correspondence is by procedure name.

N
1
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The following is an example of a library template.

LIBRARY trig_lib ;

{ specification dependencies }
{ CONSTANT ............. ; no template constants }
GIVES trig_functions ;

{ implementation dependencies }

{WITH .......... ; no definition dependencies }
{ LIBRARY .......... ; no library dependencies }

{ local declarations } _
PROCEDURE .... ; {including all procedures specified }
FUNCTION ......... ; { in library interface trig_functions }

END .

Finally, a library module may be instantiated within any composite module and then becomes
implicitly available throughout all the other components. Thus the full syntax for the the
component_class in the implementation part of a network module (given in part in Section
2.4)is:

omponent_cla

Taking subsystem subsys_6 (Section 2.4) as an example, library trig_Iib could be made available
to the two activities, a1 and a2, and the IDA ¢ by extending the subsystem module as shown
below:
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SUBSYSTEM subsys_6 ; { name part}
{ specification dependencies }
{ PROVIDES .......... ; no window specifications }
REQUIRES g2:get;
p2 :put; { port specifications }
{ implementation dependencies }
USES act_2, act_3, chan, trig_lib ; { component templates }
{ components and Interconnections }
LIBRARY t : trig_lib;
CHANNEL ¢ : chan ;
ACTIVITY a1 :act 2( gp=02,

-~/ PP=Cpw);
ACTIVITY a2 : act 3( gpl=c.gw,
- pp1=p2);

, { no equivalence list }
END . '

The library template name has been added to the USES statement and a library component,
derived from this template, defined in the module. An instance name for the new component is
included for the sake of consistency but is not used for any practical purpose.

Use of the library Interface, trig_functions, implemented by trig_Iib, would be indicated in the
template act 2 as follows:

ACTIVITY act_2 ; { name part}
{ specification dependencies }
REQUIRES gp:get;
pp :to ; { port specifications }
{ Implementation dependencies }
- WITH ......... ; { global definitions }
LIBRARY trig_functions ; { library interfaces used }
{ local declarations }
END
END .

The coding of the activity could then call the functions sin, cos and tan.

Libraries may also be instantiated in modules which represent sequentially composite design
entities rather than networks (see Section 2.12).
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2.10 COMPOSITE IDAs

Description
This feature is not part of the méndatory subset of the Mascot definition. i

Often, where a network of interconnected IDAs occurs in a Mascot design, it.takes the form of a
composite component. Such composite IDAs furnish another means of performing network
decomposition in Mascot, supplementing that described in Section 2.4. A composite IDA consists of a
network of internal IDAs connected by paths and thus utilises the facility, "descr_ibe_d in Section 2.6,

whereby IDAs may possess ports.
raphical Representation

Composite IDAs are represented in higher level network diagrams by symbols of the same shape as
those used for simple IDAs. Their possible external. dependencies, paths terminating in either o
windows or ports, are also represented in an identical manner. The following diagram illustrates a
template for a composite IDA. lts composite nature is indicated by the use of a thick line for its
boundary. Alternatively a double line would have the same sbignifi‘cance and other cdnventions, defined

for some specific set of documents, would be acceptable.

The squared corners proclaim that this symbol represents a wholly passive entity. The template is called
cida and its external dependencies are embodied in windows p and g, expressing the fact that it

provides procedures specified in access interfaces put and get.
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The internal structure of IDAs created from template cida involves three components called ip, op
and ex. Each of these is a simple IDA and each is derived from its own template. The three
templates are called ip_ida, op_ida and ex:lda, respectively. In the more detailed diagram it can be
seen from the window to window connection at the left of the diagram that the interactions associated
with the externally visible window, p, are provided by a corresponding window, named pp , of the
internal IDA, /p. In a similar way window, gg, of the intemal IDA, op, is echoed to the outside world at

the right of the diagram.

The IDA, ex, is a purely private component of this template. Its single window,ev, provides
facilities, defined by access Interface, vis, which are required by both of the other components.
Here, then, is a more complete example of direct IDA to IDA communication.

Further levels of network decomposition are possible. A thick line boundary to any of the component
IDAs of a composite IDA would indicate this. Such an hierarchical network structure is illustrated in the
diagram below in which it is the component previously called ex which has become composite. It
would be necessary to expand the new template, cex_ida, to at least one level down in order to
determine the- component which actually provides the interactions defined in access interface vis

in this case.

put
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Textual Representation

Where the module scheme provides for both simple and composite forms of IDA, the syntax is as

follows:

ida

ida_name_part

r—
L; ida_spec_part

ida_imp_part

The specification part is as for the simple IDA.

It is in the implementation part that the distinction between simple and composite forms occurs.

ida_imp_part

simple_ida_imp_part

network_imp_part

Like all other composite Mascot entities, the composite form of an IDA contains no explicit coding. It
merely defines the nodes and interconnections of a network. The modules which represent its
component parts, the nodes, are simple IDA templates or other composite IDA templates or a
mixture of both. The interconnections are paths represented by access interfaces.

The name and specification parts are identical to those of the corresponding simple form.
windows and ports are specified in the normal way. The implementation part takes a similar form to
that of a subsystem.

Thus the implementation part begins with a USES section which lists the simple and composite

IDA templates from which this composite IDA is to be constructed. Referring back to the graphical
representation of the composite IDA cida :
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USES ip_ida, op_ida, ex_ida ;

Notice that references to definitions are not allowed at this level; there is no code to make use of their

contents.

Next comes a list of components. Their syntactic form is as described for subsystems earlier in the
Handbook except that the allowed component classes are IDA, CHANNEL, POOL and
LIBRARY. Finally, an equivalence list establishes which of the windows provided by the internal
components satisfies each window of the enclosing template.

To complete this section, the template diagram, clda, is used as the basis of a summary of the features
of the textual representation of a composite IDA.

IDA cida ; { nhame part }
{ specification dependencies }
{ CONSTANT ........... ; no template constants }
PROVIDES p:put;
: g :get ; { windows }
{ REQUIRES ........... ; no ports }
{ Implementation dependencies }
USES ip_ida, op_ida, ex_ida ; { component templates }
{ components and interconnections }
IDA ex : ex_ida ;
IDA ip : ip_ida (ei = ex.ev) ;
- JDA op : op_ida (eo = ex.ev) ;
{ equivalence list }

“p=ippp;
g =op.gg

END .
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2.11 COMPOSITE SERVERS

D ription
This feature is not part of the mandatory subset of the Mascot definition.
A composite form of server is provided in Mascot which consists of a network containing at least one

simple or composite server and any number of IDAs. These components communicate with. each
other by means of paths.

raphical Repr ntation
When drawn with a thick line the D symbol is to be interpreted as representing a composite server. lts

constituent network of servers and ID'As, drawn inéide the symbol, completes.the representation of
the composite template.

_s c_serve temp | R

enable

detail

ut
di P

dp

The template shown here, c_serve_temp, represents a composite server with components
consisting of one simple server and one simple IDA. The former, s is of type ser. Its two windows,
via window to window connections, are accessible from outside the template. its single port is

connected to a window of the IDA component, d of type detail, whose other window is carried to

the outside world.

Textual Representation

Where the module scheme provides for both simple and composite forms of server the syntax is

as follows:
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server
—DI server_name_part

Lb ida_spec_part
[-0 server_imp_part

The name and specification parts of a composite server are entirely similar to those of the

corresponding simple form. Windows and ports may be specified in the normal way. It is in the

implementation part that the two forms are distinguished:

server_imp_par

_I-h simple_server_imp_part

P network_imp_part

Thus the implementation part takes the same form as in the subsystem and composite IDA with
the components consisting of at least one server possibly combined with one or more IDAs (which
may be channels and pools) or libraries. The USES section presents a list of all the templates
needed to construct the network. Then follows the component part which defines the network
components and their interconnections. An equivalence list is used td deal with window to

window connections.

This section ends with an outline example, hased on ¢_serve_temp, of a complete composite
server template.

SERVER ser ;
PROVIDES sg:get;
se : enable ;
REQUIRES si : init ;

END .

IDA detail ;
PROVIDES di:init;
" dp:put;
END .
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SERVER c_serve_temp ; { name part }
{ specification dependencies }
{ CONSTANT .......... ; ho template constants }
PROVIDES g¢:get;
e : enable ;
p:put; {window specifications }
REQUIRES ......... ; { no port specifications }
{ implementation specifications }
USES ser, detail ; { component templates }
{ components and interconnections }
IDA d : detail ;
SERVER s : ser (si = d.di) ;
{ equivalence list }
g=8.59,;
e=s5¢e;
p=ddp
END .
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2.12 COMPOSITE ACTIVITIES

Description
This feature is not part of the mandatory subset of the Mascot definition.

Activity templates have both the simple and composite forms. The latter type is not, of course,
concerned with network decomposition but represents the sequential decomposition of the detailed
coding of an activity. The principal product of this sequential decomposition is a design element called a
root which contains the initial entry point of the composite activity. The remaining products of

decomposition consist of one or more subroots.

Communication between the components of a composite activity is expressed and controlled in a
manner analogous to that employed for network interactions. Corresponding to the path between the
elements of a network there is the link between the sub-elements of a composite activity. A
subelement link, like a path, possesses a type in the form of a specification: in this case a subroot
interface which defines a set of interactions that a root or subroot is said to need and which is
correspondingly given by another subroot. The validity of root and subroot connections is checked
in terms of the type of the link, the subroot interface, exactly as network connections are checked
in terms of access interfaces.

Further levels of sequential decomposition are available through templates for composite subroots.
By this means a subroot may by decomposed into a set of internal subroots which together perform
the same function as a simple subroot. That is to say, the ensemble is able to give the interactions
specified in exactly one subroot interface.

External network connections may be made from any component of a composite activity. Thus
ports may be specified in a root or in any subroot to correspond with those specified in the template
which describes the composite activity at its outermost level. The nature of this correspondence is
discussed in more detail in connection with the graphical and textual forms of representation.

Graphical Representation

The graphical conventions for roots and subroots, in composite activities, are similar to those for
simple actlvities. They are normally represented by circular symbols to which port connections may
be made but they also possess sub-element links to illustrate sequential decomposition. The latter
connections are shown as thin lines broken by hollow arrow heads which indicate the direction of
procedure invocation. The following diagram illustrates a template for a composite activity. lis

2.12 Composite Activities 2-79 Mascot Version 3.1



composite nature is indicated by the use of a thick line for its boundary.

compact

The rounded corners proclaim that it defines an active design element. The template is called

compact and its dependencies are embodied in ports g and p expressing requirements specified by
access Interfaces get and put.

The internal structure of activities created from this template involves four components, a root

called r and three subroots called su1, su2 and su3. The templates which define these four

components are called maina , sub1a, sub2a and sub3, respectively. Three subroot
interfaces, si1, si2 and si3 specify the interactions which the three subroots make available via

sub-element links. r makes use of all three sets of interactions while su7 and su2 utilise only the set
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defined in s/3.

The manner in which these internal components relate to the template's external dependencies is
shown by the port to port connections which continue through the outer boundary. From these it can
be seen that both rand suf utilise the operations defined in access interface get and that rand

su2 use those in access Interface put.

Since roots and subroots contain sections of coding which are all conceptually part of the same
activity, ports may be established anywhere in the internal structure. This is illustrated in the template
compact 1, below.

compact_1

get

get_1

Further levels of the sequential decomposition of activities, in the form of composite subroots,
possess a similar graphical representation. However, a composite subroot will show a link which
penetrates its boundary and terminates on a simple internal root component derived from an
appropriate subroot tempiate.
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compsub

Subroots established at these deeper levels of nesting retain all the usual properties inherited from
activities. Thus, on the diagram below, two components of the composite subroot possess

ports.

get

Textual Representation

Before describing the textual form of a template for a composite activity it is necessary first to
discuss the templates for its component parts and their interconnections, namely roots, subroots
and subroot interfaces. The latter has a structure similar to that for an access interface.
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r interf

P  sub_int_name_part

(-—D simple_acc_int_spec_part

The name part employs the appropriate alternative language word to establish the class of the

module.

identifier je——p»

sy

while the remainder of the module is exactly as defined for the access Interface since the
specification part is common to these two types of Mascot Interface.

The following examples illustrate some of the possible forms :

{ subroot interface with procedure specifications }
SUBROOT INTERFACE locprocs ;
FUNCTION factorial( i : integer ) : integer ;
FUNCTION modulo( i, j : integer ) : integer ;
END .

{ subroot interface with definition dependency }
DEFINITION conventions ;

TYPE
vector = RECORD
x_coord :real ;
y_coord :real ;
z_coord : real
END ;

direction_cosines = RECORD
cos_alpha :real ;
cos_beta :real ;
cos_gamma : real
END ;
END .
DEFINITION diagram ;
TYPE
diagram = RECORD

END;
END .
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SUBROOT INTERFACE geometry ;
WITH conventions, diagram ;
PROCEDURE translate( d : diagram; v : vector ) ;
PROCEDURE rotate( d : diagram; dc : direction_cosines ) ;
END .

A template for a root naturally bears a close resemblance to a template for a simple activity. Ports

and template constants. may appear in the specification part ; definition and library
dependencies may be expressed in the Implementation part whose block section also contains the

initial entry point of the composite activity of which it is a component.

root
- root_name_part

root_spec_part —)
L simple_act_imp_part

root_name part

identifier >

The specification part of a root module differs from that representing a simple activity only in its
ability to express dependencies which are satisfied through subelement links. The following diagram
shows how this feature is incorporated.

root_spec_parn

—sP1 act_spec_part ﬁ

identifier subroot_int_ref
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There follows a possible outline for the root module in the composite activity template compact

shown in graphical form earlier.

ROOT maina ; { name part}
{ specification dependencies }

{ CONSTANT ......... ; no template constants }
REQUIRES rg : get;
P :put; { ports }
NEEDS s1:sit;
s2:8i2;
83 :si3; { outward subroot links }
{ Implementation dependencies }
WITH ........ ; { global definitions }
{ LIBRARY ......... ; no library dependencies }
{ local deciarations }
BEGIN
{ statement sequence }
END
END .

The syntax of a subroot module differs from that of a root in ways which reflect the following different
properties :

(a) A subroot may appear at either end of a subelement link. That is, it may
implement facilities for use by a root or by other subroots as well as using
such facilities.

(b) A subroot may be composite.

(c) Unlike a root, a subroot cannot be entered for execution directly. The
executable code that it contains is all encapsulated in procedures which are
called through a subroot interface. It therefore has no outer block
statement sequence.

Difference (a) implies an addition to the specification part, compared with a root module, and (b)
and (c) involve variations in the implementation part. As elsewhere, the outline syntax is presented
first with an expansion of the name and specification parts.

subroot
-——Pp{ subroot_name_part

subroot_spec_part ——)
L subroot_imp_part
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identifier |r————p

act_spec_part

—

subroot_int_ref

identifier subroot_int_ref

..........................

The diagram describing the specification part shows that, after optionally specifying ports and
template constants, a GIVES section identifies the subroot Interface which is implemented by
this template. It should be noted that there is precisely one such interface. On the other hand, like a
root, a subroot may utilise (keyword NEEDS) the services of any number of other subroots through
subelement links.

Turning now to the implementation part ; a distinction has to be made between the simple and
composite forms :

subroot_imp_part
simple_subroot_imp_part

comp_act_imp_part

For a simple subroot the implementation part is similar to that for a simple activity except for the

omission of the statement sequence.
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r im

with_section ——)

impl
"——’
L library_spec
N

declaration_part j—-=>yp

Thus, global definitions and library sub-threads may be used exactly as in simple activities and in
roots. In the declaration part, constants, types and variables, private to the subroot, may be
defined. These are followed by definitions of the procedures which are specified in the subroot
interface mentioned in the GIVES section, together with any purely private procedures which the

interface procedures use.

It is now possible to provide, in outline, the text needed to represent templates for each of the
components of the composite activity illustrated earlier as compact. But first the interfaces
must be specified. Two access Interfaces are required for external network communication and
three subroot interfaces for internal communication between the root and subroot

components.

DEFINITION network_data_def ;
TYPE »
network_data = ........ ;
END .

ACCESS INTERFACE put ;

WITH network_data_def ;

PROCEDURE write( item : network_data ) ;
END .

ACCESS INTERFACE get ;
WITH network_data_def ;
FUNCTION read : network_data ;

END .

DEFINITION subroot_data_def ;
TYPE
subroot_data=........ ;
END .

SUBROOT INTERFACE sit ;

WITH network_data_def, subroot_data_def ;

FUNCTION process_1( item : network_data ) : subroot_data ;
END .
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SUBROOT INTERFACE si2 ;

WITH network_data_def, subroot_data_def ;

FUNCTION process_2( item : subroot_data ) : network_data ;
END .

SUBROOT INTERFACE si3 ;
PROCEDURE calculate( in : integer ; VAR out : integer ) ;-
END .

Templates for the root and the three subroots can now be outlined:

ROOT maina ;

{ specification dependencies }
{ CONSTANT .......... ; no template constants }
REQUIRES rg:get;
P :put; { ports }
NEEDS s1:sit;
82 :si2;

s3:8i3; { outward subroot links }
{ implementation dependencies }
WITH ....... ; { global definitions }
{ LIBRARY ......... ; no library dependencies }
{ local declarations}
{ root coding with initial entry point }
END .

SUBROOT subta ;
{ specification dependencies }

{ CONSTANT ............; no template constants }

REQUIRES gg : get ; { ports }

GIVES sit ; { inward subroot link }

NEEDS s : si3 ; { outward subroot link }
{ implementation dependencies }

WITH ...... ; { global definitions }

{ LIBRARY ............. ; no library ddependencies }

{ Interface procedures }
FUNCTION process_1( i : network_data ) : subroot_data ;
END .

SUBROOT sub2a ;
{ specification dependencies }

{ CONSTANT .............. ; no template constants }

REQUIRES pp : put ; { ports }

GIVES si2 ; { inward subroot link }

NEEDS s : si3 ; { outward subroot link }
{ implementation dependencies )}

WIH ......; { global definitions }

{ LIBRARY ......... ; no library dependencies }

{ interface procedures }
FUNCTION process_2( i : subroot_data ) : network_data ;

END .
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SUBROOT sub3 ;
{ specification dependencies }

{ CONSTANT ............. : no template constants }
{ REQUIRES ....... : noportsused}
GIVES si3 ; { inward subroot link }
{ NEEDS ........ ;  no outward subroot links }
{ implementation dependencies }
WITH ...... ; { global definitions }
{ LIBRARY ............. ; no library dependencies }

{ interface procedures }
PROCEDURE calculate( in : integer ; VAR out : integer );

END .

To see how to express the template for compact itself, it is necessary to return to the discussion of
activities and, in particular, to the composite form which has yet to be described. The name and
specification parts are entirely similar to those of the corresponding simple template. Thus, ports
may be specified in the normal way. The implementation part, however, as in the case of a root, takes
alternative forms for simple and composite activities.

act_imp_part

simple_act_imp_part

comp_act_imp_part

tempiate_ref

Lp act_component_part j——pp

It begins with a USES section which lists the root template and the highest level subroot

templates from which the activity is to be constructed. Referring back to the graphical representation
of the composite activity compact :

USES maina, sub1a, sub2a, sub3 ;
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This indicates which templates are needed to create the component parts of the activity. Notice that
references to definitions are not allowed at this level. The Implementation part contains no local
declarations or program statements. This is a composite module and its purpose is to specify the
internal structure of the activity in terms of root and subroot components, created from the
templates mentioned in the USES section, and the subroot interfaces through which they

communicate.

mponen

—’-bl act_component_class P identifier

template_ref j

(-. act_connection_spec

Every composite activity specifies a single root component together with any number of
subroots and any libraries which are to be made available to the components. The specification of
each component defines any connections it possesses to ports of the activity and any links to {

subroots.
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ct _connection e

,—b temp_const_ident -\

-.@-—,—4——» sub_element_link H@" .

\—pJ port_port_connect /

04 /

The general form of the connection specification is very similar to that already encountered for a

subsystem. The syntax of port to port connections and template constant identities have already

been described in earlier sections of the Definition. The subelement link syntax is given below:

sub _element link

—>

out_link_identifier —b@—b subroot_ref |remepp

Each outward link of the component being defined is equated with the subroot component which

is to give the required interactions.

The template for the composite activity compact may now be written:

2.12 Composite Activities

ACTIVITY compact ;

{ specification dependencies }
{ CONSTANT ........... ; no template constants }
REQUIRES g:get;

p:put; { ports }

{ implementation dependencies }
USES maina, sub1a, sub2a, sub3 ; { component templates }

{ components and interconnections }
SUBROOT sut :subfa{ gg=g,.

END .

s=35u3);
SUBROOT su2 : sub2a ( pp=p,
s=su3);
SUBROOT su3 : sub3 ;
ROOTr:maina{ rg=g,
P=p
s1 =sul,
82 = su2,
s3=su3);
2-91

Mascot Version 3.1



One topic remains to be covered to complete the syntactic description of activities. This is the
composite form of the subroot. Like the composite activity, it differs from its simple fbrm only in
the implementation part. Furthermore, this differs from the corresponding part of a composite
activity only in that it cannot contain a component derived from a root template. Instead, the root
component is derived from a subroot template which gives the appropriate interface.

The template diagram, compsub, at the end of the description of graphical representation will now be

used to illustrate the application of these syntax rules.

SUBROOT compsub ;
{ specification dependencies }

{ CONSTANT .......... ; no template constants }
{ REQUIRES ...... ; no ports |

GIVES si; { inward subroot link }

{ NEEDS ...... ;  no outward subroot links }

{ implementation dependencies }
USES sub, sub1c, sub2c ; { component templates }
{ components and interconnections }
SUBROOT su1l : subic ;
SUBROOT su2 : sub2c ;
ROOT su : sub ( s1 =sut,
s§2 =8u2);
END .
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2.13 ARRAYS OF PORTS AND WINDOWS

Description

This feature is not part of the mandatory subset of the Mascot definition.

Templates for both the simple and composite forms of IDAs, activities and servers together
with subsystems, roots and both simple and composite subroots may specify ports by means

of a REQUIRES section in their specification parts . The identifiers so introduced represent ports
which may be referred to in the code sections of the simple templates. In some cases it may be
required to transmit data via each member in turn of a group of ports from a program loop. It is therefore
valuable to be able to specify such a group as an array. Since all or some of the paths associated with an
array of ports may pass thrbugh the boundary of an enclosing composite design element it is also
useful to be able to use arrays at that level.

Of the above list of template types, simple and composite IDAs and servers together with
subsystems may also specify windows by means of a PROVIDES section. These identifiers are
used in'the connection specifications of simple templates and the equivalence lists of

both forms. Here again it is useful to have arrays in order to express logical groupings of windows.

The complete definition of Mascot caters for both these requirements.

raphical Repr ntation

An array of ports or windows may be representeds by a single symbol or, alternatively, each element
may be shown individuaily. Where the elements are shown individually the array index should also
appear.

Textual Representation

The extension of the design language syntax to accommodate arrays of ports and windows in
REQUIRES and PROVIDES lists (see Section 2.3) is shown below:
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int arr ri

simple_type

L acc_int_ref P

Thus the REQUIRES list of an activity, say, might be:

REQUIRES p_set : ARRAY[1 .. 5] OF put ;

where put is an access interface. This would facilitate coding such as:

FOR line =1 TO5DO
BEGIN

p_setline] . send(itemfline]) ;
END
where send is a procedure specified in the access interface.

An array of windows in an IDA, say, might be specified as:

PROVIDES w_set : ARRAY[1 .. 3] OF get ;

and utilised in an equivalence list as:
w_set[1] . fetch = fetch1 ;

w_set[2] . fetch = fetch2 ;
w_set[3] . fetch = fetch 3

to designate three separate ACCESS procedures for use in connection with three logically related
paths.
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2.14 COMPOSITE PATHS, PORTS AND WINDOWS

Description
This feature is not part of the mandatory subset of the Mascot definition.

Mascot allows a system design to be expressed in an hierarchical form such that components at the top
level are decomposed into the more detailed components at lower levels of the hierarchy. It follows that
the granularity of the interactions on a path in network diagrams, at different levels in the hierarchy, may
vary. The definition presented so far has only provided for one level of granularity to be used for paths;
that is the access Interface's procedures. The composite path is provided, in the full Mascot

definition, to allow different levels of granularity to be represented.

The basic concept is that a composite path represents a 'trunk’ route between two subsystems of a
network. The module which defines the type of a composite path is an access interface which
itself comprises a set of lower level access interfaces. A composite path is treated exactly like a
simple path until it needs to be split into its component parts, at which points, a special form of "adaptor’

is used: the composite port or the composite window.

Graphical Representation

A composite path is represented on a Mascot network diagram by a thick line connecting a port of

one component with a window of another.

example

d

This is illustrated in the diagram above in which the two components are a subsystem s and a
subsystem d . The name of the composite path which connects themis ¢p7. The template for
the subsystem dsdmpx, where the decomposition takes place, shows how the composite window

dswn is represented.
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Like a simple window, the composite window is drawn as a rectangular shape. However it is hollow
and, like all composite entities, it has a thick outline. it can only occur on the boundary of a subsystem
template. On the outside of the template to which it belongs there is an external connection labelled
with the name cp7 of the composite access interface which describes, indirectly, the interactions
it provides. Inside the composite window symbol the individual component windows are shown and
labelled in the normal way. In this case, two of them, a and b, are simple and are connected via simple
paths, both of type a/1, to simple IDA components g7 and g2 . The third is itself composite
and is connected via the composite path ¢p2 to a subsystem component p7 . It can be seen

from this diagram how a composite window acts as an adaptor to 'demultiplex’ a composite path.

The template for subsystem ss shows how the composite port sspn is drawn.
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The composite port sspn is shown as a hollow semi-circle, with a thick boundary, inside which are the
‘demultiplexed’ ports a, b, and ¢ which it makes visible. Two of these are simple and are connected via
paths of type al1 to corresponding ports of the subsystem’'s components. ¢ is itself composite

and is connected via the composite path cp2 to a port of the component three . The external

connection is labelled to show that the interactions which it requires are defined, indirectly, by the
composite access Interface cp7 . Since a composite port connected to a composite window
must be defined by the same access Interface, not only the types but also the names of the
constituent ports and windows must match in order that constituent ports and windows of the same

type may be distinguished from each other.

The symbols used to represent composite ports and windows may be drawn larger than the normal
size so as to be more in proportion to the thickness of the path. This is illustrated by the windowe¢ and

the ports p7 and ¢ in the above diagrams.

Textual Representation

The module which defines the operations, required by a port, provided by a window, and hence
defines the interactions along a path is the access interface. This is a specification which if
composite defines, indirectly, the possible interactions by specifying the set of access interfaces,
simple or composite, of which it is comprised. The complete syntactic structure for an access
Interface shows how the composite form is catered for:

access_interface
—  ACC_int_name_part

(—+ acc_int_spec_part

in a

simple_acc_int_spec_part

comp_acc_int_spec_part

The specification part of the composite form has the following structure:
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om in

identifier acc_int_ref

Taking the interface ¢p1 from the above graphical examples:

ACCESS INTERFACE cpfi;
COMPRISES a,b:aif;
c:.cp2;
END.

ai1 it will be recalled is a simple interface while cp2 is composite.

A port or window to handle a composite path arises in the normal way as a reference in a list
following the keywords REQUIRES or PROVIDES. However in order to indicate that a composite
path is to be decomposed within a composite template, the composite access Interface must
be referred to in the USES list of the template. The syntax is:

network_imp part

comp_acc_int_ref

template_ref

1 equivalence_list J

The manner of expressing the connections which fan out from composite ports is revealed by the

[b component_part

complete syntax diagram for a port to port connection as it appears in a connection specification:

2.14 Composite Paths/Ports/Windows 2 - 98 Mascot Version 3.1




port port connect

~p| port_ref —b@—j—b boundary_port_ref
[—-b comp_port_ref —»O—b port_ref

Returning to the earlier graphical examples, the following is the textual form of the subsystem ssdmpx

SUBSYSTEM ssdmpx;
REQUIRES sspn : ¢pt;

USES cp1, ss2, ss3, act; _
SUBSYSTEM two : ss2 (p1 = sspn.a);
SUBSYSTEM three : ss3 (p1 = sspn.c);
ACTIVITY at :act 5( p1=sspna,
p2 = sspn.b);
END.

At the other end of a composite path, connections fan out from a composite window. These, being
window to window connections, are defined in an equivalence list for which the complete syntax

diagram is:
equivalence_list \
boundary_window_ref —,@component_ident j
comp_window_ref
] L.)O)I window_ref et

WIindow_ref e’

V

boundary_port_ref

(_.) comp_port_ref —DO-) port_ref

Thus the template for the subsystem dsdmpx in the graphical examples is expressed as:
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SUBSYSTEM dsdmpx;
PROVIDES dswn : cpt;

USES cp1, idap, idaq;
IDA q1 :idaq;

IDA g2 : idaq;
SUBSYSTEM p1 : ssp;

dswn.a=qil.qa;

dswn.b = q2.gb;

dswn.c = p1.pc;
END.

and for completion here is the template for the system which connects the subsystem and the
composite IDA together:

SYSTEM example;
USES dsdmpx, ssdmpx;

SUBSYSTEM d : dsdmpx;

SUBSYSTEM s : ssdmpx (sspn = d.dswn);
END.

2.14 Composite Paths/Ports/Windows 2 - 100 Mascot Version 3.1




2.15 DIRECT DATA VISIBILITY

Description

This feature is not part of the mandatory subset of the Mascot definition.

One of the essential objectives of Mascot is to control access to shared data from concurrently executing
activities. The responsibility for this control, and hence for the integrity of the shared data, is normally
exercised solely by the IDA. In special circumstances, however, it may be necessary to bypass the
protection normally afforded by the access procedure mechanism and to allow activitles to
manipulate IDA data directly. There are two classes of problem which may be solved by this means:

1. The first problem concerns the location of code and data on multi-processor configurations. It may
be necessary to locate shared data, that is IDA data areas, and the code which operates on them
in separate areas of memory. This problem may also arise in single processor configurations which
possess non-homogeneous memory. A possible solution is to use a composite IDA and to
provide direct data visibility in the interfaces between its components. Instances of the
component IDAs can be placed in the appropriate memory locations during the building of

the application software.

2. The second problem is concerned with efficiency of access to data. There are some occasions
when the overhead associated with the call of an access procedure far outweighs the
processing time and memory space required by the access mechanism code itself. If this applies
in a path along which data transfers occur at a high frequency, the overall efficiency may become
unacceptably low. In such cases direct data visibility could be used to eliminate the access

procedure calls.

The advantage of solving problems like these by means of direct data visibility is that it is easy to
implement and does not imply great complexity in the Mascot building process. Furthermore, where
activities are scheduled for execution in a co-operative manner (see Section 4.4), direct manipulation
of IDA data need present no threat to their integrity. Under a regime of pre-emptive scheduling safe

access may be achievable by very careful programming.

The use of direct data visibility should only be considered, however, where the conventional Mascot
methods are incapable of achieving the required results. Where it is adopted it should only be used in a
disciplined manner. Direct visibility involves extending the traditional sole responsibility of the IDA, in
respect of data integrity and propagation, to a group of several components. The scope of this collective
responsibility needs to be be well defined and should be limited as far as possible by the use of
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qualifiers as discussed below.

The programming system in use for a particular application may provide an alternative approach to the
problems of efficiency and code and data location. One of the following techniques, where available, is
generally to be considered preferable.

1. An option provided by a number of modern compilers allows a procedure body to be included,
inline, in the object code at the point of call and, subsequently, optimised. Where such a facility is
available it might be applied to calls of an access procedure, hence achieving an improvement
in performance similar to that obtainable through direct visibility. The feature may also provide a
means of appropriately locating the code.

2. The problem of explicitly locating code and data may sometimes be solved by means of compiler
segmentation options. Many existing compilers provide facilities for splitting compilation units into
segments which may be independently located in memory. In simple cases this may involve
division into code and data segments but, if steering directives are embedded in the source text,
more complex separation is possible. Mascot building software could be developed to exploit
such compilation facilities. For example, IDA code could be placed in shared memory, it could be
duplicated in its entirety in the private memory of each processor which uses it, it could be
segmented manually and segments duplicated in private memory as necessary or the
segmentation could be performed automatically so as to minimise the duplicated code. These
examples would achieve progressively greater efficiency of memory usage in return for
progressively greater complexity of the building software.

Graphical Representation

There are no special diagrammatic conventions associated with direct data visibility. The diagram below
shows a composite IDA in which data in component ex is made directly visible to the other two
components through the access interface data_vis. In this example, for which modules are
outlined below, jp and op are required to be located in the private memory areas of two separate
processors while ex is to be located in a shared memory area. This arrangement is reflected by the
broken lines on the diagram.
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Textual Representation

IDA data may be made directly visible by specifying them in an access interface that appears in the
PROVIDES list of the module. Reference to Appendix A shows that the specification part of a
simple access interface, in its complete form, is :

simple_acc _int_spec_part

with_section

acc_int_detail_part jrm—p

acc_int_detail par

—— read_only_const_specs —)

[_.> var_specs

[__.p proc_headings —1
\ >
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Thus variables and read-only constants may appear in an access interface together with the
procedure headings already discussed. it should be emphasised that interfaces contain specifications
and not declarations. Storage space for interface variables and read-only constants, like the coding for
interface procedures, must be supplied by any component which provides a window of that type.

Referring to the graphical example given earlier, here is the module for the composite IDA
dp_chan:

IDA dp_chan;
PROVIDES in:in_ch;
out : out_ch;

USES dp_in, dp_out, dp_ex;
IDA ex : dp_ex;

IDA ip : dp_in (e=ex.e);

IDA op : dp_out (e=ex.e);

in = ip.in;
out = op.out
END.

There are three access interfaces, one of which is used internally and involves direct data visibility. It
could, for example, be of the form:

ACCESS INTERFACE data_vis;

VAR
max : CONSTANT integer; {reading and writing operations }
data : integer; { are assumed to be indivisible }
END.

The two Interfaces provided by dp_chan are conventional in containing only procedure
specifications. They are outlined in sufficient detalil for present purposes below:

ACCESS INTERFACE in_ch;
PROCEDURE write( item : integer );
END.

ACCESS INTERFACE out_ch;
FUNCTION read : integer;

END.
For the purposes of explanation, the following examples are expressed in a Pascal like notation.
Template dp_ex is given in full. Notice the use, in the design representation language, of ACCESS

VAR by analogy with ACCESS PROCEDURE. max has been rendered as a read-only constant
whose value is set in the IDA template in order to demonstrate the facility. In practice it would probably
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be a template constant. The equivalence statements are not strictly required as name identity gives

unambiguous correspondence.

IDA dp_ex;
PROVIDES e : data_vis;

ACCESS VAR
max : CONSTANT integer := 50;
data : integer;

e.data = data;

e.max = max
END.

Only those parts of template dp_in which are relevant to the present discussion are included in the
module below. Access procedure write places input values directly into the internal store data of
IDA ex which is located in the shared memory region.

IDA dp_in;
PROVIDES in : in_ch;
REQUIRES e : data_vis;

ACCESS PROCEDURE write (item : integer);
BEGIN

e.data := item;
END.
in.write = write

END.

The template dp_out provides access function read atits window out. This removes values

directly from the store in ex.

IDA dp_out;
PROVIDES out : out_ch;
REQUIRES e : data_vis;

ACCESS FUNCTION read : integer;
BEGIN

read := e.data;
END.

out.read = read
END.

Finally, to assist in maintaining integrity when using direct data visibility, consideration should be given to
the use of the qualifiers SINGLE, READ_ONLY and IDA_ONLY (see later section on this topic).
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The qualifier SINGLE, associated with an IDA window specification, indicates that only a single thread of
execution may pass through this window. This effectively limits the scope of any variables directly visible
at the window. The READ_ONLY qualifier can be used to ensure that externally visible variables are not
altered by direct access via that interface. The effect of the IDA_ONLY qualifier associated with an
access interface is to restrict its use to the ports and windows of IDAs. As a result, responsibility for
the integrity of visible data is limited to the components of a composite IDA or equivalent network.
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2.16 QUALIFIERS

Description
This feature is not part of the mandatory subset of the Mascot definition.

Mascot provides a rich set of facilities for representing the structure of concurrent software. The use of
these facilities is constrained in various ways in the interest of maintaining the consistency of the design
and the integrity of the resultant software. Such constraints, built into the definition, apply generally to all
Mascot systems. However, it will sometimes be found desirable to introduce additional, more severe
constraints which apply locally to particular aspects of a design. The concept of a qualifier has been

devised to meet this requirement.

Examples of Mascot entities to which qualifiers may be applied are ports, windows, interfaces and
their components. The effect produced by adding a qualifier might be to impose or relax some form of
constraint on network connectivity, to limit the operations which may be applied to shared data, to indicate
(in the textual form of representation) the direction of data flow, to limit the use of selected context

facilities to certain classes of template or to influence the action of the compilation system.

It is open to the implementors of a Mascot development environment to provide support for any
qualifiers that are considered useful for the expected applications. For each qualifier that is
supported it is required that the following be defined:

- the name of the qualifier

- the purpose of the qualifier

- where the qualifier may be placed and how it is represented

- the effect of the qualifier

- whether placing one qualifier requires the placement of other similar or
complementary qualifiers and, i so, what the rules are

- any other information thought to be relevant such as whether violation of the

rules constitutes an error or merely results in a waming

Some examples showing how this information might be presented are given later in this section.

Graphical Representation

Qualifiers do not normally appear on Mascot diagrams.
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Textual Representation

As indicated above, the representation of qualifiers in modules is implementation dependent. It is,
however, suggested that qualified windows and ports might take the following form:

REQUIRES a, b/READ_ONLY, c : get;
PROVIDES d/SINGLE : put;

where the proposed significance of these qualifiers is described below.

Examples
The sample qualifiers given below are those which were suggested during the discussion of this
concept in the course of development of the Mascot 3 definition. They are divided into categories each

of which is now briefly introduced.

Connectivity Constraints
The default connectivity requirement for a window is that at least one port must be connected, and

possibly several. Use of the qualifiers in this category has the effect of adjusting these requirements.

Data Access Constraints
The qualifiers in this category place limits on access to variables made directly visible via an access
Interface.

Data Flow Indicators

These qualifiers are used to indicate the direction of data flow with respect to ports and windows.
This is information which, in the mandatory subset of Mascot, is expressible only in the graphical form of a
design.

Context Qualifiers

in this category, the qualifiers enable the designer of a context interface (see Section 4.1) to determine
which facilities are available to which classes of templates. In some cases the limitation is to particular
features of a template class.

Code Generation Constraints

The qualifier in this category can be used as a possible alternative to making variables visible and
directly accessible via windows. For a more detailed discussion of this point see Section 2.15 of the
Handbook.
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cONNECTIVITY NSTRAINT

Name Place Description
SINGLE window of IDA " Purpose: to indicate that the designer of the IDA or
or server server has optimised the implementation in such a way

that only a single activity may use that window.

Effect: Only one activity port may be connected to
this window.

Additional Information: Care is needed in applying
this constraint where composite design entities are
involved. In particular the 'singleness’ of a window must
be passed out to the windows of the enclosing
composite structure and the number of internal port
to port connections within enclosing subsystems must
be determinable.

OPEN window Purpose: to indicate that a window need not
necessarily be used in an operational network. it may,
for example, have been included purely for testing
purposes.

Effect: The ENROL operation will not issue a warning
if a window qualified as OPEN has no port connected to
it.

Additional iInformation: OPEN windows may have

zero or more connections. Windows marked as both

OPEN and SINGLE may have zero or one port connected.
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DATA ACCE NSTRAINT.

Name Place D ription
READ_ONLY port or window Purpose: to prevent the values of variables, visible

through the window, being altered via port(s)
connected to the window.

Effect: Any attempt to write data through a READ_ONLY
port/window connection is identified as an error when
the ENROL operation is applied to the template
concerned.

Additional Information: Where a window is
qualified as READ_ONLY, it should only be connected 1o a
similarly qualified port. However, a READ_ONLY port
may be connected to any window. In order to limit the
scope of cross-checking, it may be desirable to insist
that the READ_ONLY qualifier must appear on all of the
ports and windows associated with the path.

IDA_ONLY window Purpose: to ensure that only ports of IDAs are
connected to the qualified window.

Effect: Any attempt to connect the port of an activity
(directly or indirectly via intervening subsystem
boundaries) to an IDA_ONLY window will result in an
error being identified when the ENROL operation is

applied to the network which contains such a connection.
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DATA FLOW INDICATOR

Name Place

IN window or port
ouT window or port
IN_OUT window or port

2.16 Qualifiers

Description

Purpose: to indicate the direction of data flow.

Effect: The direction of data flow may be expressed in
the textual form of a template.

Purpose: to indicate the direction of data flow.

Effect: The direction of data flow may be expressed in
the textual form of a template.

Purpose: to indicate the direction of data flow.

Effect: The direction of data flow may be expressed in
the textual form of a template.
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CONTEXT QUALIFIERS

Name

SERVER_ONLY

HANDLER_ONLY

NOT_HANDLER

2.16 Qualifiers

Place

context Interface
or component of
context interface

context interface
or component of
context Interface

context interface
or component of
context Interface

Description

Purpose: to make qualified facilities available only
to servers.

Effect: The use, in a template which is not a
server, of facilities qualified in this way will
result in an error being identified when the ENROL
operation is applied to the template.

Purpose: to make qualified facilities available only
to handlers.

Effect: The use, in a template which is not a
server, of facilities qualified in this way will
result in an error being identified when the ENROL
operation is applied to the template. Further,
when a server template is enrolled, only the code
of any handlers inside it will be allowed to use the
qualified facilities. Any other uses will result in an
error being identified and cause the ENROL
operation to fail.

Purpose: to prohibit the use of qualified facilities
by handlers.

Effect: The use, by a handler, of facilities
qualified in this way will result in an error being
identified when the ENROL operation is applied to
the server template which contains it.
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IDA_ONLY

ACTIVITY_ONLY

2.16 Qualifiers

context interface
or component of
context interface

context interface
or component of

context interface

Purpose: to make qualified facilities ‘available only
to IDAs.

Effect: The use, by ahy template which is not an
IDA, of facilities qualified in this way will result in
an error being identified when the ENROL operation
is applied to the template.

Purpose: to make qualified facilities available only
to activities.

Effect: The use, by any template which is not an
activity, root or subroot will result in an error
being identified when the ENROL operation is applied
to the template.
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CODE GENERATION

Name

INLINE

2.16 Qualifiers

Place

port or window

NSTRAINTS

Description

Purpose: to avoid the overhead involved in calling
access procedures.

Effect: The compilation system is forced to copy
the code of the access procedures, available at a
qualified window, into the code of a calling
template at the point of call.

Additional Information: It would be reasonable
to provide a facility whereby the INLINE qualifier
may be suppressed by means of an IGNORE_INLINE
option of the BUILD operation.
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3.1 STATUS PROGRESSION

Intr ion

An essential feature of a Mascot development environment is a database capable of containing a
collection of modules from which, together with their derived products, application software may be
created. As will be demonstrated later, Mascot modules are so defined as to facilitate the progressive,
incremental elaboration of a design. In support of this, the database accords formal recognition to the
attainment of certain important progress milestones in the development of a module. A status value,
associated with each module, provides a measure of the level of recognition attained and consequently
of the module’'s fitness for use. This value reflects not only the progress made in defining the module
itself but also the state of other modules to which direct or indirect reference is made. It is assumed
throughout this section that status values are maintained automatically in the database by the Mascot
development environment but a manual recording procedure would also be possible. A development
environment may provide facilities to display the module status and possibly the inter-module
dependencies.

As status progression is closely associated with module structure this is reviewed first.

Module Structure

Reference to the syntax diagrams in Appendix A shows that every Mascot module begins with a name
part which defines its class and gives the template or specification it represents a unique name.
This is followed by a specification part whose purpose is to define that part of the module which
needs to be known when it is used by other modules. It establishes the external view of the module.

For specifications, the specification part consists of the detail of the module together with a
statement of its dependency on other modules. Such external dependencies occur only in simple
specifications and are limited to the importation of data-type definitions from other specifications.
They are expressed in the form:

WITH definition module list {importation of data-types }

For templates, the specification part consists of the information required for components of that
type to be included in a composite template. This information includes several varieties of external
dependency. Connections between objects are expressed in their templates by means of
references to specifications. There are two different kinds of connection which are expressed in this
manner and in each case the active partner in the transaction is distinguised from the passive partner.

First there are those which convey network interactions and are concerned with communication between
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ports and windows. These dependencies take the form:

REQUIRES port list { network interactions }
PROVIDES window list

Second there are those which convey sequential program interactions between the individual, separately
developed components of a single thread of execution:

NEEDS subroot interface list { sequential program interactions }
GIVES subroot interface list

A third form of external dependency, closely related to the second category above, occurs in the case of
a template which describes a collection of shared library facilities. The set of interactions which this
passive entity makes available are expressed as:

GIVES library interface list { provision of library services }
The final possible element of a specification part is the template constant expressed as:
CONSTANT template constant list { template constant }

Templates (but not specifications) possess a further section known as the implementation part
which defines the internal details of the template. For simple templates this defines the program.
For composite templates it defines the components together with their connections and
template constant values. Simple templates may import data-type definitions directly from
specifications and may make use of facilities provided by library modules. These dependencies are
expressed in the form:

WITH definition module list { Importation of data-types )}

LIBRARY library interface list { use of library services }

A composite templaie depends on those templates from which its components are derived.
These are listed:

USES template list { templates for components }

Appendix C (Summary of Keyword Usage) lists all the inter-module dependencies in terms of the
representation language keywords used to express them and distinguishes between those associated
with the specification and implementation parts of a module.

Status Values

The status value of a module directly reflects the state of completion and validation of the three
sections of its structure. There are thus three primary status values, registered, introduced and
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enrolled, the attainment of which record the progressive successful validation of the name,
specification and implementation parts of the module, respectively. The operations,
computer-assisted or manual, which establish these status values are REGISTER, INTRODUCE and
ENROL.

A module's primary status value may be qualified to reflect the status of the other modules which

belong to the specification and implementation dependency trees of which it is the root. Thus, a
module whose specification part is present and correct, but which has specification dependencies
still at registered status, may be raised to the status of partially introduced. It qualifies to become
fully introduced when all its specification dependencies have achieved this status.

For a composite template there is a status value of partially enrolled. This status can be

achieved when all three sections of the module are present and correct and all its specification and
implementation dependencies are at least partially introduced. As will be demonstrated in the
example below, the partially enrolled status conditions enable the system designer to complete a
network design before considering the interface and algorithmic details of the design.

The formal rules governing the achievement of these status values are summarised in a table at the end
of this section. Their application is illustrated below. In the example, status progression is shown as an
orderly increase in status from registered to enrolled. In practice, facilities must be provided to
support iteration and the consequent backtracking.

Example Q.f Status Progression

The following example illustrates how a subsystem might be developed progressively. The detailed
features of the Mascot development environment employed in this example are not mandatory to the
Mascot definition. The subsystem chosen for illustration is the one called subsys_4 in Section 2.1 of
the Handbook.

The status progression commands may be used to control the development of a system by a team of
people. We shall assume, as the starting point for our example, that subsystem subsys_4 has been
introduced and has achieved partially introduced status. This implies that the access
interfaces required and provided by subsys_4 have been registered and that the only information
known to the Mascot database about subsys 4 is the following

SUBSYSTEM subsys_4;

PROVIDES gw4 : get;
REQUIRES rp4 : rec; otp4 : out; tp4 : trans;
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Our task in the example is to develop subsys_4 and we shall define a series of states through which the
subsystem and its constituents must pass. These states will be visible in the Mascot database as a
result of applying the status progression commands and can thus be used to control, record and
monitor progress.

There are three significant states which arise during the development of subsys_4 :

1 Design structure recorded for subsys 4.

2 Ready to start implementation of templates from which the components of
subsys 4 are derived.

3 Completion of implementation of all templates used by subsys_4. This implies that
subsys_4 may be built.

State 1 is reached when subsys_4 is pattially enrolled. This implies that the templates for all of its
components have been Introduced and have achieved partially introduced status. State 2 is
reached when all the simple templates for the components of subsy 4 have achieved fully
introduced status and state 3 is reached when subsys_4 is fully enrolled.

Reaching State 1
To move from our starting point to state 1, it is necessary to design the internal structure of subsys_4.
This will most probably be represented graphically first and, if a graphics tool is available, could be
recorded directly in this form. In such a circumstance the graphics tool can, via interactions with the user,
determine which additional modules need to be registered and introduced in order to render
subsys_4 capable of achieving partially enrolled status. However if a text based design checking
tool is used, then the next step would be to transcribe the graphical representation of subsys_4 into its

textual equivalent, thus:

SUBSYSTEM subsys_4;
PROVIDES gw4 : get;
REQUIRES rp4 : rec; otp4 : out; tp4 : trans;
USES pool_1, chan_1, a_temp_1, a_temp_2;
POOL p1 : pool_1;
CHANNEL ch : chan_1;
ACTIVITY a1 : a_temp_1 (fp = ch.fw, ip = tp4, pp = p1.pw);
ACTIVITY a2 : a_temp_2 (sp = ch.sw, otp = otp4, p = rp4);
gw4 =pl.gw
END.

From this (or directly from the graphical representation) it can be seen that in order to enrol this design, it
is necessary to have the four templates pool_1, chan_1, a_temp_1 and a_temp_2 at

introduced status. Further, before these templates can be introduced, it is necessary to
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register them and the access Interfaces upon which they depend.

The specifications for the four component templates of subsys_4 are:

ACTIVITY a_temp_1;
REQUIRES {p : fetch; tp : trans; pp : put;

ACTIVITY a_temp_2;
REQUIRES sp : send; otp : out; rp : rec;

CHANNEL chan_1;
PROVIDES sw : send; fw : fetch;

POOL pool_1;
PROVIDES pw : put; gw : get;

It can be seen that the four component templates between them make use of seven access
interfaces of which four are visible at the subsystem template. These four will already have been
registered to allow subsys_4 to achieve partially introduced status. Therefore we need to
register the three additional interfaces fetch, send and put. Having registered the four
templates and the three access interfaces, we can introduce the templates and thereby submit

them for formal checking of their specification parts.

The INTRODUCE operation first checks that the name parts of the modules have not been changed
since they were registered and then checks the specification part. The specification part must
itself be syntactically legal and any other modules, to which the modules being introduced refer,
must be at least at registered status. These are the minimum requirements for the INTRODUCE
command to succeed and, in our example design, these minimum requirements are met. Therefore the
four templates qualify for partially introduced status.

The INTRODUCE operation will also check whether the preconditions for fully introduced status are
satisfied. At this stage in the development of our example these conditions are not met because the
interfaces are not yet introduced. Therefore the status achieved is partially introduced.

It is now possible to enrol the design structure for subsys_4. This operation checks that the
specification part has not been changed since the module was introduced and that the design
details represent a consistent use of the templates and interfaces involved. As a result, subsys_4
will achieve partially enrolled status. State 1 has now been reached.

R hin te 2
In order to reach state 2, it is necessary to have all seven of the access interfaces specified in detail
and for them to be raised to introduced status. For the three internal access interaces we, as the
nominated design authority (see section 5.1), can proceed immediately. For the four external access
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interfaces we must liaise with other groups, who are developing modules which also use these

access Interfaces, and with the nominated design authority for them.

When the internal details have been agreed, they are recorded as the texts for the access interface
modules and any definition modules found to be necessary. These details are then submitted for
checking and entry into the Mascot database via the INTRODUCE command. The sequence of
commands is as follows: REGISTER all new definition modules; INTRODUCE definition modules;
INTRODUCE access interface modules.

Assuming that these operations are succssful we now have all the access interfaces for subsys 4
at fully Introduced status. In order to reach state 2 though, we have to bring the Mascot database
up to date by re-introducing the four simple templates a_temp_1, a_temp_2, pool_1 and
chan_1 and finally re-enrolling subsys_4.

Reachin tate 3

The action necessary to reach state 3 is to provide the implementation details for each of the simple
templates used for the components of subsys_4. This is a programming task and each module
can be assigned to a different individual within the team who will then add the details and submit the
assigned module for enrolment. When all the implementation details have been provided and
checked to be consistent with the fully introduced Interfaces by the ENROL command, we have
aimost reached state 3. It only remains to re-enrol subsys_4 so that it can be related, in the Mascot
database, to the fully enrolled simple templates. Then subsys_4 can achieve fully enrolled
status and our task is completed.

This state formally constitutes the end of the implementation phase for subsys_4 and signals the start
of the testing phase for that module. Depending upon the testing strategy adopted, there might well be
other subsystems developed specifically to provide test harnesses for subsys_4. The development
of these subsystems, and indeed the test system required to execute them, will follow similar lines to
that described and use the same commands.

Mor histicate a Progression Command

The status progression commands as described here are very simple and operate purely on one
module at a time, although they do require checks on the status of other modules. It is envisaged
that more sophisticated versions of the INTRODUCE and ENROL commands could be provided. These
would be especially useful for large systems particularly during the later stages of integration and during

maintenance.
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In the above example, the requirement to re-apply the INTRODUCE and ENROL commands, as more
details of the design are added, has been identified. Doing this manually is possible but tedious and error
prone. If one of the commands was omitted in error, this could result in a system being built which failed
to incorporate some recent module amendments. The possibility of this happening increases as the
size of the system being developed increases. Therefore, more sophisticated forms of the ENROL and
INTRODUCE commands are defined which automatically seek out any later versions of modules and
re-apply the appropriate command. Hence the extended form of the ENROL command, possibly invoked
as: ENROL subsys_4 FULLY, would be interpreted to mean re-enrol subsys_4 and any modules
which it directly or indirectly depends upon. Thus this leads to a recursive application of the ENROL
command.

Similarly the extended form of the INTRODUCE command, possibly invoked as INTRODUCE FULLY,
would result in recursive application of the INTRODUCE command.

A more far-reaching extension of the ENROL operation would allow re-Introductions as well as
re-enrolment. This interpretation may be of value when an interface change is made either late in the
development of a system or during the maintenance stage. It provides a simple way of bringing all the
components of a system to consistency with the latest issue of the design.

3.1 Status Progression 3-7 Mascot Version 3.1



Status Conditions

Operation |Status to be] Module
hiev Class reconditl

Register Registered All Name part defined and legal

No other module with same name

Introduce Partially All Registered preconditions satisfied
introduced

Specification dependencies Registered

Specificatiopn part defined and legal

Fully All Partially Introduced preconditions
Introduced satisfied

Specification dependencies
Fully Introduced

Enrol Partially Composite | Partially Introduced preconditions
Enrolled Templates | satisfied

Implementation dependencies Introduced

Implementation part defined and legal

Fully Simple Fully Introduced preconditions satisfied
Enrolled Template Implementation dependencies Fully Introduced

Implementation part defined and legal

Composite | Partially Enrolled preconditions
Templates | satisfied

Implementation dependencies Fully
Enrolled
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3.2 SYSTEM BUILDING

Introduction

Building is the term used in the Mascot definition to describe the stage of develdpment which, starting |
from a fully enrolled system template, produces a representation of the network in an executable
form. The process which achieves this must take into consideration the target configuration for which the
application is to be built: the number and type of processors to be employed, the accessibility of memory
from each processor and any special requirements for interfacing with devices. In view of this strong
target dependence and the wide variation in the rangetafilding facilities required for different kinds of
application, the Mascot definition does not legislate on the precise form which the facilities should take or
on the linguistic support which a Mascot development environment should provide in this area. Rather, in
this section, an attempt is made to discuss all the factors which need to be considered and to recommend
and justify some preferred modes of working practice.

Buildin rateqi

The ultimate objective of building is the construction of a complete operational system. However to
facilitate development, particularly during the phase when individual modules are being tested, it is
desirable to be able to build test systems which incorporate only part of the final system. This can be
achieved by means of a system template, specially created for the purpose, which encapsulates the
components to be tested. By associating such test systems with the test procedures and results, the
development process can be documented reliably and specific test exercises can be repeated should

the need arise.

In general, the object of a test will be a subsidiary network extracted from the complete system design
and pbssessing, in consequence, components with unconnected ports and windows. A test
system mu-st therefore contain additional components to supply these missing connections. Thus,
the test network may be completed by means of a dedicated test harness capable of supplying any
required input and of recording and possibly checking any generated output. Alternatively, input and
output could be achieved by direct connection to external devices such as a set of files on a host
computer. In this latter case the additiordmponents would consist of servers.

While it may be acceptable for a small test system to be re-built from scratch each time amendments are
made to the modules from which it is derived, this is likely to be a rather laborious and time consuming
procedure for the large systems typical of Mascot applications and even for the bigger test systems
employed during the integration phase of development. The time taken to build a system image may
be reduced if a number of the component subsystems have previously been separately built. The
context software for a particular computer is an obvious candidate for being made available as a partially
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built image. However, this approach is more suited to some target architectures than others. It is, for
- example, particularly useful when bullding for a multi-processor target whére the constraints are
uniform. But where a memory mapping scheme is employed in the target, the builder requires an overall
view of the system in order to achieve optimal results and so building speed, in this case, might have

to be paid for in reduced efficiency.

During module and integration testing, the same system may be built and re-built many times. A
sophisticated builder might detect that, between one build operation and the next, only a few
components had changed and so could save time by re-building as little of the system as possible. A
more limited builder might achieve the same result with a little assistance from the user.

Linguisti rt for Buildin

A simple constructional task would be that of building a system for a target consisting of a single
processor, of a pre-determined type, which has access to sufficient memory, all of a uniform type, and
making use of a predefined context. This could be performed by a dedicated builder supplied with no
more data than the identity of the system template and the values of any template constants. This
information could readily be accommodated as a set of parameters to a BUILD operation:

BUILD total_sys, 100, 50

It would be preferable however, even in so simple a case, for the data to be presented in a BUILD
module to which reference could be made in initiating a BUILD operation:

BUILD build_mod

This approach allows the image to be brought under configuration control so that its regeneration can be
guaranteed. The range of information held in the BUILD module can be extended for use by more
powerful builders. Where a choice of contexts and processor types exist, for example, the selections
could be specified in the module.

To cater for more complex targets more build-time information must be supplied and a decision must be
made on whether to hold it all in the one data module or to introduce others. Suppose, for example, that
the bullder supports target configurations with disjoint memory blocks or non-homogeneous memory
with differing speeds or modes of access. The size of each memory block, its address range and its
properties must be made available to the builder together with instructions as to where the system
components are to be located among the various memory blocks. Placing all this information in a single
BUILD module would necessitate its replication for each system built for the same target
configuration and so it might be preferable to use a separate (TARGET) module to hold details of the
target.
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Separation of the build-time data in this particular way would still prove inflexible where there was a
requirement to build images of the same system for several target configurations. A possible solution
WOuld be to define the target in software terms, such as computers and memory regions, and to define
the location constraints in terms of these regions. The target could then be defined in hardware terms,
such as processors and memory blocks, and a correspondence given between the two views. For
maximum flexibility, this information could be divided between four separate modules each belonging to

a distinct class:

BUILD
TARGET
HARDWARE
SOFTWARE

The location contraints could then be spread among any number of LOCATOR modules.

It may be that devices in the target configuration are memory mapped. In such a situation, communication
with the devices may be through pre-determined normal or special memory locations. If the necessary
device access information is not embedded in the applications software then it must be supplied via the
builder, perhaps by the use of template constants.

Further build-time data is required to support target configurations consisting of multiple processors with
shared memory. The builder needs to know which memory blocks are private to a processor and which
can be or which are to be shared by more than one processor. it may also need an indication of which
components are to be allocated to each processor. Where the target processors are memory mapped,
the builder may require guidance as to how each logical memory region is mapped into a physical
memory block.

In its full generality then, the BUILD module might supply information to the builder as indicated in the
diagram below:
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3.3 DEVELOPMENT CONFIGURATIONS

Introduction

In discussing, in this section, a range of hardware configurations appropriate to the development of
Mascot software, a distinction is made between a host system, on which the software development takes
place, and the farget system, on which the operational software is to be executed. The different
host-target combinations which are encountered in practice vary in the degree of similarity which exists

between the two systems.

At one extreme, the host and target may be the same system or the host may combine a processor which
is identical to that of the target with a subset of the target's peripherals. Alternatively, because
development involves requirements not relevant to operation and because the target peripherals are
frequently of an exotic nature, the host peripherals may be different to those of the target while the

processors are the same.

In other arrangements, the processor in the host system may possess a similar instruction set and number
representation to those of the target but may differ in other respects such as the manner in which
input/output is performed. Sometimes the host and target have a common number representation while
their instruction sets differ. Finally, development may take place on a host system whose processor has
nothing in common with that of the target at all.

Commissioning Configurations

The hardware configurations mentioned above may be employed to support formal or informal execution
of the software for the purpose of quality assurance and for the diagnosis and correction of errors. Where
the host and target processors are identical, the validity of testing depends only on considerations,
including those discussed below, which relate to the run-time 'environment. The four most commonly
encountered configurations in which host and target systems differ are examined here in order to
highlight their relative advantages and disadvantages.

Native Code Execution on the Host
In the first configuration, tests may be executed on the host in its own native code. Results may be
obtained rapidly in advance of the target system becoming available for use. Since, in general, the host
can handle much larger programs than the target, it is possible to test the complete system in the
presence of dedicated test software such as simulators and scenario generators. Good diagnostic
facilities can be provided and all the host peripherals can be made accessible to the tests. In many host
systems the passage of system time can be controlled though usually in a relatively crude manner.
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Where the host processor differs from that of the target, especially in respect of wordlength, the range
and accuracy of the arithmetic results obtained in tests may not represent a true indication of the
performance to be expected on the target. Other aspects of the system may not be satisfactorily
exercised. For example if, as is common, only co-operative scheduling is available on the host the testing
of mutual exclusion and cross-stimulation within IDAs is not wholly adequate. Some parts of the code,
such as that involved in handling interrupts, usually have to be omitted from testing altogether.

It is important that host and target should be compatible in respect of high level program statements which
must, of course, be recompiled for execution on the target when testing on the host has been
completed.

Emulation on the Host

In this second approach, source code compiled for the target is interpretively executed on the host.
Since there is only one compiler, ie that for the target, there is no question of incompatibility between
host and target. The results will be accurate and reliable provided the emulation is accurate. This method
possesses even better diagnostic capabilities and access to all host peripherals than that discussed
above. In particular it provides an opportunity to increase the level of run-time checking and validation.
Checks can be performed, for example, for arithmetic overflow, for the use of uninitialised memory
locations and for the corruption of code.

The principal disadvantage is that execution time, from 10 to 1000 times longer than on the target, limits
the size of system that can be tested in this way and frequently excludes all real-time aspects from the
tests. In order to achieve as high an execution speed as possible, it may be useful to exclude the Mascot
kernel from the emulation. The simulation of interrupts is difficult. Control of the passage of system time is
difficult but to expend effort in achieving it will usually be cost effective.

Execution under Host Contro|

A third, commonly employed, configuration involves the execution of tests on the target under the
control of, and monitored by, the host via a direct link. The validity of the results may be adversely affected
by timing distortion arising from the need to handle communications with the host. A real Mascot kernel
can be used although this may contain facilities, such as monitoring, which are not to be included in the
final operational software. Provided that the target system is equipped with a full set of operational
peripherals, all of the software can be tested. Only a target compiler is required and there is no need for
source code compatibility with the host. Potentially the diagnostic capabilities are as good as in the
previously discussed arrangements

The disadvantages are first that, while access to all the host peripherals can be provided, it is frequently of
limited bandwidth. Second, it is not normally possible to control the passage of system time so as to
compensate for the additional overheads attributable to the presence of test components and to the link
to the host.
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-alone Executi r
in the fourth, and final, configuration discussed here tests are carried out on a free standing target
utilising only the peripherals connected to that system. Such-an approach has none of the advantages of
the host-linked arrangement described above but interference from the link is eliminated. It is unlikely that
the target system provides a suitable environment for testing purposes and so tests will be laborious and
time consuming to set up and carry out. The diagnostic capabilities are likely to be very limited and the
available peripherals may consist of no more than a control panel or a keyboard terminal.

Both methods in which testing is performed on the target encounter further complications when the

target consists of multi-processors which have some shared memory. In this case, the target system may

not, during some phases of testing, be fully equipped with processors. -

The Software Environment for Test Execution on the Host

it is normally desirable, in most development environments, to perform at least some of the testing on a
host system. Among the many reasons for this is lack of availability of the target system during the testing
phase of a project. This may simply arise from the problem of inaccessibility which is due to the target's
location at a remote site and is likely to be exacerbated during the maintenance phase after the system
has been installed. Frequently however, the software development team obtains access to -the target
system only at a very late stage of production and the system may even then not include all the
specialised peripherals. Thus testing on a host permits hardware and software development to proceed

in parallel.

As was made clear above, in the discussion of test configurations, the target system is likely to contain
few of the diagnostic tools which are commonly available on a host. Furthermore, the target may not have
the peripherals necessary to support diagnostic output. Shortage of memory may also be a problem. It will
rarely be possible to find storage space for test software since all the memory which can physically be
accommodated will in practice be needed for the application. If it were not, the space would be used for

other equipment.

A further disadvantage of testing on the target arises from the length of time taken to transfer code from
the host. Transfer may be via a relatively slow link or, indeed, may be performed through the use of a
magnetic medium such as a cassette. A PROM-based target represents an extreme manifestation of this
problem involving as it does the transfer of executable code into PROMs. DifficUIty may also be
encountered in transferring test data and results to and from the target. Even a direct link may be
inconveniently slow for this purpose and may result in excessive distortion of the real-time aspects of

system performance.

The degree of compatibility between host and target machines is the most significant factor affecting the
usefulness of testing on the host. Unless the two processors are identical, the degree of compatibility is
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determined principally by the choice of language and compilers and by the level of support for
compatibility provided by the development environment. Where the code of at least the majority of the
application templates can be executed on either the host or the target, with similar results, then host
testing is likely to be useful. It is quite feasible in this case to test almost all the software, up to and
including the full system, on the host. Those small sections of program which cannot be dealt with in this

way can be tested after transfer to the target and before proceeding to the integration tests. Some
iteration involving a return to unit testing on the host may be implied by the detection of errors during
integration. '

Where host and target are incompatible for all, or the majority, of the application iemplates the
advantages of host testing are lost since the source code must be edited before being transferred to the
target. This presents a serious maintenance problem and, in addition, necessitates the tests being
repeated on the target system.
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4.1 CONTEXT SOFTWARE

In any software system it is normally possible to distinguish between functions which are part of a
particular application and those which are more properly to be regarded as part of the environment in
which the software operates. In Mascot, this division is reflected by the distinction between application
and context software. A Mascot'dévelopment environment may be expected to offer a collection of
supporting services from which software designers can select the set of services needed for a particular
application. These may include, for example, the conventional Mascot primitive operations described in
Section 4.2. The context may aiso include application specific items such as procedures for controlling
peripheral devices. The general principle is that a set of procedures, constants and data-types provided
in the context for a particular application is implicitly available. The set may be subdivided so as to restrict
the use of defined subsets of the context facilities to specific classes of design entity such as

servers, IDAs or activities.

The interfaces which the context offers to the application are described in a form which is consistent
with the Mascot modularity scheme, The term context interface is used to embrace all those
interfaces which are implicitly available to the application software. The precise form in which it is
expressed is implementation dependent but should be generally compatible with the style of the
application software modules. lts components, however expressed, are a mixture of those associated
with the library interfaces, access interfaces and definitions described elsewhere.

In a simple case, the context interface might be expressed as a combination of a library interface
and a definition which together specify procedures to be called and define data-types for use as
parameters. The procedure specifications might include control queue primitives together with a
peripheral library:

DEFINITION cq_def;

TYPE
controlg = ........ ;
END.

CONTEXT INTERFACE con_procs;
WITH cq_def;

{ Control queue primitives }
PROCEDURE join( VAR q : controlq );
PROCEDURE leave( VAR q : controlq );

{ Peripheral library }
PROCEDURE switch_on_device;
PROCEDURE switch_off_device;
END.
Alternatively, the context interface can be expressed in a composite form, comprising a number of

interfaces. The above example could thus be expressed:

4.1 Context Software 4-1 Mascot Version 3.1



LIBRARY INTERFACE cq_prims;
WITH cq_def;
PROCEDURE join( VAR q : controlq );
PROCEDURE leave( VAR q : controlq );
END.

The peripheral library specification could then be placed in a conventional form of library Interface:

LIBRARY INTERFACE periph_lib;
PROCEDURE switch_on_device;
PROCEDURE switch_off_device;

END.
and the context interface itself expressed in the composite form:

CONTEXT INTERFACE context;
COMPRISES cq prims, periph_lib;
END. '

An access interface might feature as a component of a context interface in order to give access
to an IDA or server in the support software. Special, implementation dependent calling mechanisms
‘may also be provided by the context through additional interface types and-qualifiers.

The Mascot definition lays down no firm rules for the expression of context Interfaces. The above are
merely examples of some acceptable forms within the general spirit of the definition. However, procedure
‘names in the context must be unique and any implementation ‘must define the context facilities
provided and the means for context extension.
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4.2 Synchronisation of Activities

The Use of Implementation Language Concurrency Facilities

Implementations of Mascot development environments prior to the advent of Mascot 3 have invariably
supported programming languages, such as Coral 66, which make no provision for concurrency. With the
planned extensive use of languages such as Ada, which include concurrency as a feature, this situation
may be expected to change. Consequently the Mascot facilities described in this section, which cater for
the necessary synchronisation of separate parallel threads of execution, are to be regarded as
constituting a model. This model may be implemented directly in a conventional programming language,
as in the past, or mapped onto equivalent features in a concurrent language.

In any implementation of a Mascot development environment for which the application language provides
direct support for concurrency, the implementor should consider mapping activities onto the
appropriate language feature. Since the Mascot definition demands that the total network of activities,
IDAs and servers should be invariant at run-time and, in particular, forbids the dynamic creation of
activities, language features which allow the creation of additional threads of execution should be made
unavailable to the application programmer. The implementor must document how the language facilities
have been used to support the Mascot model of concurrency and which facilities have been suppressed.

Any language which directly supports concurrency will probably also provide suitable mechanisms to
allow safe and sustained communication between the separate threads of execution. The implementor
should consider the language facilities in this area, in the light of the Mascot model, to determine whether
or not they are adequate to support inter-activity communication through an IDA or server as
prescribed by the Mascot definition. ’

If the implementor of a development environment elects to utilise the language features for concurrency
and inter-activity communication, the mapping of the Mascot activities, IDAs and servers onto these
language facilities must be described. The mechanisms whereby the IDA or server designer may
ensure the necessary mutual exclusion and cross-stimulation between separate processing threads must
also be documented. Furthermore the use of these mechanisms should be restricted to the access
procedures of IDAs and servers.

The Mascot Synchronisation Model

Synchronisation in Mascot covers the mutual exclusion of competing processes and the
cross-stimulation of co-operating processes. Explicit synchronisation is achieved by four primitives which
operate on special objects called control queues. Since synchronisation takes place only in respect of
access to IDAs and servers, each control queue is conceptually part of the structure of an IDA ora
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server. Synchronisation primitive operations are only available within an access procedure. The
control queue is defined as an object on which the primitives have the effects defined below, and
which may be given a priority specification to influence the scheduling algorithms.

Mutual exclusion of competing activities is effected by the calls of the paired primitives JOIN and
LEAVE, each of which takes a control queue as its single parameter. Between the times when it
performs a JOIN oberation and the subsequent LEAVE operation, an activity is said to be in the queue .
A control queue is said to be empty if there is no activity in that queue.

JOIN and LEAVE form brackets around critical sections of code in which only one of the competing
actlvities in the queue is allowed to proceed. This activity is said to be at the head of the queue and
is therefore its owner. The use of the primitive operation LEAVE by an activity which is not the owner of
the specified queue constitutes a run-time error as does the performance of a JOIN operation by an
activity which is already the owner of the ‘nominated queue. An implementation of a Mascot
development environment defines the action that results. It is recommended that the occurrence of an
error be recorded and that the activity be prevented from further execution.

The algorithm that determines how an activity reaches the head of the queue is not defined by the

Definition but first-in-first-out is normal practice. The algorithm must be documented.

A stimulus/response mechanism between activities is provided by the primitives STIM and WAIT, each
of which takes a control queue as its single parameter. An alternative form of WAIT provfding a time-out
facility is WAITFOR which takes two parameters, a control queue and a time delay. The STIM operation
may be performed at any time by an activity, but the WAIT and WAITFOR operations may only be
performed by the activity which is the owner of the named queue.

An activity which performs a WAIT operation on a control queue is prevented from continuing its
processing unless, or until, a corresponding STIM has been applied to the same control queue.

A WAIT operation has one of two possible effects:

(@) If a STIM is being held (see below), that STIM is consumed and the activity is allowed to
continue.

(b) : If no STIM is being held, the activity is prevented from continuing until the next STIM is
applied.
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A STIM operation has one of three effects:

(@ If there is an actlvity WAITing, the STIM is used immediately to make the WAITing
activity eligible for scheduling.

(b) If there is no activity WAITing, and no unused STIM for the queue is being held, then
the STIM is held for use by the next WAIT operation on the queue.

©) If there is no activity WAITing and an unused STIM for the queue is being held, then the
further STIM has no effect.

The use of the WAIT primitive by an activity which is not the owner of the specified queue constitutes a
run-time error. An implementation of a Mascot development environment defines the action that results. It
is recommended that the occurrence of the error be recorded and that the activity be prevented from
further execution.

The WAITFOR operation is similar to WAIT except that the activity which performs it becomes eligible for
scheduling on expiry of the time delay, given as a parameter, if no STIM has been applied to the queue
in the mean time. The reason for the activity being released from WAITing may be indicated through a

function value return mechanism or output parameter.
rship -

An access procedure normally contains paired JOIN and LEAVE instructions. This is known as a
closed access protocol and it forces correct usage. Alternatively an open protocol may be used in which
the JOIN and LEAVE instructions are contained in different access procedures. Such an approach
allows more discretion to the apélication program. This can lead to greater simplicity and an improvement
in efficiency.

The purpose of the CHECK primitive is to allow an access procedure which does not contain a
JOIN-LEAVE pair to check that the calling activity is the owner of the nominated queue. The primitive
takes a control queue as its single parameter. If the activity which issues the CHECK instruction is the
owner of the specified control queue, the CHECK primitive returns control to the activity with no
further action. The use of the CHECK primitive by an activity which is not the owner of the specified
queue constitutes a run-time error. An implementation of a Mascot development environment defines
the action that results. It is recommended that the occurrence of the error be recorded and that the
activity be prevented from further execution.
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4.3 DEVICE HANDLING

introduction

The mechanisms by which peripheral devices are controlled vary significantly from computer to computer.
On some machines the contents of device registers are manipulated through normal operations on
specific memory locations. Other machines provide special instructions for device control. These
instructions may be part of the normal set available to all programs or may be privileged instructions
requiring a special mode of compilation for their generation from a high level language. Thus, modules
which interact with peripherals may require special privileges or facilities not appropriate to other
modules.

In Mascot, as we have seen in an earlier section, the handling of peripherals is the domain of the server.
This is the only class of template allowed to contain code which directly manipulates peripheral control
registers or which utilises special facilities provided by the context for that purpose. All the necessary
facilities may therefore be made available automatically, to the modules which require them, during the
construction of a network.

One of the most important considerations, in connection with the interaction of a real-time systems with a
device, is whether the device must be polled in order to detect the completion of an operation, or
whether completion is signalled by an interrupt. It is the latter of these two options which is the more
common and which requires the specialised facilities described in this section.

interrupts

An interrupt is a signal, generated by a device, to inform the processor to which the device is attached
that a peripheral operation has been completed. Its effect, subject to consideration of relative priorities, is
to cause the processor, on completing the execution of its current instruction, to abandon temporarily the
current process and to commence execution of instructions stored at a predefined address. This new set
of instructions is called an interrupt handler. Depending on the computer architecture, a handler may
be unique to a particular interrupt, unique to the priority level of the interrupt, common to all interrupts or
common to a defined sub-set of interrupts.

When control is transferred to a handler, the contents of at least some of the registers being used by
the interrupted process are saved. This is known as context switching and the amount of information
automatically saved, for subsequent restoration when the the process is resumed, also varies
considerably with the architecture of the machine. It may be as little as the value of the program counter or
the context switch may be so complete as to provide the handler with its own register set and, where
appropriate, virtual memory map.
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The precise nature of an interrupt handler is thus determined by the number of devices with which it is
concerned and the degree of automatic context switching which takes place when one of these
interrupts occurs. In order to minimise the impact of interrupt handling on the normal operation of the
system, it is customary to confine the operations performed in the handler to a minimum. Thus for a
simple device the next operation might be initiated from within the handler, while a device which
requires a large amount of data to be transferred to or from it, between operations, might be restarted

from elsewhere.

Interrupt Handling in Masc

Given the range of computer architectures to be catered for and the need for efficiency in real-time
systems, it is not possible to define a single mechanism for interrupt handling which is completely
transportable. Mascot therefore provides a set of facilities which allow suitable solutions to be developed

1o meet a range of circumstances. These facilities are:

(@) (HANDLER) the ability to declare handlers in server tempates,

(b) (CONNECT) the ability to associate a handler with a particular
interrupt,

() (DISCONNECT) the ability to disassociate a handler from an interrupt,

(d) (ENDHANDLER) the ability to signal completion of processing of the current
' interrupt and

(e) (STIMINT) the ability to STIM a control queue from a handler.

Here (a) is a keyword in the design representation language, used in place of PROCEDURE, and the
other four facilities are kernel primitives. CONNECT takes two parameters:

CONNECT((handler, interrupt_no)

to identify the interrupt handler and the interrupt with which it is to be associated, respectively.
DISCONNECT is applied to the interrupt identification:

DISCONNECT(interrupt_no)

STIMINT, which is applied to a control queue, differs from STIM (see Section 4.2) only in guaranteeing
that it will not result in an immediate reschedule. The documentation of the run-time system in a Mascot
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development environment must describe the means by which the above facilities are made available.

Ideally it should be possible to design an interrupt handler for minimum execution time and store.
useage without needing to take any account of the activity which has been interrupted. However, this
can only be achieved where the hardware provides automatic vectoring to a handler, uniquely
associated with the interrupt being serviced, and full automatic context switching. Most hardware used for
real-time systems is not as sophisticated as this.

In practice, it may be necessary to provide some support in the Mascot context even for interrupts which
are CONNECTed to handlers located in the servers of the application software. The following table,
which differentiates between different degrees of hardware vectoring to a particular handler and
different degrees of completeness in automatic register saving and restoring, indicates the range of

options.

v rin Reqister ' Data Transfer

Hardware Hardware Handler in Server
Hardware Hardware Access Mechanism in Server
Hardware Server Handler in Server
Hardware Server Access Mechanism in Server
Hardware Context Handler in Context
Hardware Context Handler in Server
Hardware Context Access Mechanism in Server
Context Context Handler in Server
Context Context Access Mechanism in Server
Context Server Handler in Server
Context Server Access Mechanism in Server
Context Context Handler in Context

In the above table 'Server' is used to denote a server in the application software. The term 'Context'
should be taken to include the possibility of a server in the context.

Design Considerations

There are a number of considerations, some of them imposed by the computer architecture, which
influence the design of interrupt handlers and their execution. Three of the most significant issues are

discussed below.
Nesting of Interrupts

Devices may be classified on a scale of priorities such that a handler, in course of execution, may itself
be interrupted by a device possessing a higher priority. When the higher priority interrupt has been
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handled, control returns to the handler of the lower priority interrupt before eventually being returned to
the originally interrupted activity. Several levels of priority may be catered for in this way. In such
circumstances it is acceptable for the individual handlers to be somewhat more complex since their
execution does not lock out higher priority interrupts. Control is still taken away from the software
scheduler, however, and more stack space is required to provide local storage for the handlers than in

the non-nested case.

Stack Management

Local working space for a handler may be provided from the stack of the interrupted activity. This
avoids the necessity of switching stacks when control passes to or from a handler. However, it also
means that every activity stack must be large enough to accommodate the maximum possible depth of
interrupt nesting if this is employed. Alternatively, a separate stack may be allocated either to each
handler or to each level of interrupt, again allowing for interrupts to be nested, or a single stack can be
shared by all handlers if there is no nesting.

Pre-emption

After an interrupt has been handled (ENDHANDLER), control may be returned to the interrupted
actlvity or, alternatively, the interrupted activity may be transferred to the current lists and control
passed to the Mascot scheduler (see Section 4.4).The latter strategy results in the better system
response at the possible cost of a slight reduction in throughput. If it is adopted, a further question arises
as to whether the interrupted activity should be added to the head or the tail of the current list. If it is
placed at the tail, this results in a 'round-robin' scheduling operation within a priority level (there will
normally be a current list for each level). Placing it at the head of the list may be regarded as more 'fair’
since then each actlvity is allowed to complete its slice of execution before any other activity of the
same priority is scheduled. Notice that this is not the same as the co-operative mode of scheduling as
higher priority activities are allowed to run at any point.

4.3 Device Handling 4-9 Mascot Version 3.1



4.4 SCHEDULING AND PRIORITIES

Introduction

In any concurrent system where the number of parallel processes exceeds the number of processors, a
scheduling function is required to allocate processing time amongst the competing processes. Each
processor, periodically, must cease the execution of one process and commence execution of another.
Associated with these re-schedule points there are two decisions which have to be made. The first is to
determine when the current slice of execution on a given processor is to end and the second is to select
which process is to be allocated the next slice. It is normal practice to assignh a priority level to each
process to assist in determining, for the purposes of the second of these decisions, which of a number of
waiting processes is the most urgent. The choice of scheduling strategy is usually governed by the
desire to optimise the response to external events for a given amount of processing power.

In these respects Mascot systems are the same as any other concurrent system. The Mascot definition
does not prescribe the use of any particular scheduling strategy though it does require that the selected
strategy be documented for the information of users of the development environment. The choice of
scheduling algorithm is deliberately left to the implementor in order to allow the optimum algorithm for the
application to be adopted. The more important of the possible scheduling and priority schemes are
discussed below in Mascot terms.

Co-Operative and Pre-Emptive Scheduling

One of the major factors affecting the responsiveness of a concurrent system is the basic mode of
scheduling adopted: co-operative or pre-emptive. Under a co-operative regime reponsibility for the first of
the two scheduling decisions, slice termination, is vested in the application rather than in the Mascot
kernel. An activity continues its slice of execution until it volunteers to give up the processor by
invoking one of the kernel primitives. This may be one of the scheduling primitives such as JOIN (on a
JOINed control queue) or WAIT/WAITFOR {(on an unSTIMmed control queue) or a re-schedule may
be invited more directly by means of the SUSPEND primitive.

Provision of SUSPEND is mandatory in a development environment which supports co-operative
scheduling. Its use guarantees re-scheduling provided that there is at least one activity, of at least equal
priority, waiting to run. If there are no such schedulable activities, the activity issuing the SUSPEND is
re-entered for another slice of execution.

Development environments which support the timing group (see Appendix E) of primitives provide

another means of directly surrendering the use of a processor. This is the DELAY primitive which takes a
time period, in implementation defined units, as its argument. An activity invoking DELAY is not
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considered for re-scheduling until the nominated period has elapsed irrespective of whether there are
other schedulable activities or not. The other primitive in the timing group is TIMENOW which is a

function returning current system time The units and range of system time are implementation defined..

There are two other synchronising primitives whose use may, even under co-operative scheduling, result
in a re-schedule. These are are LEAVE and STIM when they have the effect of releasing an activity
which has previously been held up. The decision on whether to re-schedule in these circumstances is
implementation defined.

Under a co-operative regime it is guaranteed that, immediately after an interrupt has been handled, a
reschedule will not take place. Control is always returned to the interrupted activity. This mode of
working tends to minimise the time spent in performing context switches; an important consideration on
hardware in which the context switch is inefficient. It also leads to simplification of the kernel code and, in
the application, exclusive use of a resource can be guaranteed without recourse to special synchronising
primitives such as JOIN and LEAVE. There are, however, complicating effects. Contrary to the normal
Mascot philosoghy, the activity programmer must take account of the execution time of any long
sequences of code and add calls on SUSPEND at strategic points in order to avoid taking excessively
long slices. This is generally unsatisfactory and, indeed, the overheads imposed by frequent calls on
SUSPEND may cancel the original gains. In the limit, a faulty activity containing a closed loop would
bring the remainder of the system to a halt unless the kernel clock handler checks for processor hogging
and takes action to TERMINATE the offending activity.

Co-operative working effectively limits the ability of the scheduler to optimise the system's response. The
alternative is pre-emptive scheduling under which the kernel is free to re-schedule following an interrupt.
The arrival of an interrupt is an event which is likely to alter the state of the system. An activity which has
been awaiting this interrupt may well have become the most urgent. Under pre-emptive scheduling, it can
be entered for execution without delay. An activity which is hogging a processor is less damaging than
under a co-operative regime though it may still be detected and TERMINATEd. The opportunity of

re-scheduling after a clock interrupt makes time slicing possible by setting a maximum slice time.

Priority Schemes

The simplest priority scheme, if it can properly be so called, is one in which all activities are given the
same priority. A single current list, containing all the currently schedulable activities, is maintained on a
first-in first-out basis. The scheduler always selects the activity which has been waiting longest, that is,
the activity at the head of the list. This scheme is the fastest possible in execution but provides little
scope for improving the response of the system to external events. Indeed this can only be achieved by
the crude mechanism of adding calls on SUSPEND in order to increase the number of re-schedule
points. As the length of the current list cannot be determined by an activity, such a strategy is not very
effective and may, in addition, prove wasteful of processor resources if carried to excess.
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In the next priority scheme to be considered, several priority levels are employed to which all activities
are allocated, once for all, on first being executed. A first-in first-out list is maintained for each priority level
and these are scanned by the scheduler in priority order to select the activity at the head of the first
occupied list. The choice thus falls on the most urgent task which has been waiting the longest.
Compared with the single priority approach, this strategy resuits in greater flexibilty at the expense of
greater complexity and, in general, a heavier drain on processor time. It possesses the advantage that the
response to external events can be tailored by changing the relative priority levels of activities without
altering the coding of any templates. The response problem is not, however, totally solved since no
matter how high its priority level an activity may be held up in the pending list of a control queue
behind one of lower priority.

Finally, in an attempt to overcome this problem of the collision of two activities, of different priorities,
competing for ownership of a control queue, multi-level priority schemes may be extended to
encompass dynamically varing priorities. Cross-stimulation between co-operating activities is not
affected. Although, at first sight, variable priorities may seem to present an added complexity, they can be
easier to use in practice than fixed priorities. This is because a priority level can be associated with a
resource in such a way as to reflect its scarcity and this is often easier to assess than the average urgency
of executing a particular activity. Two of the many possible algorithms which may be used to determine
priorities in this type of scheme are discussed below.

A static priority may be associated with a control queue. Any activity which JOINs such a queue
assumes this priotity if it is higher than its own current priority. The activity's priority reverts to its previous
value when the control queue is released. This scheme is relatively easy to implement although the
restoration of priority on LEAVE can present some difficulties if multiple JOINs and LEAVEs are not
nested. It does, however, complicate the coding of the primitives and extend the execution time required
by JOIN and LEAVE. Also the lower priority activities execute at higher priority than is desirable when
there is no collision.

As a further refinement, control queue priority may itself be made variable. Initially minimum priority is
allocated and the priority of an activity JOINing the queue is not affected. However when an activity is
placed on the pending list, the priority of the control queue is set to the higher of its own and that of
the activity. Thus the priority of the queue owner is maintained as that of the highest priority activity in
the queue. The queue reverts to minimum priority when the pending list becomes empty. The result is
that activities are executed at their assigned priorities except when in collision with a higher priority
activity. This improvement is achieved at the cost of further complication :of the code and increased
execution time for JOIN and LEAVE.
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4.5 MULTI-PROCESSOR CONFIGURATIONS

Intr jon

Multi-processor target configurations for Mascot applications can be classified in a variety of ways on the
basis of their distinguishing characteristics. They may differ, for example, in respect of any of the

following:

(1) inter-Processor Relationships, There are three principal types of configuration.
One processor may be designated as master with all others acting as slaves. A symmetrical arrangement

of identical processing elements is possible in which the storage and input/output resources of the
system are all shared. Finally the processors may operate autonomously each with its own private set of

resources.

2) Memory Visibility. o The possibilities here are that the system's memory
resources may all be accessible to all processors, may be divided into units each of which is available for
use by one processor only or a combination of these arrangements may be employed with a mixture of

common and private storage.

(3) Number of Mascot Kernels, Multi-processor configurations may contain a single
copy of the Mascot kernel or many copies, for example one per processor.

4) Allocation of Activities. The selection of a processor for the task of
executing a Mascot activity may be performed on either a static or a dynamic basis.

It is also possible to envisage complex configurations employing, within the same system, more than one
of the possibilities listed under (1) and (4) above. Two classes of configuration using at least some shared
memory are discussed below; those configurations employing a single Mascot kernel being considered
first and then those with multiple kernels. Finally configurations with no shared memory are discussed

very briefly.
The following discussion is in terms of a control queue based implementation. Similar considerations

apply to any alternative run-time implementation strategy and, when considering such alternatives, the

arguments should be interpreted accordingly.

ingle Kernel nfiguration

In a master/slave arrangement, the single kernel has one processor, the master, dedicated to its

execution and so need not be re-entrant. The diagram below, which illustrates this configuration, shows
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two slave processors although there might be any number. The simplest example of this arrangement,
where there is just one slave processor, comes nearest to the familiar single processor case and, in

general, the software configuration is simple.

Shared
Memory

Master
Processor

Private | Slave lli’/lrivate
i emo

Memory Processor y

Mascot

Kernel

Private
Memory

As the kernel data are accessible to only one processor no protection is required. Equally, an activity
being executed on a slave processor has no direct access to kernel facilities and some software
mechanism must be provided to permit such activities to invoke primitive operations. Some common
memory is therefore essential.

In a symmetrical arrangement, the processing elements are identical and almost all memory and
input/output facilities must be common. A three processor, symmetrical configuration is illustrated in the
diagram below. The common store contains the system's single, multi-thread kernel. Separate copies of
read-only components may be held in local memory for efficient access while there is potential lockout on
shared kernel data and the application's control queues must be protected for concurrent access. Control
of the kernel passes from one processor to another, but only one can be 'master' at any one time. An
activity could be executed on different processors for different slices.

A major advantage of this type of configuration is that the workload of the processors is balanced. If one
processor fails, the system is able to continue with reduced performance or with support for some of its
functions withdrawn. Extra processors can be added with minimal rebuilding. This is an attractive
arrangement provided sufficient common memory can be made available without significant access time
penalty.
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Multiple Kernel Configuration

Providing each processor with its own copy of the Mascot kernel, in private memory, leads to the
autonomous arrangement (illustrated below) in which the processors act independently and the kernels
perform almost as in a single processor configuration. Each processor has private input/output devices
but some shared memory is desirable. Activities are assigned, permanently, to a particular processor at
build-time. Kernel data, such as for example pending lists, may need to be shared between kernels.

The key consideration which further distinguishes configurations of this type is the means by which
application or context software running on one processor can communicate with software running on
another processor. At the most fundamental level, communication between processors can be by polling
or can be interrupt driven. At a level more relevant to the present discusson the choice is between

communication effected directly by the application software or by the kernel acting on its behalf. The

extent of the common memory available is one important factor in determining the method.
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Communication between Mascot activities involves access procedures, control queues and
IDA data. With total support from the kernel, and given an adequate amount of shared memory,
communication arong activities assigned to different processors may take place in a wholly transparent
way. The sharing of IDA data presents no problem. The sharing of access procedures avoids
duplication of code at the cost of the additional access time associated with common memory. It is the
sharing of control queues which requires special support from the kernel.

When all primitives are available for application to shared control queues, the pending list of such a
queue may contain activities whose execution is administered by different kernels. Ownership of the
queue passes from one kernel to another. A kernel needs to be aware, therefore, when one of the
activities under its control has been STIMmed remotely (that is, by an activity running on another
processor}. This information can be supplied by polling or by interrupt.

The main advantage of such an arrangement is that a component of the application software can be
relocated for execution by a different processor without any changes being necessary to its source
template. On the other hand, the need to hold pending lists in shared memory and the continual
change of processor owning a shared control queue is not very desirable for efficient and fault-tolerant

operation.

An alternative approach is one in which inter-processor communication is restricted to the ability of an

access procedure, running on one processor, to apply a STIM to a control queue controlled by the
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kernel of another processor. The pending list for such a queue only contains activities which belong
to the local kernel so that ownership of the queue remains with a single kernel. Thus while IDA data are
shared, pending lists can be held in local memory. The operation of a remote STIM involves drawing the
attention of the local kernel to the fact that a WAITing activity, under its control, is now available for
scheduling or, if there is no activity WAITing on the queue and no previous STIM being held on that
queue, that there is now a STIM to be held for future use. All that need be communicated, in order to
convey this information, is the identity of the control queue involved. This can be done through
shared memory, allowing all the control queues to be held in local memory.

This method reduces the overheads of a multi-processor target to a minimum. However, communications
restrictions between processors prevent the ‘processor boundaries' from being transparent to the design
and/or implementation of the application. Thus, changes in the distribution of components may require

changes to the network.
mmunication Linked nfiguration
Finally it should be mentioned that multi-processor working may take a formin which there is no common

memory. Communication, in this case, is effected by a 'communications bearer’, such as a local area
network (LAN), independently of the kernel. Some support may, however, be offered by the context.
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4.6 EXECUTION CONTROL

Introduction

In this section the execution control facilities which are mandatory in a Mascot development environment
are presented first. There follows a discussion of the additional facilities which it is desirable should be
provided to support software commissioning. A set of commands is then described for the application of
control functions to individual activities, IDAs and servers. Finally further additional facilities are
described which support the hierarchic control of hetworks.

Mandatory Facilities

When a Mascot system has been built, each of its components is said to be in an unestablished
state. Before any constituent activity can be executed it is necessary that it, and the IDAs and servers
to which it is connected, be initialised. Part of the process of establishing an IDA or server is the
execution of any initialisation procedure contained. When a component has been successfully initialised,
it achieves the state value of established. An established activity may be started once all the IDAs
and servers to which it is connected have been established. Thus, the minimum necessary set of
execution control facilities consists of INITIALISE which establishes a component and START which sets
an established activity running. All Mascot development environments must, therefore, support these
two functions. The corresponding state change diagram is given below.

( Unestablished ]

INITIALISE

\ 4

( Established J

START

_ ) FATAL
Running ) S Crashed

An activity enters the crashed state after a fatal run-time error has been detected.
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The two mandatory functions may be provided either as part of the bulld-time facilities or as on-line,
run-time commands. The mechanism of the former approach is implementation defined. In the latter case,
unless the mechanism is automatic, the functions should be made available through an appropriately
named interface which may be defined either as part of the context or as an application module. Any
parameters will be expressed in a form which is consistent with the other language facilities. A
development environment may also provide a command interpreter which uses the interface.

Additional Non-Mandatory Facilities

While the mandatory facilities described above fulfil the minimum requirements for an operational Mascot
system, additional facilities are desirable during the software commissioning phase of a project. A
Mascot development environment may therefore provide four further functions, HALT, RESUME,
RESET and TERMINATE which should be made available as on-line, run-time facilities. Associated with
these functions is a further state: halted. The full state change diagram is shown below.

TERMINATE TERMINATE
/ : ' Unestablished ): h
§
INITIALISE
TERMINATE

L

Established ) RESET

START

RESUME TERMINATE

Running )

HALT
. b{ Crashed ]
( Halted )4_4 FATAL ERROR

The halted state is entered as a consequence of the application of the HALT function. While in the
halted state, an activity is not eligible for scheduling although a timeout may expire or the activity may
become the owner of a control queue. '
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The full Mascot definition allows activities, as well as IDAs and servers, to contain initialisation
procedures (see Appendix E). Termination procedures may also be included in all three of these
module classes and reset procedures may be included in IDAs and servers. Where such
procedures are catered for in a Mascot development system, their execution is initiated as part of the
INITIALISE, RESET and TERMINATE functions. Note that once INITIALISE has been applied it cannot be
re-applied without first returning to the unestablished state by means of TERMINATE. The reset
procedures of IDAs and servers may, however, be executed in the established state by means of
the RESET function.

The functions HALT, RESUME and TERMINATE are not normally considered to be suitable for use in an
operational system because of their drastic side effects. In the case of HALT, an activity is prevented
from further execution untii RESUMEGJ. If the activity is executing an access mechanism of an IDA or
server, this may prevent other activities combleting execution of access mechanisms in the same
IDA or server, and hence will potentially stop the remainder of the system. The operation of
TERMINATE also has drastic side effects in that an activity may be aborted while executing an access
maechanism. This, in general, can result in the contents of IDAs or servers becoming inconsistent.
While these side effects are tolerable during software commissioning, they are not normally tolerable
during system operation. If there is no alternative to the use of HALT/TERMINATE, it may be necessary to
introduce special facilities to prevent the side effects.

mmand Description

The INITIALISE Function

If we assume all its components to be in the unestablished state, a complete system may be
initialised in the following manner. First the INITIALISE function is applied to each IDA and server. If the
operations are successful, all these components will become established. It is then possible to
establish the activities by applying the INITIALISE function to each of them in turn. This ordering may
be relaxed where jt is guaranteed that the initialisation code within an activity does not interact with any
of the IDAs or servers to which it is connected.

The effect of applying the INITIALISATION function is to cause the initialisation procedure to be
executed. After successful application of the INITIALISATION function an activity, IDA or server is in
the established state.

A run-time system may place restrictions on the facilities available to an initialisation procedure provided
that these restrictions are documented. In particular, since the initialisation procedure may be invoked by
the run-time system, rather than by an activity, it may be inappropriate to use the control queue
primitives other than STIM or STIMINT.

£
'
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In a development environment which supports the INITIALISE function on-line there must be at least one
parameter, namely the activity, IDA or server identity whose preferred form is defined by the syntax

diagram below:

lement identi
system_name

subsystem_name

comp_ida_name

comp_server_name

\ y
y I ’

LP activity_name

N—-=>1 ida_name 4|
N——P server_name s

The system name may be omitted in circumstances where only one system is allowed so that there is

no possible ambiguity.

If the passing of a parameter to IDA or server initialisation procedures is supported, then means of
specifiying the value to be passed will be defined. Where a command interpreter is provided the

command will take the form shown below.

element_identity

value

The START Function

The START function can only be applied to an activity which is in the established state, and for which
all the connected IDAs and servers are also established. The effect of its successful application is to
put the activity into the running state and to inform the scheduler that the activity is eligible for
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scheduling from its initial entry point.

In a development environment which supports the START function on-line, the function accepts either
one or two parameters. These are the element identity and, if the development environment supports
priority change at start, a priority value. Where a command interpreter is provided, the command will take
the form shown below.

activity_identity

priority

Where a priority value is accepted it overrides the the priority specified during bullding. If dynamic
priority adjustment is supported, this value may itself subsequently be overridden. If the START function
cannot be applied to the activity then an error or warning message will be generated to specify the
identity of the activity and the reason for the failure. For example:

START: Error: Activity STABILISE.FILTER is crashed
START: Warning: Activity MMI. COMMANDINT already running

The criterion which determines the nature of the message is whether the desired effect has been
achieved or not. Thus attempting to START a running activity should generate a warning while
attempting to START a crashed activity should result in an error message.

The HALT Function
The HALT function may only be applied to an activity which is in the running state. Its effect is to put

the activity into a halted state and to inform the scheduler that the activity is not eligible for
scheduling. Where a command interpreter is provided the command takes the form:

activity_identity  j=p»

The function accepts a single parameter which is the identity of the activity to be halted. If the function
cannot be applied to an activity then a warning is generated to specify the activity identity and the
reason for the failure. For example:

HALT: Warning: Activity STABILISE.FILTER already halted

The RESUME Function

The RESUME function may only be applied to an activity which is in the halted state. Its effect is to put
the activity into the running state and to inform the scheduler that the activity is now eligible for
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scheduling. Where a command interpreter is provided the command takes the form:

activity_identity =9

The function accepts a single parameter which is the identity of the activity to be resumed. If the
RESUME function cannot be applied to the activity then an error or warning message will be generated
to specify the activity identity and the reason for the failure. For example:

RESUME: Error: Activity STABILISE.FILTER is crashed
RESUME: Warning: Activity MMI.LCOMMANDINT already running

The TERMINATE Function

The TERMINATE function can be applied to an activity which is in any state but unestablished. If IDA
or server termination procedures are supported then TERMINATE may be applied to an established
IDA or server provided that all connected activities are either unestablished or established.

The effect of the TERMINATE function applied to an activity is to put it into the unestablished state
and inform the scheduler that the activity is not eligible for scheduling. The activity is removed from all
internal queues and lists within the run-time executive and is removed from all control queues it has

joined.

Where a command interpreter is provided the command takes the form:

element_identity =P

The function accepts a single parameter which is the identity of the activity, IDA or server to be
terminated.

The effect of the TERMINATE function applied to an IDA or server is to execute the termination
procedure if such is supported by the development environment.

if the TERMINATE function cannot be applied to an activity, IDA or server then an error or warning
message will be generated to specify the identity and the reason for the failure. For example:
TERMINATE: Error: Channel STABILISE.MESSCHAN is connected to running
activities
TERMINATE: Warning: Activity STABILISE.SHIP is unestablished
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The RESET Function

The RESET function may only be applied to IDAs and servers which are in the established state. lis
effect is to cause the execution of the reset procedure and it leaves the element established. Where a
command interpreter is provided the command takes the form:

element_identity

value

The second parameter, if provided, is passed to the reset procedure. If the RESET function cannot be
applied to an IDA or server then an error message will be generated to specify the identity and the
reason for the failure. For example:

RESET: Error: IDA STABILISE.MESSCHAN is unestablished

The RESET function provides a means of re-initialising an IDA or server without needing to
TERMINATE the associated activities.

Hierarchic Control Facilities

The control faciiites described above operate on individual elements. Mascot development
environments may be extended to support hierarchic control of systems, subsystems and
composite IDAs and servers. These facilities operate by applying the functions already described,
recursively, to the elements and lower level networks within a specified network entity. Provision of
these features necessitates some extensions to the function descriptions and these are discussed

below.

A development environment is required to define the effect of an hierarchical control command failing to
operate. A much wider range of exceptional situations can occur such as, for example, the application of
the RESUME function to a network which contains a crashed activity. It is worth noting that individual
components of a network can be in different states making the concept of an overall network state

meaningless.
Hierarchic Identity

The preferred form of identity described above for activities, IDAs and servers, must be altered to
allow the omission of trailing fieldé. The function is then applied to the named structure. In order to limit
the possibilities for error, actions applying to the system as a whole should require the system name to
be specified. It could however still be omitted for subsystems and composite IDAs and servers.
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INITIALISE Applied Hierarchically
The hierarchic form of the INITIALISE function should first initialise all the IDAs and servers and then the
actlvities of the network being initialised. If the development environment is not capable of

determining the necessary order of initialisation according to the dependencies then it must provide a

mechanism for specifying this.

The development environment must define the method of handling parameters of initialisation

procedures.
START Applied Hierarchically

The development environment must define how the start priority value is to be interpreted in connection

with a system or subsystem.

HALT, RESUME and TERMINATE Applied Hierarchically

The order of application must be defined for the development environment. If these functions are
provided by means of an interface which is accessible to the application then the development
environment must ensure correct operation when a command is issued by an activity which is itself
within the scope of that command.

RESET Applied Herarchically

The hierarchic form of RESET is similar to the hierarchic form of INITIALISE except that it only affects IDAs

and servers. Again, the development environment must define the method of handling parameters.
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4.7 ERROR HANDLING

Intro ion

As stated in the Introduction to this Handbook, Mascot is aimed primarily at the development of real-time,
embedded software. Such applications usually demand a high degree of fault tolerance. In the face of a
wide range of run-time errors, systems are expected to continue operation, albeit in a degraded mode in
which some functions are no longer available or are available at reduced efficiency. Error detection and
handling are therefore of considerable importance in the operational software. During the development
stage, it is essential to have good facilities for error reporting and for some applications this facility must be
retained, possibly in a modified form, when the system becomes operational.

"The three functions: detection, handling and reporting involve actions at three levels of the system: the
hardware, the executive software (the Mascot kernel) and the application software.

Mascot Error Handling Requirements

Errors may be detected at all three levels and handled by either of the software levels. At the hardware
level, such events as arithmetic overflow or underflow and memory protection violation are detected and
normally signalled by means of an interrupt mechanism. Response to these signals may be provided by
either the executive or the application software. In the case of the application level, the coding which
checks the hardware status for errors may be programmed explicitly or may be included implicitly by the

compilation system.

Other errors are detected directly by the software. The executive detects such faults as the illegal use of
primitives and, under a co-operative scheduling regime, an excessive time slice. In the application
software, checks may be made explicitly for errors related to the logical significance of the program. An
example might be a mutually inconsistent set of data values. For a wide range of errors, the division
between those which must be catered for explicitly and those which are automatically trapped by code
embedded by the compiler, depends heavily on which implementation language is being used and its
provisions for data typing. Languages such as Pascal and Ada provide the programmer with a great deal
more assistance in these matters than, for example, Coral 66. Range checks on individual values fall into
this category.

Turning now to the question of handling the error once it has been detected, this, in fault tolerant
systems, is largely the responsibility of the application software. Consequently, error handling in the
executive, whether of error signals originating from the hardware or of directly detected errors, normally
consists of passing the information on to the application. In a few instances, however, the executive may

take the necessary action itself in a manner which is transparent to the application. In a paging
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implementation, a page fault could be dealt with in this way. In other cases, where the error is too serious
for recovery, the execution thread containing the error may be aborted and a message transmitted to the
error reporting system. Where an error has been detected by or communicated to the application
software, the mechanism whereby control is passed to the appropriate handling code is again very
language dependent with Ada, PL/1 and RTL/2 providing built-in facilities of varying degrees of
sophistication.

The Mascot definition calls, under various circumstances (see for example Section 4.2), for the
generation of error or warning messages. Concern with the foregoing is otherwise limited to the
possibility that analysis of the message may be used to trigger recovery action. A Mascot development
environment is required to provide error reporting facilities which may be used by both the executive and
application parts of the software in a uniform manner. These facilities are defined in terms of three
elements: an error notification interface, an error channel and a standard error reporting
network. Support for these elements is mandatory only during development and not in an operational
Mascot system.

Example Error Handling Facility

In this section error reporting facilities are described, for convenience, in the form of a particular
implementation. This implementation is not part of the standard. The documentation of a Mascot
development environment must specify the precise mechanisms which are supported and suitable

means of amending these facilities should be provided.

The diagram below illustrates how the standard facilities could be provided.

report_error mascot_error

mascot_ I
error_chan

error_chan text_

formatter

o
mess_pool

mascot_text_out

text_out cesssmnsmamaes
error_report_network

-
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The purpose of the network is to take messages, convert them to a suitable textual form and transmit
them to an appropriate device. Messages passed to the network are stored initially in a channel of type
mascot_error_chan . Input is via a window which provides the standard error notification
interface which, in our example, has been named report_error.

ACCESS INTERFACE report_error;
PROCEDURE error(message : text_string; ........ );
PROCEDURE fatal_error(message : text_string; .......... );
END.

Thus there are to be two access procedures error and fatal_error each of which place in the
channel a message which contains, in addition to the text itself (possibly represented by an error
number), an indication of the severity of the fault and the identity of the activity which originated the
message (or on whose behalf it was originated by the executive). Other, user generated, components
may also be included in the message. The procedures may take other parameters as defined in the
documentation of the development environment.

Procedure fatal_error has the additional effect of setting the state of the activity, in which the fault
has occurred, to crashed and informing the scheduler that the activity is no longer eligible for
scheduling. In the above example network these actions are represented by a port which propagates
information out of the error channel. If the activity is selected for monitoring, calling either access
procedure will result in the generation of an appropriate monitor record (see Section 4.8).

The error channel provides an output window of type mascot_error to give access to the
messages which have been generated by the system. The access interface takes the form;

ACCESS INTERFACE mascot_error;

WITH error_message;

PROCEDURE get_error(VAR message : error_message; ........ );
END.

where

DEFINITION error_message;
TYPE
severity = (error, fatal);
error_message= RECORD
text : text_string;
fault_type : severity;
act : act_id;
END
END.

Any additional parameters of access procedure get _error are defined for the Mascot
implementation.
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The development environment documentation will also define other characteristics of the error
channel including its behaviour when full, the queuing algorithms (eg priority levels of messages) and
the behaviour where no consumer activity is connected to the channel.

The standard error reporting network is required to contain facilities for taking messages from the
error channel, via the mascot_error window, converting them to textual form and transmitting them
to the output device via a window of type mascot_text_out . In our sample system these facilities are
illustrated as an activity text_formatter with access to a message pool and connected to a server
window of the appropriate type. Access interface mascot_text_out is of the form:

ACCESS INTERFACE mascot_text_out;
PROCEDURE text_put(mess : text_string);
END;

The format of the message displayed by the device is as follows:
activity identity : error type error message parameter(s)
where the preferred form of an activity identity is
subsystem name . activity name

The 'error type' takes its value from the severity component of the message (error/fatal) and any
additional parameters must be defined for the implementation.

It should be possible for the user to adapt the standard error reporting facilities by replacing the server
and/or replacing the processing element. In the latter case the application error handling might analyse
the error message and determine some network level recovery action. For example, receipt of a warning
message that a channel has reached 95% of capacity might trigger an action to filter incoming data more
heavily in the hardware and so reduce the number of events being processed.
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4.8 MONITORING

Introduction

The problems of testing and diagnosis in a real-time, multi-threaded system differ considerably from those
encountered during the corresponding phase in the development of a sequential program. In particular,
the standard interactive tools will usually be inappropriate in that it is neither possible nor desirable to
suspend execution of the system or to execute it in single step mode. The Mascot approach encourages
the planning of testing and diagnosis during the design phase of a project and a Mascot run-time system
should provide a range of facilities to assist in this aspect of the design.

The use of the set of facilities provided for this purpose is known as monitoring and the primary purpose is
to collect and display an ordered list of significant interactions within a system being commissioned.
These interactions may be between the elements of the system or between these elements and the
context. It is obviously desirable that the collection of this data should, as far as possible, be a function
of the run-time system rather than of the application software. The monitoring facility should provide,
therefore, a means of recording the interactions without the need to incorporate special code in the
application templates.

The basic concept employed in Mascot is that the collection of monitoring information should be
decoupled from the processing and display of that information. The recommended collection system
maintains the time ordering of the information gathered and is designed to have a minimal impact on the
normal execution of the components under investigation. The remaining facilities include provision for
selecting subsets of the possible information and the means of processing the gathered data and
displaying it in a readable form.

Monitoring is presented, in this section, in the form recommended for a run-time system which supports
the Mascot primitives (see Section 4.2). For a run-time system which does not support these primitives,
some form of monitoring facility should still be provided. In this latter case, the range of events to be

monitored is more difficult to define but is likely to be broadly similar.

Events to be Monitored

In a run-time system which supports the Mascot primitiVeé, the events which would be candidates for
monitoring include the following:
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JOIN DELAY
WAIT TIMENOW
WAITFOR Interrupt Related Primitives:
LEAVE CONNECT
STIM DISCONNECT
STIMINT ENDHANDLER
CHECK Interrupt occurrence

rr f

ERROR

FATAL_ERROR
Selection of an actlvity for scheduling (START_SLICE)
Ending of period of activity execution (END_SLICE)
Tracing of Control Flow:
Automatic recording (where provided for by the compiler) of such events as
procedure entry and return (TRACE)

SUSPEND
ENDROOT

The monitoring facility also provides a mechanism for recording, in addition to the events listed above,
application specific events (record points). This mechanism is known as the RECORD facility and is

normally provided in the form of one or more primitives which have implementation defined parameters.

Selection

In even the smallest application, the volume of data gathered and displayed by the monitoring facility is
potentially overwhelming. It is therefore necessary to be able to select sub-sets from the totality of
monitorable events. The control mechanisms, recommended for this purpose, provide a set of filters

which select the desired sub-set dynamically. Experience has shown that the most useful criteria are:

Which activities are to be monitored?

Which primitives are to be monitored?

Which control queues (where relevant) are to be monitored?
Which record points are to be active?

Is the automatic trace data (if any) to be recorded?
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For an event to be recorded, all of the relevant selections must be in force. Thus, for a control queue
primitive, the control queue, the primitive and the activity must all be selected.

The recommended control facilities are provided by the operations SELECT and EXCLUDE which
" respectively extend and reduce the set of events to be recorded. These operations require two
parameters. The first of these is the identity of the group to which it applies:

ACTIVITY
PRIMITIVE
CONTROL_Q
RECORD
TRACE

and the second is the identity of the member of that group. The recommended form of reference to
activities, control queues and record points is by the element identity as defined in Section 4.6 of
the Handbook extended by the addition of the structure:
.controlg_name
to the identity of the IDA or server containing the control queue, and by the addition of the structure:
.record_point_name
to the identity of the element containing the record point.
The hierarchic form of element identity, described in the Section 4.6, may be used as a shorthand means
of SELECTing or EXCLUDIing a collection of activities, control queues or record points in a single
operation. Thus, by the omission of trailing fields, reference can be made, for example, to all the

activities in a subsystem, all the control queues in an IDA or all the record points in an activity.

Identification of the TRACE records to be monitored is entirely dependent on the identification

information which the development system associates with each trace point.
Primitives should be selected by the names used under the heading of 'Events to be Monitored'. The

term SLICES should be used to represent the START_SLICE, END_SLICE pair, and ERRORS to
represent ERROR and FATAL_ERROR. '

4.8 Monitoring 4-32 : Mascot Version 3.1




Group references may be supported in a Mascot monitoring facilty through the keywords:

ALLPRIM - All primitives
ALLACT - All activities
ALLCQ - All control queues

ALL RECORD - All record points
All selections remain in force until explicitly excluded by means of the EXCLUDE function.

It will be appreciated that there are some elements of any system which must not be selected for
monitoring. The operations of the monitoring facility itself are an example. The system builder should
therefore provide facilities to inhibit monitoring of nominated activities and control queues. These
inhibitions should be transmitted to the run-time monitoring system and should be used to override the
effects of individual selection of the specified items or the effects of ALLCQ and ALLACT.

In summary, the parameters of the SELECT and EXCLUDE functions are:

PRIMITIVE primitive name

ACTIVITY  activity name

RECORD record point name

TRACE (additional parameters implementation dependent)
ALLACT

ALLCQ

ALLPRIM

ALLRECORD

SLICES

ERRORS

Recording

It is recommended that the events selected for recording by a Mascot monitoring system are written into

the monitor buffer, in strict order of occurrence, in one of the following modes:

REAL_TIME
IN_LINE

In the default mode of IN_LINE, all the selected events are captured. If necessary execution of the

actlvities being monitored is held up in order to ensure that no monitoring information is lost. In this

mode of operation it is permissible to disallow selection of interrupt and scheduling events.
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in REAL_TIME mode snapéhots of the monitored events are taken while the system is allowed to run with
the minimum of interference. Data are written to the monitor buffer until it becomes full. When this has
happened, all further monitor data are discarded until the contents of the buffer have been processed for
display. The number of monitored events lost in this way should be reported to the processing function.

Three further options are recommended for the control of recording:

HOLD
EMPTY
OFF

HOLD prevents further entries being written to the monitor buffer while preserving the current contents.
Further data are discarded until REAL_TIME or IN_LINE mode is selected. .

EMPTY clears the buffer and causes further data to be discarded until REAL_TIME or IN_LINE mode is
selected.

OFF disables all monitoring (both recording and processing) untit REAL_TIME or IN_LINE mode is
selected. -

These five options may be selected using the SELECT operation with the appropriate parameter.
Processing

The function of processing is to-convert the coded information in the monitor buffer into a readable form

and display it by means of a suitable peripheral. Facilities must be provided to perform this either on-line or
off-line.

The on-line facility allows processing to be turned either on or off. It is controlled by the SELECT and
EXCLUDE operations, in the normal way, using the keyword PROCESS. While processing is disabled, it
is recommended that the contents of the monitor buffer be circularly overwritten in either REAL_TIME or
IN_LINE mode of operation'. This ensures that the buffer always contains a record of the most recent
events ready for processing and display as an aid to problem diagnosis.

The off-line facility should permit the contents of the monitor buffer to be examined following a system
crash.
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5.1 METHOD AND USE

Introduction

This section describes the method whereby a design may be derived through the use of the Mascot
design representation language and graphical notation set out in earlier sections of the Handbook. The
domain of applicability of Mascot includes the development and subsequent maintenance of software for
large, distributed, embedded, real-time data processing systems. Without excluding the possibility of
applying sub-sets of the notation and the method to smaller systems, Mascot places particular emphasis
on the word 'large’. Large, that is, in the sense of large numbers of people involved in the development, a
large amount of program text to be written, a large number of requirements to be serviced simultaneously,
a great variety and quantity of hardware resources, and a project whose development extends over a long
time scale. The adoption of this emphasis on large systems has resulted in the evolution, in Mascot, of
the techniques necessary for handling the scale and complexity which seem to be inescapable features
of modern software developments.

The Mascot design method provides a basis for managing both the concurrency in development which
arises when many people are deployed simultaneously on a task, and the iteration which arises when
lower level design causes previously taken higher level design decisions to be changed. The method
can be viewed as a process where there are multiple sites of execution and where earlier stages may
need to be revisited. '

Development Management

The Mascot method is based on the progressive and repeated application of a simple but powerful
technique: that of alternating the requirement and design viewpoints in the course of establishing an
hierarchic structure. At each level of decomposition, a design is postulated to meet a set of requirements.
Implementability is thus kept firmly in mind when elaborating the design structure. This encourages a
closed loop approach to the development process whereby the functions provided and the performance
achieved by a design at any level can be related, directly and easily, to a corresponding set of
requirements.

Great emphasis is placed on design visibility throughout software development. This is achieved by using
the various composite structures to give an hierarchic form of design definition. In this way large
problems can be partitioned to contain the complexity at any point in the design, and to allow work to be
shared amongst members of a team. Skill, experience and good management are required during this
process which is essentially creative, but is highly visible and amenable to control.
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Mascot is not prescriptive; thus it does not provide any recipes for establishing or filling out the framework
for a given design problem. However, it does permit integration with a wide range of complementary
software system analysis and design methods. In this way the benefits of Mascot structural description
and development control can be combined with the advantages provided by other well proven or
emerging software engineering techniques.

Design Decomposition

Each software component of a Mascot system is derived from a template and for every template there
is a uniquely defined design task. The Mascot method, therefore, includes stages which relate to specific
classes of templates: the operational system, networks, elements or subelements, simple
templates and test systems. Each of these stages is further elaborated in terms of substages. The
diagram below, in which each box represents a substage, summarises the common approach used in all

stages.
Functional External
Requirements Interactions
| Test *5 < "1 p| Test 6 L
Requirements Decomposition Interactions
Software -3 "4
Template interactions
Requirements
\ 4
*2 *
Hardware Internal 7
Element Interaction
Requirements Elaboration
\ 4 \4 \4 l v

General Decomposition Diagram

At any point in the decomposition process a design is postulated which will satisfy the external
interactions and functional requirements derived from earlier stages. Each external interaction is an
identifiable set of operations and/or data flow constraints and each functional requirement specifies a

transformation which relates to operational and/or data flow effects on one or more interactions. Design
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decomposition at any stage identifies a set of components, each with its own functional requirements
and interactions. For each software component, the requirements for the corresponding template are
then derived (substage 3) together with its interactions (substage 4). These, in turn, lead to the functional
requirements and external interactions for further decomposition. Note that the Mascot graphical
conventions give explicit identification of interactions: a dashed line indicates interaction between a
component and a device, a path indicates an interaction within a network and a link indicates an

interaction within an element.

A template has to be designed to meet functional requirements and to service or generate external
interactions which are determined by previous stages of the design. Thus, for example, the design of the
operational system may place requirements and interaction constraints on a component subsystem
whose template in turn places requirements and interaction constraints on a component element.
The element template may be further decomposed and, in the process, places requirements and

interaction constraints on component subelements.

In the decomposition of a template (substage 1) the following are identified; any hardware elements to
be employed, the software components and the internal interactions. The characteristics of the hardware
elements are described in substage 2. The template specification and functional requirements for each
component are defined in substage 3. The semantic and dynamic properties of the internal interactions
are defined in substage 4 while the syntax of the interfaces is defined in substage 7. Finally, the
functional requirements and interactions associated with testing the template are defined in substages
5and 6.

The results, with the exception of those produced by substage 2, flow forward as data for lower levels of
decomposition. The complete design process is bounded, at the beginning, by the given framework in
which development is to take place and, at the end, by programming the indivisible elements and
subelements which form the atoms of the design, and by designing test systems for each of the

templates.

Technical Authority

From a development management point of view, the responsibilites relating to each design task (each
template) may be expressed in the roles played by a designer and a technical authority. The designer of
a template is responsible for carrying out all the substages relevant to the template design task.

These include the integration of the components identified in the template in order to be satisfied that
the template requirements and interaction constraints have been met. The technical authority for a
template .is responsible for design task definition and for the verification and acceptance of the work
carﬁed out by the designer of that template.
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Normally the technical authority for a template will be the designer of the enclosing template (in which
it is identified). This ensures that the technical authority is responsible for all the requirements and
interaction constraints relevant to the design task to be undertaken by the designer; these include:

(@ Interaction Descriptions. These are the definitions of the data flows and operations
on the paths, links and device interactions which components, to be created
from the template, must generate or respond to (that is the output from
substage 4 of a previous design task).

(b) Interface Specifications. These are the formal specifications of the procedures in
the Mascot Interface modules (that is the output of a previous substage 7).

(c Template Functional Requirements. These define the transformations, expressed
in terms of the interactions described above, to be carried out by any component
created from the template.

Some formality must be attached to the transfer of work between a technical authority and a designer.

Before a design task is placed by a technical authority on a designer, a Requirements Review must be
carried out. The formality of this review will be dependent on the extent of the definition detail at the time
the design task is initiated. Mascot allows work to proceed against incomplete design definitions (for
example, with specification modules at registered status only) and this partial statement of
requirements must be subject to some sort of review. Later, when full specifications are available, a
more thorough review can be undertaken.

When the design task has been completed a Verification and Acceptance Review must be carried out.
This will involve, at the least, a review of all the substages of the design task. Additionally, special
Verification Analyses and Acceptance tests may be undertaken at this point.

Design_Definition

The principal structural features of Mascot are summarised in the diagram below. This shows
decomposition from systems, through networks and elements, down to subelements, with
paths and links being identified on the way.

At the top of the structure are the operational systems which identify collections of components to
meet primary operational requirements, and test systems which identify a mixture of operational and test
components for some intermediate test purpose. The diagram shows the closely coupled relationship
between templates and components. During development, the structure of the application software
is evolved in terms of a set of interconnected components to be created in the execution environment.
Each component is designed in terms of a template. Each connection is designed in terms of an
interface specification. This approach encourages design abstraction and supports the creation of
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multiple components derived from the same template, or the creation of the same type of

component in different execution environments for 'prototyping, testing or re-use.
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Design Structure

The principle of 'containment of complexity' should ruthlessly be applied during design structure
elaboration. At each stage of decomposition a significant measure of partitioning should be achieved but
without generating overly complex internal component structures. The final hierarchical design
structure should contain the minimum number of levels consistent with the ability to see easily how each

component, at any level, plays its part in satisfying the requirements generated by the next level up.
Application of the Mascot method is likely to result in a large number of names. These names must be

chosen with care and, in the case of very large systems, it may be necessary to introduce special naming
conventions and/or measures to limit the potentially global scope of template names. The value of
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clear, meaningful names cannot be over emphasised. Template names should reflect the general
functional capability of a module, whereas component names should be chosen to indicate the
particular role of the component in the composite module.

Not shown in the diagram are various additional modules which are not involved in the primary
decomposition in terms of networks, elements and subelements. The set of additional modules
and the purpose for which they are required is as follows:

(@ Context Interface. This defines the operating environment of the Mascot
software.

(b) Library Interface. This defines a set of facilities to be provided by a library
component within the application software. It may, on occasions, represent the
existence of a piece of (possibly custom designed) hardware.

(© Library Template. This defines a set of library algorithms.

(d)y Definition. This defines one or more data types and associated constants.

(e) Build Modules. These define the mapping of software design components onto
target hardware.

During development, the definition of the design structure will evolve in parallel and be subject to iterative
change. This process will be recorded in the Mascot database using the status progression facilities.
The Mascot database is similar to a Data Dictionary but has far more emphasis placed on the
relationship between entries. The structure at any time captures the current state of the design and
allows assessment of the degree of completion.

The quality of the documentation at the end of development will significantly affect the maintainability of
the system and the potential of any of its templates for re-use. When the development task is ‘finished',
the documentation set must include the rationale for the ‘'final’ structure. Those parts of the design which
have been discarded during the iterative development process need not be retained in full, although the
history of the development and any major lessons learnt should be summarised in a design record.

Potential for Re-use.

Mascot is essentially a form of software template technology. The output from the decomposition
process (substage 1) expresses the design in terms of the functionality of, and interactions between, the
components. When the interactions are defined (substage 4) their descriptions are generalised so as
to maximise the potential for re-use. In the same way, in the definition of the template (substage 3), the
transformations to be performed by any component derived from the template are expressed in terms
of the generalised interactions derived above. it is possible to identify a number of circumstances
frequently encountered when designing a template for a particular component:
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| (@ Unique Template. This is where a template must be designed from scratch.
Nothing exists (or there is no knowledge of it) which can be used as a starting
point for the template design.

'(b) Adapted Template. This is where a template can be designed using an existing
template as the base line for the development.

© Common Template. This is where a common requirement exists at several
different places in the overall design structure and where it is possible to satisfy
this requirement with a common design. Control of the common design should be
exercised from at least the lowest common point above the places where it is used
in the design hierarchy. A common template may be parameterised in various
ways, or may be produced in variant forms using automatic program generation
techniques, to give some flexibility in use.

(d) Standard Template. This is similar to a common template, but with
applicability across a range of projects.

(e) Existing Template. A existing unique or adapted template may be adopted for
use elsewhere. In being so used it is made into a common or standard
template and control of its design should be exercised accordingly. Whenever it
is decided to make use of an already existing template it is likely that this will to
some extent affect the interactions and component requirements in the enclosing
design structure; these must now be tailored to accomodate the existing item.

Design _Stages

As already indicated, the design process can be broken down into a number of stages and substages.
This must not be construed as a linearisation of the essentially iterative and concurrent design actions
which take place in a large software development. However some means of identifying different aspects
of the design process is needed and it is for this reason that the stages and substages are defined, each
being given a number for ease of reference. Thus, although the work of a development will not proceed
strictly in accordance with the stage numbering, the sequence indicates the order in which the design of
individual items is elaborated.

The rationale for the ‘final' design, or any design which is thought to be good at any particular point of
development, may well give the impression that it has been arrived at by orderly sequential application of
the design stages. Indeed it is imporiant that it is possible to describe the design in this way. The Mascot
method is specifically geared to the problems of controlling the evolution of a design, during which
mistakes may be made and requirements changed. The method maximises the formality with which an
evolving design structure can be expressed, whilst maintaining flexibility by allowing changes to be made
in well definéd localised regions.
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Before embarking on the first stage of the design it is necessary to begin by establishing the framework in
which the development will take place. Although work on this is started right at the beginning of the
project it is likely that the bulk of the detail will need to be deferred until the first stage of decomposition
has been completed. Subsequent stages may well result in addition, deletion or amendment to the

results of this preliminary work. The following aspects need to be considered:

e Hardware Environment. This includes establishing the number and type of
processors to be used, the size and type of each main storage unit, the means by
which hardware modules are to communicate and the number and hature of the
peripheral devices which are to be handied by the system. It is necessary to
complete this to a degree which is adequate to support any hardware interactions
in subsequent stages of the design, and to identify any processing or
communication constraints which may affect the design structure.

{b) Development System. This includes the facilities provided by the programming
and project support environments together with such items as the means of
prototyping and the provision of test harnesses. All these facilities are central to
the software development and must be well defined early on.

{c) Context(s). This involves establishing the primitives and standard support
facilities which are to be made available through one or more Mascot context
interfaces.

(d) Libraries. These are standard support facilities which are to be created outside
the context and made available through library interfaces. Both libraries
and contexts are directly supported by the Mascot design representation
facilities; their definition must be completed in time to support the programming
stage of the work.

The method includes six main stages as follows:

Stage 1 : External Requirements and Constraints
Stage 2 : Design Proposal

Stage 3 : Network Decomposition

Stage 4 : Element Decomposition

Stage 5 : Program Definition

Stage 6 : Test System Definition

Each of these will be illustrated by means of an individual diagram derived from the general one already
presented. The seven substages, introduced earlier in connection with the general decomposition
model, represent specific design actions related to the decomposition procéss in each of the six main
stages. Work on the various substages of any particular stage will proceed in parallel and need not be
complete before work is started on further stages of decomposition. Some substages are not present in
all the six stages, as will be illustrated by means of the individual diagrams, and some may optionally be
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 omitted if they are not required in the elaboration of a particular design item. An arrow leaving a box in any
of the diagrams represents a flow of information to a further stage of decomposition (in some cases within
the same stage of the method such as where a network is decomposed into lower level networks).

Stage 1 External Requirements and Constraints
This stage establishes the general requirements and external constraints. The substages of which it is

comprised are illustrated on the diagram below and are now described individually.
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Stage 1.1 (Requirements Analysis) involves analysis of the complete system (hardware and
software) with particular emphasis on identification of the software system requirements and
interactions. Analysis techniques compatible with the data flow and network principles of Mascot (such
as CORE, SSADM, JSD etc.} are particularly relevant during this stage.

Stage 1.2 (Hardware System Requirements) describes those parts of the system whose
functions are to be performed by hardware units. They are not, in the Mascot method, to be subjected
to further decomposition (box 1.2 possesses no output arrow) but such hardware units are not of

course precluded from containing independent items of software.

Stage 1.3 (Software System Requirements) describes what the software has to do in terms of
transformations of data and responses to events originating outside the software system.
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Stage 1.4 (Software System Interactions) describes the nature and purpose of each implicit
interaction between the software system and the external hardware or software (including

communication with an operator).

Stage 1.5 (Overall System Test Requirements) describes the way in which the complete
system (hardware and software) is to be tested.

Stage 1.6 (Overall System Test Interactions) identifies particular test data, expected results
and the operator control sequences required to carry out the tests on the complete system. No data is
carried forward to later stages as such tests are applied to the total system operating in its natural

environment.

Stage 1 must be well advanced before any further stages of the development work are started. Although
this stage does not produce any formal Mascot design definitions (apart from the name of the system
template) it is likely to involve the application of formal techniques for requirements analysis. Notice that
this stage produces the requirements and device interactions for a Mascot software system which may
itself contain embedded hardware components (where these are deemed to be supportive of the
software design rather than placing consiraints upon it as does the 'non negotiable hardware' discussed
before embarking on this stage). There could also be several software systems, rather than just one,
interacting through intermediate hardware. The overall system test requirements (stage 1.5) and
interactions (stage 1.6) are not, in principle, needed until the end of the development when hardware
and software have to be integrated; however stages 1.5 and 1.6 should be carried out as early as
possible since they provide a useful measure of requirements analysis verification. Indeed in all stages
which generate test definitions, the fact that the corresponding tests are not to be performed until later
should not be allowed to delay work on their definitions.

Stage 2 Design Proposal

This stage results in a top level design proposal based on the software system requirements and
interactions identified in the stage 1 Requirements Analysis. It is the first point at which a Mascot design
structure emerges. The corresponding diagram is shown below.

Stage 2.1 (Software System Decomposition) describes the top level application software
design in terms of a Mascot system.

Stage 2.2 (Hardware Element Requirements) describes what each of the items of supportive
hardware appearing as top level components of the Mascot system has to do.

Stage 2.3 (Software Template Requirements) describes the template requirements for
each software component in the top level software system design.
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Stage 2.4 (Interactions) describes the nature and purpose of the internal interactions (paths)

between system components.

Stage 2.5 (Mascot System Test Requirements) describes the way in which the Mascot
system is to be tested. No data is carried forward to later stages as such tests are applied to the total

software system.

Stage 2.6 (Mascot System Test Interactions) describes the particular test data, expected
results and the operator control sequences required to carry out the Mascot system test.

Stage 2.7 (Internal Interaction Elaboration) identifies the definitions (2.7.1), access

interfaces (2.7.2) and composite access interfaces (2.7.3) required to describe the paths
between system components and the types of the data which flow along them.

5.1 Method and Use 5-11 Mascot Version 3.1



No further stages of decomposition can be started until at least the system template has achieved
enrolled status, the components have achieved Introduced status, and the access
interfaces have achieved registered status. In addition, the internal paths must be described in
terms of semantic and dynamic properties and any serial ordering constraints which apply to data flow
along the paths. When the template requirements have also been defined then this is sufficient to
allow further stage 3 or stage 4 decomposition. The stage 5 program design of an element or
subelement connected by an interface identified in stage 2 cannot be started until the
definitions (2.7.1) and access interfaces (2.7.2) have been established. Likewise the detail of
the composite access interfaces (2.7.3) must be complete before a composite path can be
expanded in a subsequent stage 3 subsystem decomposition.

The result of the initial attempt, at this stage, to identify a component as a subsystem (to 3.1), or an
element (to 5.1) is necessarily provisional. The ultimate decision as to whether a template should
be further decomposed can only be made in the light of its designer's more detailed examination. In
the case of an element this examination may indicate that further decomposition is desirable. In
these circumstances stage 5 is abandonned and stage 3 or stage 4 invoked, as appropriate. It is also
possible that subsequent decomposition fails because design constraints cannot be met. In this case

stage 2 must be repeated.

Stage 2 is the point at which the Mascot method starts to exert its influence in relating software design
structure to external requirements and constraints identified during stage 1. Ideally, the top level of

software design expression would be expected to contain the following components:

(a) A subsystem (or activity) for each major system function.

(b) A subsystem (or IDA) for every major system data requirement.

(©) A subsystem (or server) for every major interaction with external devices or
software outside the system.

(d) A subsystem for every systemwide internal communication requirement.

For a large application such an ideal would be impractical, resulting in an unmanageable number of fop
level components. However, these components would be expected to appear during the first
few applications of Stage 3 (Network Decomposition), being grouped into convenient and meaningful
subsystems at higher levels. As a rule of thumb, the number of components at any one levebl of
decomposition should be not more than twelve.

Stage 3 Network Decomposition

This stage is concerned with the progressive decomposition of a hetwork in terms of lower level
networks and elements and is illustrated diagramatically below. it is applied initially to each
network template which has resulted from the application of stage 2 (inputs from 2.3, 2.4 and 2.7)
and to any network templates identified as necessary for testing purposes (input from 6.3 in stage
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6 described later). Subsequently, it is re-applied to every lower level network which results from the
decomposition of a higher level one (inputs from 3.3, 3.4 and 3.7). This process is continued until the
design is expressed purely in terms of elements. The whole stage may be omitted if stage 2 has not

produced any components which are networks.

Stage 3.1 (Network Decomposition) describes a network in terms of its components.

Stage 3.2 (Hardware Element Requirements) describes the characteristics of each hardware
element identified at this stage of the design. Hardware components at this and lower levels can be

regarded as embedded in the software design.

Stage 3.3 (Software Template Requirements) describes the template requirements for
each component of the network design which is to be implemented by a Mascot component.
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Stage 3.4 (Interactions) describes the nature and purpose of the internal interactions (paths)
between network components.

Stage 3.5 (Network Test Requirements) describes the way in which the network is to be
tested and identifies a test system..

Stage 3.6 (Network Test Interactions) describes the particular test data, expected results and
the operator control sequences required to test the network.

Stage 3.7 (Iniernal Interaction Elaboration) identifies the definitions (3.7.1), access
interfaces (3.7.2) and composite access interfaces (3.7.3) required to describe the internal
paths and the types of the data which flow along them. ‘

Stage 3 carries on the network decomposition process started in stage 2. it differs from stage 2 only in
that it is totally concerned with internal design decomposition and does not address the problem of
matching the software design to the external environment. This results in two significant differences.
First, the driving input for stage 3 emerges from previous Mascot design work (stage 2, stage 3 and stage
6 (where the decomposition process is being used for test network design)). Second, a formally
defined test system is required to test a stage 3 hetwork; hence the output to stage 6 (note that stage
3.5 will identify the name of the test system for subsequent-elaboration in stage 6).

As for stage 2, the result of the initial attempt, at this stage, to identify a component as a subsystem
(to 3.1), or an element (to 5.1) is necessarily provisional. It is also possible that subsequent
decomposition fails because design constraints cannot be met, and in that case the current stage must
be repeated.

Stage 4 Element Decomposition

Stage 4 is concerned with the decomposition of an activity in terms of subelements and, if
necessary, of subelements in terms of lower level subelements. IDAs and servers are precluded
from single thread decomposition in terms of subelements. This form of activity decomposition is an
alternative to conventional program structuring techniques (for example, local procedures, blocks etc.). It
has the advantage of producing a software structure visible in terms of Mascot diagrams and of increasing
the potential for re-usable modules by the linking of separately compiled units. It allows selective
servicing of the paths which are connected to the enclosing element or subelement and generally
improves testability.

Stage 4 is illustrated diagramatically below. Stage 4 is applied initially to each element, chosen for

decomposition, which has resulted from the application of stage 2 or stage 3 (inputs from 2.3, 2.4 , 2.7,
3.3, 3.4 and 3.7) and to any similar element identified as necessary for testing purposes (input from 6.3
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in stage 6 described later). Subsequently, it may be re-applied to lower level subelements which result
from the decomposition of a higher level element or subelement (inputs from 4.3, 4.4 and 4.7). This
process is continued until the design is expressed purely in terms of simple subelements. The whole
stage may be omitted if stages 2, 3 and 6 do not produce any activities which need to be decomposed.

Stage 4.1 (Element/Subelement Decomposition) describes an element or subelement
in terms of subelements.

Stage 4.3 (Template Requirements) describes the template requirements for each
component.

Stage 4.4 (Interactions) describes the nature and purpose of the internal interactions, (that is

links) between components.
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Stage 4.5 (Element/Subelement Test Requirements) describes the way in which the
element or subelement is to be tested.

Stage 4.6 (Element/Subelement Test Interactions) describes the particular test data, expected
results and the operator control sequences required to test the element or subelement.

Stage 4.7 (Interaction Elaboration) identifies the definitions (4.7.1) and subroot interfaces
(4.7.2) required to describe the internal links and the types of the data which flow along them.

Stage 5 Program Definition
Stage 5 is the programming stage during which the source text for each simple module is produced.

Its diagrammatic representation is:
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Simple templates, produced in any of the previous 3 stages, form the input to stage 5 (from 2.3, 2.4,
27,33, 3.4,3.7, 4.3, 4.4 and 4.7). Further simple templates, needed for testing purposes, may be
derived from stage 6 (6.3) which is described later.

Stage 5.1 (Program Decomposition) describes the design of simple templates in terms of
algorithms and data structures.

Stage 5.5 (Simple Template Test Requirements)describes the way in which the simple
template is to be tested.

Stage 5.6 (Simple Template Test Interactions) describes the particular test data, expected
results and the operator control sequences required to test theimple template.
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If during the program decompostion it is found that further structural decomposition would be desirable
then stage 5 may be abandonned and stage 3 or stage 4 invoked, as appropriate; Thus stage 5
terminates the primary design process as far as Mascot is concerned, although it may result in a
requirement for supporting work on test system design. Any conventional technique for program
design may be used within this stage provided it is used consistently. However, its use should be
confined to the expression of algorithms and data structures within a single module; decomposition in
terms of separately compiled modules is regarded as a stage 4 design action and should use the
appropriate Mascot design feature. If the functional requirements cannot be met within the constraints

then the previous stage must be re-invoked.

Stage 6 Test System Definition
Stage 6 is concerned with the integration and testing of application software. Its diagrammatic

representation is:
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Stage 6

Input to stage 6 consists of the test requirements and interaciions for networks,
elements/subelements and simple templates, respectively, identified in stage 3, stage 4 and
stage 5 (from 3.5, 3.6, 4.5, 4.6, 5.5, and 5.6).

Stage 6.1 (Test System Decomposition) describes the structure of the test system.

Stage 6.3 (Test Template Requirement) describes what each test template, required to
create acomponent specifically identified for test purposes, has to do.
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Stage 6 is concerned with the first level of test system decomposition. The requirements for
networks, element/subelements and simple templates identified in stage 6.3 are fed back to
stages 3, 4 and 5, respectively for further decomposition as necessary. Notice that if a standard harness
can be used for testing, and if no special test components are required, then stage 6.3 may be omitted.
Stage 6 designs will work entirely in terms of the substage 6 test interactions and substage 4/substage 7

operational interactions derived from the previous stages. -

Status Progression

Throughout all six stages of the development the Mascot design notation is used to record the product of
the design process, and the status progression facilities are used to record progress and to control the
use to which the various parts of the design definition may be put. Mascot formality is limited to these
aspects but any other formal techniques for function or data flow definition may be used in conjunction
with Mascot with direct reference to templates, components, interfaces, paths or links in the
design structure.
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5.2 DOCUMENTATION

Intr ion

The use of the Mascot method should be supported by a suitably structured approach to the

documentation requirement at each stage in development. Well-structured documentation will support

the system throughout its life-cycle by relating system design to requirements and external constraints,
allowing descriptions to be created and maintained in a recognisable framework and facilitating access to
this information by the wide variety of personnel who need it.

It is not intended in this Handbook to provide prescriptive techniques or standards for documentation,
because there is a wide range of diverse documentation standards to which Mascot systems will be
required to conform. However, it should be recognised that software documentation does not exist in a
vacuum and must be part of the overall documentation strategy. The documentation structure for a
medium-to-large project is inevitably large and complex and involves many inter-dependencies. It is
essential that this structure is planned at the outset of a project and used by the development team as the
project progresses. Used correctly, a recognised structure will reduce duplication/overlap in
documentation, facilitate access to information, allow consistency checking and localise the effects of

software amendments on documentation.
The following. points should be taken into account when planning the documentation structure:

- The Mascot method assists in re-usability of software, and the re-usability of
associated documentation is an important consideration. As far as possible,
information which is project-specific should be isolated, in documentation terms,

from re-usable information.

- A single tempiate can be used to create several components in a typical Mascot
application, and so information concerning the creation of components should be
separated from the formal software descriptions and documentation of the
template.

- The development and target environments for embedded software, for example
tools and hardware configurations, are liable to change in the potentially long life
(say, 20 years) of a typical Mascot application. The documentation should lend
itself to such amendment by separating information describing the environment
from formal software description. '

The primary aim of documentation is to aid comprehension. Without compromising this aim, it is possible
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to use the Mascot module classes as a framework for re-usable documentation. Wherever feasable,
description should be restricted to the scope of the object being documented. For example, the
documentation of a template module should avoid reference to the functionality of elements beyond
the Interfaces which it provides and requires.

The result of this approach is documentation which is both abstract and localised in nature. Although this

achieves the goal of re-usability, there is a danger that over-zealous abstraction may lead to .
documentation which is disjoint, making it difficult to comprehend overall functionality without reference

to numerous items of documentation. It can be seen that the goals of comprehensibility and re-usability

are not always compatible. '

As a general rule, the characteristics of a description should be similar to those of the object being
described. If a module is created for widespread general use then re-usability of documentation is of
paramount importance. If a module has many dependencies on the characteristics of external objects
(say, for efficiency reasons), then the requirements of comprehensibility must take precedence. Most
software is a compromise between the desire for re-usability and the needs of a specific application, and
so engineering judgement is required when determining what form of documentation should be used for
individual modules and module classes.

Template Documentation

By way of illustration of the above, consider the requirements for the documentation of an individual
template. The documentation must describe the functionality of the template and the interfaces
which it provides and requires (the specification documentation). If the template is composite, the
documentation must identify the internal structure of the template in terms of components and their
inter-connectivity (the implementation documentation).

In all cases, the descriptive content of the specification docUmentation must be detailed, complete and

unambiguous. This is the lowest level in the hierarchy at which this documentation will be presented.

The more difficult aspect of template documentation concerns the level of detail of the implementation
documentation. Clearly, the rationale behind the decomposition within the template must be presented
in full. The level of description given for the components and their inter-connectivity must be carefully
considered.

It would be possible to identify the components and internal interfaces by name only, and refer the
reader to lower level modules whose specification documentation will provide the information on the
functionality of individual items. Whilst this would meet the goal of re-usability, such an approach would
tend to be abstract to the point of obscurity. Alternatively, if detailed descriptions of the means by which

internal components achieve their functions are provided, then this leads to undesirable duplication
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within the documentation hierarchy.

Experience indicates that the preferred approach in most circumstances is to describe in full how the
template achieves its required function, and to provide brief descriptions of the components and
their inter-connectivity, referring the reader to lower levels of the documentation hierarchy if more detail
on a particular component is required. This approach allows a reader to assimilate sufficient concise
information to understand how the internal elements of a template achieve the necessary functionality
of that template, without unnecessarily duplicating the specification documentation of the lower level
modules.

The Mascot method encourages isolation of information by recognising the independent nature of active
and passive elements, interfaces, definitions, libraries, etc. As far as possible, without losing sight
of the need for comprehensibility, the documentation strategy should follow the same approach.

Control of Documentation

in a project of any reasonable size, a large quantity of documentation must be administered and
controlled. The documentation is the primary method of communicating information about the structure
and status of the system under development to all interested parties in the project. As the system is
developed and amended, so, too, is its associated documentation. It is clearly necessary for the
documentation to be in step with the system it describes at all stages. Generally, this can be achieved for
documentation in the form of in-line comment, because this is retained within the module it describes
and is subject to the configuration management and quality control procedures applied to individual
modules. V

Some project documentation is not directly related to a specific class of Mascot module (for example,
requirements, quality reports, design rationale documents). Nonetheless, it is strongly recommended
that all project documentation is held in a machine-readable form under the same configuration
management database as that used to administer software development. Wherever possible,
documentation relating to a specific module should be héld as part of that module. Although this does
not guarantee that documentation will be updated in line with the software, its proximity will encourage
good practice and ease consistency checking.

The configuration management database can be used to create and maintain a knowledge of the
dependencies between documents and. modules. When a module or document is updated, the
dependency relationships can be used to identify other modules or documents which may be affected
by the change. Status progression is the minimum facility provided by the Mascot database, and will
generally deal with identifiable Mascot module classes. in some cases, it may be possible to provide
similar mechanisms for documents. ' '
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If, for some reason, documentation is not held in a machine-readable form and related in a controlled
fashion to the system being described, procedures must be adapted to provide confidence that
documentation and software will proceed through development in a consistent manner. Configuration
management and quality assurance procedures must be applied to the documentation, even if only by
manual means.

Access to Documentation

The exisistence of documentation does not in itself guarantee its accessibility. The sheer extent of
documentation can make it difficult to identify and retrieve precisely that part of the documentation which
is necessary to understand a particular facet of the system and carry out an item of work. The problem of
collating and constraining relevant information is not new, however, and it is important to provide such a
facility if work is to be carried out efficiently.

The publication of, and adherence to, the overall project documentation structure will assist in the
identification of relevant information. However, in many cases the information needed to build a clear
picture of the context in which a piece of work is to be carried out will be distributed through many
modules. These modules will also contain material which is extraneous to the individual's requirement.
There is a strong case, when employing Mascot, to consider the use of a documentation tool which will
assimilate the specification documentation and implementation documentation of a number of modules
into a single document. This will allow a reader more easily to comprehend the role of a template in the
overall system. The existence of such a tool may reduce the temptation to duplicate documentation at
different levels of the document hierarchy.

The tool would be achievable by identifying (say, by a keyword mechanism) the specification
documentation and the implementation documentation within each module. In order to see more clearly
the role of, say, a subsystem, a user potentially could gather together into a single document:

(@ the implementation documentation of the enclosing subsystem,

(b) the specification and implementation documentation of the subsystem under

scrutiny and

(c) the specification documentation of the components and interfaces which
comprise the subsystem

using the relationships between the modules and the documents established by means of the
configuration management database.
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Purpose of Documentation

There are two major categories of documentation according to its prime purpose: documentation of the

project and documentation of the resultant system. These are now discussed in turn.

D tation of the Project

Documentation is created and amended throughout the system life-cycle in order to capture and express
the current status as development proceeds. However, it is not sufficient merely to maintain current
status information. The development of documentation through the system life-cycle reflects the design
decisions and rationale which invariably affect and shape the path to the final system. It is important,
therefore, to capture and maintain the documentation as it existed at various major points in the system's
evolution. If an 'audit trail' of this form can be created, it will allow analysis of the designh process which led
to the complete system. Further, if this information can be allied to quality records, modification records,
etc., then analysis can prove extremely valuable to future projects and can be exceptionally useful during

maintenance and support of the system.

In many cases, collation of the information required for this analysis is difficult as it exists in different forms
(some as part of modules in the host system, paper records held by the quality assurance department,
etc.), and results in an incomplete and disjoint record. The use of a suitable configuration management
tool (possibly allied to the Mascot database) incorporating design change control and quality assurance
recording mechanisms will assist in collating information in a manner which is coherent and provides a

convenient form of reference.

The descriptive information required to support the resultant system incorporates not only the
documentation of the templates and associated modules used to create the network
components, but also the documentation of the testing mechanisms used to verify functionality. The
relationship between documentation of these areas requires careful organisation. There is not
necessarily a one-to-one correspondence between test systems and templates. However, there
must be a mechanism for relating the template documents to the test system documentation,
preferably one which does not adversely affect the re-useability of the documents.

The documentation of a template may refer to a test system created to test that template. It should
not refer to test systems which test sub-networks in which the template is used. Test system
documentation should refer to all components/itemplates in the sub-network under test. The result
is that the test documentation structure reflects the network structure and the documentation of the
sub-networks should refer to the test systems used to verify functionality.
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General Documentation Requirements for Module Classes

There are generalised requirements for the documentation of all modules in a Mascot system, as

outlined below.

The following categories should be considered in the documentation of all modules, although some
categories may not be applicable directly to a particular module class:

Language dependencies

Environment dependencies

Machine dependencies

Code characterisiics (eg conditional compilation, assembler inserts)
Test status

Quality assurance status

Test mechanism

~ For each module under development, the following must be available, either embedded in

documentation or controlled by tools:

Version number
Modification audit trail
Mascot database status

All modules must refer to, or include in-line, the requirement which they are designed to meet.
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5.3 SYSTEM TESTING

Introduction

During the design and development stages of a project there are several techniques which have
traditionally been used to establish confidence in the software being created and to demonstrate that it
meets its requirements. These include formal techniques for proving correctness, design reviews, in
which, among other activities (see Section 5.1), program source text is subjected to the collective
scrutiny of the project team, and testing, in which the behaviour of the corresponding executable code is
systematically exercised through the use of test data. Testing is, and is likely to remain, the most widely
used of these techniques. This is partly because of its wider scope including , as it does, the effects of
production tools, operating system, hardware and external environment, and partly on account of the
greater psychological assurance which it engenders ('seeing is believing'). It is also, at the present time,
the only practical method.

Mascot, in common with other software development methods, contains a graphical form of design
representation which can be exploited to advantage in carrying out a design review. It is in the sphere of
testing, however, that Mascot provides significantly greater assistance than most other methods. In
particular the modularity scheme of Mascot, together with the unique template-component model,
constitutes a powerful support mechanism for testing. In addition, the ability to supply a separate system
template for each test network provides a sound basis for the configuration management of testing.
The template/component model makes it possible to create test systems which can co-exist with
the application systems. This greatly simplifies the handling of regression testing during maintenance.

Provided that suitable run-time environments are available, and that the application templates contain
no hardware specific features, the test networks may be executed on either host or target systems ( see
Section 3.3).

In this section the general considerations for the testing of Mascot systems are discussed and a specific
testing strategy is proposed.

General Considerations

The testing of any substantial piece of software, from a large sequential program to a full blown system
involving concurrency on a large scale, needs to be carried out in a modular fashion. There are two widely
recognised approaches to this known respectively as top-down and bottom-up.

In the top-down approach the highest level unit is produced first and 'stubs' are created to replace the
units at the next lower level. These stubs are sections of program which normally perform some simple
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actions such as signalling the fact that they have been evoked and reporting the values of any input data
with which they have been supplied. In some cases, however, a stub may partially emulate the actions of
the unit in whose place it stands. Testing involves examining the pattern of invocation of the lower level
‘entities. Stubs are then progressively replaced by the corresponding application units accompanied,
where necessary, by a further level of stubs. The great merit of this approach is that testing and
integration proceeds in a series o‘f'foughly equal steps. The last step is no more significant in itself than
any of the others and no more likely to reveal any fundamental defect. Also application units can be
constructed using their stubs as a starting point.

In the bottom-up approach it is the lowest level units which are produced first. Specially written drivers are
then used to test them, first individually, and then in larger and larger groups until the entire application
has been built. New drivers are needed at each stage and discarded after use. The final step in this
process is highly significant as it may show that the overall structure is incorrect. Despite these
disadvantages the bottom-up approach is widely used in practice and is considered by many

programmers {o be the natural way to test software.

While a strong case can be made out, at least in theory, for application of the top-down approach to
testing sequential programs, it is more difficult to see how to apply it to the networks of concurrent
processes required to solve real-time problems. In Mascot, therefore, its application is fikely to be limited
to the testing of the implementation details of simple activities, roots, subroots and libraries. The
testing of Mascot networks is likely to be carried out bottom-up.

In devising a general strategy for testing Mascot modules it is necessary to cater for three groups:
specifications, simple templates and composite templates. Since specifications have no
direct realisation in the executable software there is no direct testing associated with them.

Simple templates constitute the algorithmic building blocks of the system, and the testing of these
templates is primarily aimed at detecting algorithmic and programming errors. For this purpose a mixture
of 'black box' test data, based on the design specification, and 'white box' test data based on the actual
design is appropriate. At the very least these latter data should exercise every sub-condition of each
conditional expression so as to ensure that every statement in the program is executed at least once.

Composite templates are groupings of components derived from simple and composite

templates. The primary aim in testing them is to detect errors of communication between the
components and to verify the real-time behaviour.

An Example Testin trate

This section describes a specific testing strategy developed from one that has been used successfully in

several projects which employed an earlier version of Mascot. It supports testing of both simple and
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composite templates and serves here as an example of recommended practice. It was designed to
meet the following major requirements :

1. The test strategy and supporting tools should support both formal (that is Quality Assurance) and
informal (that is development) testing in a consistent and reproducible manner.

2.  The production and maintenance of the test data should require a minimum of special tools.

3. The tools should support interactive diagnosis with data entered from the terminal and resuits

displayed at the terminal.

4. To facilitate regression testing, the performance of tests and the interpretation of results should

require a minimum of manual intervention.

5. Since in many cases the target hardware does not become available until late in the software
production cycle, it should be possible to perform the majority of the testing on the host computer.

The strategy is based on the concept of a test script containing, in a machine-readable form, the
directives necessary to initialise a test system, data which are to be presented to the unit under test and
results which are to be expected if the unit is correct. A test script is prepared in a textual form which may
be manipulated by means of standard text editors. If used directly in this form, execution time is taken up,
during the test, in performing the necessary type conversions. An alternative is to employ special tools to
convert the script, separately, to a binary form but this was not adopted in view of general requirement 3

above.

A test script may be interpreted by a standard network of test-administering components, supported
by application specific type conversion components. These two sets of components, together with
the unit under test, form a test system.

The precise nature of the conversion components is dictated by the communication requirements of
the unit under test. For testing IDAs, servers and libraries an activity is the natural choice since such
components need to be driven. A root can most readily be used to convert data for a subroot which
is under test, while for testing roots and activities an IDA may be chosen as the conversion

component.

The role of the standard test components is to provide textual information, from a test script, to the
conversion components. The latter_ convert this information to'a suitable form and transmit it to the unit
under test. This process is reversed in handling the responses. These are taken from the unit under test
by the conversion components, transformed into text and passed to the standard test components
which generate the resuits.
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Thus, each conversion component refers, in general, to three interfaces describing, respectively,
text input, text output and communication with the unit under test. The textual interfaces are usually
ports which may be connected to windows of the standard test components. One or other of the
text interfaces may be omitted in some cases. The Interface to the unit under test may be an access
interface, a subroot interface or a library interface. The Mascot monitoring facilities may be used,

during testing, to provide evidence of completness.

An example of a test network, in which the conversion components are activities, is shown on the
following page. Subsystems have been shaded in this diagram in order to improve readability.

ration h mpl N

Existing operating facilities are used to assign the input and output (files) to the servers input_server
and output _server. When the system is STARTed, each of the conversion actlvities declares its
identity to the IDA text and receives in return a unique key. The relevant arrowheads on the network
connections through which this initialising transaction takes place are omitted from the diagram so as to
avoid unnecessary complication. Subsequently, messages directed to a particular conversion activity
can be obtained by the activity, from the IDA, by quoting the appropriate identifying key.

The command interpreter activity, ¢/, reads a command line from input_server and copies it directly
to output_server . The purpose of logging the input text together with the results of the test in this way
is to allow the sequence of events during the test to be deduced from inspection of the output file. This
has been found to work well in practice even when quite large portions of the final network are being
tested.

The input line is then examined by the command interpreter to see if it contains a command which can
immediately be executed and, if so, the required action is performed. Commands whose execution may
be initiated by the command interpreter include Execution Control commands, Monitoring Control
commmands and special commands to, for example, control the timing of events in the network. If the
command line cannot be dealt with in this way, it is passed to IDA text where it becomes available to the
conversion activity whose identity it contains. An error message is generated if the line contains no
recognisable ideniity.

The unit under test in this example may be any passive network fragment, that is one possessing only
windows on its boundary. Messages received by conversion activities from text are converted to a
suitable form and passed to the appropriate access mechanism of the unit under test. Any response is
made available at another window for use by a converter which processes it for output.

Thus, to handle output, the converters call the appropriate access mechanism, translate the response
into textual form and pass the result to output_server . Under some circumstances it is necessary for

output conversion to be controlled from the test script. Hence the connection of all converters in the
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diagram to the IDA text . The need for this most commonly occurs when testing a pool where the input
line may contain a command to read the pool contents. However, another possibility is that the input line
contains a copy of the expected results which the converter handling output can compare with the actual
results and so signal whether the test has been passed or failed.
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DESIGN REPRESENTATION LANGUAGE SYNTAX

The syntax of the Mascot design representation language is included here fbf"r‘e"feren'cé purposes. lt is
presented in two equivalent forms. A set of syntax diagrams, as used for description throughout the body
of the Handbook, appears first together with an index. These diagrams follow the conventions
established by Wirth in connection with the Pascal programming language. All valid constructs may be
generated by tracing all possible paths through each diagram, as indicated by the arrow heads, from the
top left until the path terminates on the right. Loops may be repeated as often as required. At each box a
basic symbol of the language is generated. Where the box has rounded corners or is circular, the symbol
is literally that contained in the box. This has been further emphasised in the former case by the addition

of background shading. A rectangular box is a reference to another syntax diagram.

The diagrams are complete, in Mascot terms, in that they include all the non mandatory features. They are
incomplete in the sense that they contain a number of undefined symbols whose definition is dependent
on the choice of implementation language. Such undefined symbols are indicated by means of a ™ near
the top righthand corner of the syntax box. A second group of symbols, for which no defining diagram is
included, are marked with a '$". These are all identifiers; they appear under a variety of names so as to
incorporate some semantic information. Where a syntax box is marked with 'An’, the corresponding
definition diagram appears on page 'n' of the appendix. Where a box is unmarked it represents a symbol

which is defined on the same page on which it is used.

The design language syntax is then presented in a metalanguage based on Bachus-Naur notation. In this
form it is made specific to the use of Pascal as the implementation language. All terminal construct names
are explicitly connected to the Pascal syntax definition. The order and organisation of presentation is
such as to facilitate reference to the subsection, in the body of the Handbook, where each construct is
discussed. It is followed by an alphabetically ordered list of terms which also contains appropriate
subsection references. It should be noted that for B-N notation, as compared with the equivalent syntax
diagrams, it has been necessary to introduce additional syntactic categories. Also, category names which
in the diagrams have been shortened so as to save space, are given in full in B-N form (for example

'acc_int_spec_part' becomes 'access_interface_specification_part’).
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Index to Syntax Diagrams A-3

Syntax Diagrams A-7
Bachus - Naur Form of Syntax A-28
Syntax Index to Handbook A-37
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“

DIAGRAMMATIC FORM OF SYNTAX

Index

syntax element

access_equivalence_list
access interface
acc_int_array_descrip
acc_int_detail_part
acc_int_name_part
acc_int_ref_list
acc_int_spec_part
act_component_class
act_component_part
act_connection_spec
act_imp_part

activity

act_name_part
act_spec_part
comp_acc_int_spec_part
comp_act_imp_part
component_class
component_part
connection_spec

const_spec_list

Appendix A Syntax

page number

A-22

A-7

A-17
A-14
A-14
A-14
A-14
A-27
A-16
A-11
A-11
A-11

A-24
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def_detail_part
definition
def_name_part
def_spec_part
equivalence_list
ida

ida_imp_part
ida_name_part
ida_spec_part
lib_int_name_part
lib_int_spec_part
library
library_imp_part
library interface
library_name_part
library_spec
library_spec_part
network_imp_part
port_port_connect

port_spec

port_window_connect

root
root_name_part
root_spec_part
server

server_imp_part

Appendix A Syntax

A-4

- A-8
A-8

A-8

A-12
A-21
A-21
A-21
A-21
A-25
A-25
A-26
A-26
A-25
A-26
A-27
A-26
A-10
A-12
A-9
A12
A-18
A-18
A-18
A-23

A-23
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server_name_part
simple_acc_int_spec_part
simple_act_imp_part
simple_ida_imp_part
simple_server_imp_part
simple_subroot_imp_part
sub-element_link
sub_int_name_part
subroot
subroot_imp_part
subroot_interface
subroot_name_part
subroot_spec_parn
subsys_name_part
subsys_spec_part
subsystem

system
system_imp_part
system_name_part
system_spec_part
temp_const_ident
temp_const_spec
window_spec

with_section
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A-23
A-7

A-15
A-22
A-23
A-20
A-17
A-18
A-19
A-19
A-18
A-19
A-19
A-10
A-10
A-10
A-13
A-13
A-13
A-13
A-24
A-24
A-9

A-8
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2

access_interface
—Pd aCC_int_name_part

(—b acc_int_spec_part

int_nam

identifier >

acc int_spec_part

simple_acc_int_spec_part

A27

comp_acc_int_spec_part

A8

with_section

acc_int_detail_part

in il

- read_only_const_specs .ﬁ

L._; var_specs
L.> proc_headings
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definition_ref

efinit

—pd def_name_part —)@j
(.p def_spec_part

def name_ part

identifier j——»

def spec part

with_section j

def_detail_pan |———

def detail part

——P symb_const_defs —_]

N——y> type_defs
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acc_int_ref_list

acc_int_ref_list

acc_int_ref list
$ $
identifier acc_int_ref
acc_int_array_descrip
N y
» l ! r.

[-> acc_int_ref |—pp

simple_type
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subsystem

subsys_spec_part

subsys_name_part 4&@7

AN

network_imp_part

identifier

subsys_spec part A24

temp_const_spec

D

A9

window_spec —)

A9

pori_spec
D

>

network_imp_part

comp_acc_int_ref

template_ref

@.«

' L A11
component_part

L sz
equivalence_list

Neither a composite IDA nor a composite server may refer to a composite
access interface in its USES list.
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component part

—y»] component_class

(b template_ref

L connection_spec

connection_spec

A24

Vo o

temp_const_ident

A12

O

port_window_connect

A12

port_port_connect

|
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window_connec
$

-.pl port_ref b@

$ $
(_. component_ident _pQ_y window_ref |—p

port_port_connect
$

$
=P port_ref —,GT. boundary_port_ref
G, S $
comp_port_ref —DO-b port_ref

. .
equivalence_list s

boundary_window_ref component_ident
$

] $
L;O-. window_ref |——pmepp
$
(y@. window_ref |—’

boundary_port_ref /

$
L,I comp_port_ref —DO.p port_ref

comp_window_ref

y
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—Pt system_name_part —b@—j
(. system_spec_part _ﬂ

system_imp_part

identifier j———

A24

temp_const_spec -—j

template_ref

A11
Lb component_part |
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ivi

—P{ act_name_part _’@j
—Jp act_spec_part ﬁ

\—Pi act_imp_part

identifier |y

A24

- temp_const_spec —j
L "
port_spec -j

4

act_imp part
A15

simple_act_imp_part

A16

comp_act_imp_part
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€0,

Mascot Version 3.1




La=d

simple_act_imp_part

A8

—~—P»] Wwith_section

_—-—\

v

‘ A27
library_spec

program_part
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template_ref -

(-

L—. act_component_part >

act_component part

—’-bl act_component_class p———p identifier

$
Lp template_ref

l A17
act_connection_spec
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nnection

A24
s—P]temp_const_ident \
.{
-p@—,—{—b sub_element_link >_‘.>®_p
A12
\—p port_port_connect }——~

sub_element_link

~P out_link_identifier >@—> subroot_ref >

&

Appendix A Syntax 7 A-17 Mascot Version 3.1



root

=P root_name_part

—0n

\—p root_spec_part

—

A15

P simple_act_imp_part

root name part

identifier

root_spec part

Al4

—<P1 act_spec_part

)

$
.................... identifier subroot_int_ref
subroof_interface
—p] sub_int_name_part _;@.)
L—b simple_acc_int_spec_part
sub_int name_ part
$
identifier f——pp
A-18 Mascot Version 3.1

Appendix A Syntax




subroot

- subroot_name_parnt p@-)
L subroot_spec_part 1

L subroot_imp_part

identifier j————py

broot_spec _pa

A14
act_spec_part

subroot_int_ref | )-—]

subroot_int_ref

identifier

subroot_imp_part ‘ A20

simple_subroot_imp_part

A16
comp_act_imp_part

A composite subroot may not contain a component derived from a root template
but must contain a root component derived from a subroot template. This latter
component gives the interface to the composite template.
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A8

-~ Wwith_section

U

t A27
library_spec
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ida_name_part D@-j

ida
e
L; ida_spec_part

ida_imp_part

P identifier |r———

A24

)
port_spec j

A9

temp_const_spec )
A9
window_spec

A22

simple_ida_imp_part

A10 L >

network_imp_part

A composite IDA may contain only IDA, channel, pool and library components.

Appendix A Syntax A-21 Mascot Version 3.1




A8

—<—P1 with_section ﬂ

A27

Lb library_spec

—

»*

\pdeclaration_part

access_equivalence_list

—,-\_b window_ref

access_equivalence_list

$
—»O-» identifier j

internal_identifier

port_ref

$
>®-> identifier

$ $
window_ref —b@-b- port_ref
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erver

—Dl server_name_part —*@-—)
( A21
ida_spec_part

LD server_imp_part

identifier = |r———

_I-b simple_server_imp_part
A10 }—V

—P network_imp_part

A composite server must contain at least one server component and may also
contain IDA, channel, pool and library components.

simple_ server imp par

A8

with_section —j

-~
A27
library_spec

\p| server_dec_part

A22

access_equivalence_list
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nst li

identifier

const_spec_list P>

implicit_ type 45@1—>

integer_type

- const_identifier

Appendix A Syntax

/—P] constant

constant

-

P const_identifier

Mascot Version 3.1




libr interf

—p{ lib_int_name_part _.5@)

L—b lib_int_spec_part

identifier >

A8

with_section

proc_headings j=——p»
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library_name_part —@)
library_spec_part j

library_imp_part

(1 L11¢

library name part

identifier jr—

A24

temp_const_spec ﬁ

library_int_ref

libr. im

A8

-~ with_section j
[ _A27
library_spec |

\ declaration_parnt |jr——p

Variables may not be declared in a library implementation part.
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library_int_ref

identifier acc_int_ref

>
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BACH

- NAUR FORM OF SYNTAX

The form of Bachus Naur syntax used is as follows :-

a) Normal font lower case words, some containing embedded underlines, are used to
denote syntactic categories.

b) Boid font words and symbols are used to denote Mascot reserved words and symbols.

c) Underlined words are used to reference Pascal constructs. For further expansion of
these constructs refer to a Pascal syntax definition.

d) ltalicised prefix words are used to convey semantic qualification of the following
non-italic root. For example, if an identifier is required which must be the name of a
template, the following compound name is used:
template_identitier

e) Square brackets enciose optional items. (NB. Bold square brackets occur in the syntax
definition. These refer to symbols in the Mascot design language.)

f) Braces enclose a repeated item. The item may appear zero or more times.

0) A vertical bar separates alternatives. They are always used to separate alternatives
for the construct being defined, never as alternatives for part of a construct.

Section 2.3

access_interface ::= access_interface_name_part ;

access_interface_specification_part end .

access_interface_name_part ::= access interface jdentifier

simple_access_interface_specification_part ::=

[with_section] access_interface_detail_part
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with_section ::=

with definition_identifier {, definition_identifier} ;
procedure_or_function_heading ::= procedure heading | function _heading

definition_unit ::=
definition_name_part ; definition_specification_part end .

definition_name_parn ::= definition jdentifier

definition_specification_part ::=
[with_section] definition_detail_part

definition_detail_part ::=
constant definition_part
| [constant_definition_pari] type definition part

port_specification ::= requires access_interface_declaration
{access_interface_declaration}

access_interface_declaration ::=
identifier list : access_interface_definition ;

window_specification ::= provides access_intérface_declaration
{access_interface_declaration}

ially i ion Hy in ion 2.1

access_interface_definition ::= access_interface_jdentifier
| access_interface_array_description

Partially in Section 2.3, fully in Section 2.14

access_interface_specification_part ;.=
simple_access_interface_specification_part
| composite_access_interface_specification_part
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ially i ion ly i i 1
access_interface_detail part ::=
[read_only_constant_specifications]
| [read_only_constant_specifications] variable_specifications

| f[read_only_constant_specifications] [variable_specifications]
procedure_or_function_heading {procedure_or_function_heading}

Section 2.4

subsystem ::= subsystem_name_part ; subsystem_specification_part
network_implementation_part end .

subsystem_name_part ::= subsystem jdentifier
network_implementation_part ::=
uses template_definition {, template_definition} ;

component {component} [equivalence {; equivalence}]

component ::= component_class identifier : template_identifier
[connection_specification] ;

component_class ::= activity | subsystem | server |
| ida | channel | pool | library

connection_specification ::= ( connection {, connection} )

port_window_connect ::= port_identifier = component_identifier
. window_identifier

system ::= system_name_par ; system_specification_part
system_implementation_part end .

system_name_part ::= system identifier

system_implementation_part ::= uses template_identifier
{, template_identifier} ; component {component}
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ially | ion lly in i

subsystem_specification_part ::= [template_constant_definition]
[window_specification] [port_specification]

connection ::= template_constant_identity
| port_window_connect’| port_port_connect

Partially in Section 2.4 _fully in Section 2.14

template_definition ::= composite_access_interface identifier
| template_identifier

port_port_connect ::= port_jdentifier = port_definition

port_definition ::= boundary_port_identifier
| composite _port_identifier . comprises_identifier

equivalence ::= window_window_equivalence | window_port_equivalence

window_window_equivalence ::= window_declaration = component_identifier

. window_identifier
window_port_equivalence ::= window_declaration = port_definition

window_declaration ::= boundary_window_jdentifier
| composite_window_jdentifier . comprises_identifier

ion 2.

activity ::= activity_name_pan ; activity _specification_part
activity_implementation_part end .

activity_name_part ::= activity identifier

Partially in Section 2.5, fully in Section 2.8

activity_specification_part ::= [template_constant_specification]
[port_specification]
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Partially in Section 2.5. fully in Section 2.8

simple_activity_implementation_part ::= [with_section]
[library_specification] [declaration pari]
compound_statement

Partially in Section 2.5, fully in Section 2.12

activity_implementation_part ::= simple_activity_implementation_part
| composite_activity_implementation_part

Section 2.6
ida_name_part ::= ida_class jdentifier
ida_class ::= channel | ida | pool
access_equivalence ::= renaming_equivalence | simple_equivalence
renaming_equivalence ::=
window_identifier . access_interface _declaration_identifier

= renamed_declaration

renamed_declaration ::=
internal_declaration_jdentifier
| port_identifier . port_declaration_identifier

simple_equivalence ::= window_identifier = port_jdentifier

Partially in Section 2.6, fully in Section 2.8

ida_specification_part ::= [template_constant_specification]
window_specification [port_specification]

ida ::= ida_name_part ; ida_specification_part
ida_implementation_part end .
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simple_ida_implementation_part ::= [with_section]

[library_specification] declaration part

[access_equivalence {; access_equivalencej}]

Partially in ion 2.6, fully in ion 2.1

ida_implementation_part ::= simple_ida_implementation_part
| network_implementation_part

Section 2.7

server_name_part ;.= server jdentifier

Partially in Section 2.7, fully in Section 2.

server == server_name_part ; ida_specification_part
server_implementation_part end .

simple_server_implementation_part ::= [with_section]
[library_specification] declaration part

[access_equivalence {; access_equivalence}]

server_implementation_part ::= simple_server_implementation_part
| network_implementation_part

Section 2.8

system_specification_part ::= [template_constant_specification]

template_constant_specification ::=
constant template_constant_group {template_constant_group}

template_constant_group ::= jdentifier list :
[ array [ integer {, integer } ] of ] standard_scalar type

template_constant_identity ::=
template_constant_jdentifier = template_constant_definition
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template_constant_definition ::=

( constant {, constant} )
| constant
| constant_identifier

Section 2.9

library_interface ::= library_interface_name_part ;
library_interface_specification_part end .

library_interface_name_part ::= library interface identifier

library_interface_specification_part ::= {with_section]
procedure_or_function_heading {procedure_or_function_heading}

library ::= library_name_part ; library_specification_part
library_implementation_part end .

library_name_part ::= library dentifier
library_specification_part ::= [template_constant_specification]
glves library_interface_identifier

{, library_interface_identifier} ;

library_implementation_part ::= [with_section] [library_specification]
library_declarative_part

library_declarative_part ::= [constant_definition_part]
[type_definition part] procedure and function declaration part

library_specification ::= library library_interface_identifier
{, library_interface_identifier} ;

Section 2.12
composite_activity_implemention_part ::=

uses template_definition {, template_identitier} ;
activity_component_part {activity_component_part}
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activity_component_part ::= activity_component_class identifier
: template_jdentifier [activity_connection_specification] ;

activity_component_class ::= root | subroot | library

activity_connection_specification ::= ( activity_connection
{, activity_connection} )

activity_connection ::= template_constant_identity
| sub_element_link | port_port_connect

sub_element_link ::= out_link_ijdentifier = subroot_jdentifier

root ::= root_name_part ; root_specification_part
simple_activity_implementation_part end .

root_name_part ::= root identifier

root_specification_part ::= [activity_specification_part]
[needs_list]

needs_list ::= needs needed_interface {needed_interface}

needed_interface ::=

identifier_list : subroot_interface_identifier ;

subroot_interface ::= subroot_interface_name_part ;
simple_access_interface_specification_part end .

subroot_interface_name_part ::= subroot interface identifier

subroot ::= subroot_name_part ; subroot_specification_part

subroot_implementation_part end .

subroot_name_part ::= subroot identifier

subroot_specification_part ::= activity_specification_part
gives subroot_interface_identifier ; [needs_list]

subroot_implementation_part ::= simple_subroot_implementation_part
| composite_activity_implementation_part
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simple_subroot_implementation_part ::= [with_section]

[library_specification] declaration pan
Section 2,13
access_interface_array_description ::=

array [ simple_type {, simple type} ] of
access_interface_jdentifier

Section 2.14

composite_access_interface_specification_part ::=
comprises comprise_declaration {comprise_declaration}

comprise_declaration ::=

identifier list : access interface_identifier ;

Section 2,15

read_only_constant_specifications ::=

parameter_group {parameter group}

variable_specifications ::=

var parameter_Qroup {parameter_group}
Appendix B
mascot_3_unit ::= definition_unit | interface_unit | template_unit

interface_unit ::= access_interface | subroot_interface
| library_interface

template_unit ::= system | subsystem | activity | server | ida | root
| subroot | library

>
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SYNTAX INDEX

In the list given below, each syntactic category is followed by the section where it is defined. In addition,
each syntactic category is followed by the names of other categories in whose definition it appears. An
ellipsis (...) is used when the syntactic category is or can be a reserved word or symbol. All uses of
parentheses are combined in the form "()". The italicised prefixes used with some terms are deleted here.

access
access_interface_name_part 2.3
access_equivalence 2.6
simple_ida_implementation_part 26,29
simple_server_implementation_part 2.7, 29
access_interface 23
interface_unit Appendix B
access_interface_array_description 2.13
access_interface_definition 2.3, 2.13
access_interface_declaration 2.3
port_specification 2.3
window_specification 2.3
access_interface_definition 2.3, 2.13
access_interface_declaration 2.3
access_interface_detail_part 2.3, 2.15
simple_access_interface_specification_part 2.3
access_interface_name_part 2.3
access_interface 2.3
access_interface_specification_part 2.3, 2.14
access_interface 2.3
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activity
activity_name_part
component_class

o template_unit
RIS

-
activity_component_class

activity_component_part

activity_component_part
composite_activity_implementation _part

activity_connection
activity_connection_specification

activity_connection_specification
activity_component_part

activity_implementation_part
activity

activity_name_part
activity

activity_specification_part
activity
root_specification_part
subroot_specification_part

array
access_interface_array_description
template_constant_group

channel
ida_class
component_class

component

network_implementation_part
system_implementation_part

Appendix A Syntax

25, ...

25

24
Appendix B

2.12 .
2.12

212
2.12

2.12
2.12

2.12
2.12

25, 212
2.5

25
25

25,28
2.5
2.12
2.12

2.13
2.8

2.6

2.4

2.4

2.4
2.4
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component_class
component

composite_access_interface_specification_part
access_interface_specification_part

composite_activity_implementation_part
activity_implementation_part
subroot_implementation_part

compound_statement
simple_activity_implementation_part

comprises
composite_access_interface_specification_part

comprise_declaration
composite_access_interface_specification_part

connection
connection_specification

connection_specification
component

constant
template_constant_definition
template_constant_specification

constant_definition_part

definition_detail_part
library_declarative_part

Appendix A Syntax A-39

2.4
2.4

2.14
23, 2.14

2.12
25, 2.12
2.12

Pascal

25,29

2.14

2.14
2.14

24,28, ..
2.4

2.4
2.4

Pascal, ...
2.8
2.8

Pascal

2.3
2.9
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declaration_part
simple_activity_implementation_part
simple_ida_implementation_part
simple_server_implementation_part
simple_subroot_implementation_part

definition
definition_name_part

definition_detail part
definition_specification_part

definition_unit
mascot_3_unit

definition_name_part
definition_unit

definition_specification_part
definition_unit

end
access_interface
activity
definition_unit
ida
library
library_interface
root
server
subroot
subroot_interface
subsystem
system

equivalence
network_implementation_part

function_heading
procedure_or_function_heading

Appendix A Syntax

A

40

Pascal
25,29
26,29
2.7, 29
2.12

2.3

2.3
2.3

2.3
Appendix B

2.3
2.3

2.3
23

2.3 .
25

2.3
26,29
2.9

2.9
2.12
27,29
2.12
2.12
2.4

2.4

24,214
2.4

Pascal
2.3 g
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gives
library_specification_part
subroot_specification_part

ida
component_class
ida_class
template_unit
ida_class

ida_name_part

ida_implementation_part
ida

ida_name_part
ida

ida_specification_part
ida
server

identifier
access_intertace_array_description
access_interface_definition
access_interface_name_part
activity_component_part
activity_name_part
component
composite_activity _implementation _part
comprise_declaration
definition_name_part
ida_name_part
library_interface_name_part
library_name_part
library_specification
library_specification_part
needed_interface
port_definition
port_port_connect
port_window_connect
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2.9
2.12

26,29, ..
24

2.6
Appendix B

2.6
2.6

2.6, 2.10
2.6, 2.9

2.6
26,29

26,28
2.6, 29
27,29

Pascal
2.13
2.3, 2.13
2.3

2.12

2.5

2.4
2.1.12
2.14

2.3

2.6

2.9

29

2.9

2.9

2.12
2.4, 214
24,214
24
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renamed_declaration 2.6

renaming_equivalence 26 »
root_name_part ’ '2.12”,
server_name_part 27
simple_equivalence 2.6
sub_element_link 2.12
subroot_interface_name_part 2.12
subroot_name_part 2.12
subroot_specification_part ' 2.12
subsystem_hame_part 2.4
system_implementation_part 2.4
system_name_part 2.4
template_constant_definition 2.8
template_constant_identity 2.8
template_definition 24,214
window_declaration 2.4, 2.14
window_window_equivalence 2.4, 2.14
with_section 2.3
identifier_list Pascal
access_interface declaration 2.3
comprise_declaration 2.14
needed_interface 212
template_constant_group 2.8
integer
template_constant_group 2.8
interface
access_interface_name_part 2.3
library_interface_name_part 29
subroot_interface_name_part 2.12
interface_unit Appendix B
mascot_3_unit Appendix B
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library
activity_component_class
component_class
library_interface_name_part
library_name_pan
library_specification
template_unit

library_declarative_part
library_implementation_part

library_implementation_part
library

library_interface
interface_unit

library_interface_name_part
library_interface

library_interface_specification_part
library_interface

library_name_part
library

library_specification
library_implementation_part
simple_activity_implementation_part
simple_ida_implementation_part
simple_server_implementation_part
simple_subroot_implementation_part

library_specification_part
library

mascot_3_unit

needs
needs_list

Appendix A Syntax A-43

29, ...
2.12

2.4

29

2.9

2.9
Appendix B

2.9
29

29
2.9

29
Appendix B

29
2.9

2.9
29

2.9
2.9

2.9

29
25,29
26,29
27,29
2.12

2.9
2.9

Appendix B

2.12
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needs_list
root_specification_part
subroot_specification_part

needed_interface
needs_list

network_implementation_part
ida_implementation_part
server_implementation_part
subsystem

of
access_interface_array_description
template_constant_group

parameter_group
read_only_constant_specification
variable_specifications

pool

component_class
ida_class

port_definition
port_port_connect
window_port_equivalence

port_port_connect
activity_connection
connection

port_specification
activity_specification_parnt
ida_specification_part
subsystem__specification _part

port_window_connect
connection

Appendix A Syntax

A: 44

2.12

2.12
212

212

2.12

2.4
2.6, 2.10
2.11
2.4

2.13
2.8

Pascal
2.15
2.15

2.4
2.6

2.4, 214
24, 2.14
2.4, 2.14

24, 214
2.12
24,28

2.3

25,28
2.6, 28
24,28

2.4
24,28
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procedure_and_function_declaration_part
library_declarative_part

procedure_or_function_heading
access_interface_detail_part
library_interface_specification_part

procedure_heading
procedure_or_function_heading

provides
window_specification

read_only_constant_specifications
access_interface_detail_part

renamed_declaration
renaming_equivalence

renaming_edquivalence
access_equivalence

requires
port_specification

root
activity_component_class
root_name_part
tempiate_unit

root_name_part
root

root_specification_pant
root

server
component_class
server_name_part
template_unit .=
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Pascal
2.9

2.3

2.3, 2.15

2.9

Pascal

2.3

2.3

2.15
23, 2.15

2.6
2.6

2.6

2.6

2.3

212, ..

2.12
2.12

~ Appendix B

212
2.12

2.12
2.12

27,29, ..
2.4
2.7
Appendix B
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server_implementation_part

server

server_name_part
server

simple_access_interface_specification_part
access_interface_specification_part
subroot_interface

simple_activity_implementation_part
activity_implementation_part
root

simple_equivalence
access_equivalence

simple_ida_implementation_part
ida_implementation_part

simple_server_implementation_part
server_implementation_part

simple_subroot_implementation_part
subroot_implementation_part

simple_type
access_interface_array_description

standard_scalar_type
template_constant_group

sub_element_link

activity_connection

subroot
activity_component_class
subroot_interface_name_part
subroot_name_part

template_unit
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2.7, 29
2.7, 29

2.7
27,29

23
23, 2.14
2.12

25,29
25, 2.12
2.12

2.6
2.6

2.6, 2.9
2.6, 2.10

2.7, 29
27,29

2.12
2.12

Pascal
2.13

Pascal
2.8

2.12
2.12

212, ...

2.12

2:12 °
2.12

Appendix B
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subroot_implementation_part
subroot

subroot_interface
interface_unit

subroot_interface_name_part
subroot_interface

subroot_name_part
subroot

subroot_specification_part
subroot

subsystem
component_class
subsystem_name_part
template_unit

subsystem_name_part
subsystem

subsystem_specification_part
subsystem

system
system_name_part

template__unit

system_implementation_part
system

system_name_part
system

system_specification_part
system

Appendix A Syntax- A- 47

-2.12

2.12

2.12
Appendix B

2.12
2,12

2.12
2.12

2.12
2.12

24, ..

2.4

2.4
Appendix B

2.4
2.4

24,28
2.4

24, ..
2.4

Appendix B

2.4
2.4

2.4

2.4

2.8

2.4
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template_constant_definition
subsystem_specification_part
template_constant_identity

template_constant_identity
activity_connection
connection

template_constant_group
template_constant_specification

template_constant_specification
activity_specification_part
ida_specification_part
library_specification_part
system_specification_part

template_definition
composite_activity_implementation_part
network_implementation_part

template_unit
mascot_3_unit

type_definition_part
definition_detail_part
library_declarative_part

uses
composite_activity _implementation_part
network_implementation_part
system_implementation_part

var

variable_specifications

variable_specifications
access_interface_detail part

Appendix A Syntax ‘A-48

. 2.8

24,28
2.8

2.8 -
2.12
24,28

2.8
2.8

2.8
25,28
26,28
2.9
2.8

2.4, 2.14
2.12
2.4

Appendix B
Appendix B -

Pascal

23
2.9

2.12
2.4
2.4

2.15

2.15
2.3, 2.15 ' °
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window_declaration
window_window_equivalence
window_port_edquivalence

window_window_equivalence

equivalence

window_port_equivalence
equivalence

window_specification
ida_specification_part
subsystem_specification_part

with
with_section

with_section
definition_specification_part
library_implementation_part
library_interface_specification_part
simple_access_interface_specification_part
simple_activity_implementation_part
simple_ida_implementation_part
simple_server_implementation_part
simple_subroot_implementation_part

(0

activity_connection_specification
connection_specification

template_constant_definition

access_interface_array_description
activity_connection_specification
composite_activity implementation_parnt
connection_specification
library_specification
library_specification_part
network_implementation_part
System_implementation _part

Appendix A Syntax A - 49

24,214

24,214
24, 2.14

2.4, 2.14
24,214

2.4, 214
24,214

23
26,238
24,28

2.3

2.3
23
2.9
2.9

- 23

25,29
2.6, 29
27,29
2.12

2.12
2.4
2.8

2.13
2.12
2.12

2.4

2.9
2.9
2.4
2.4
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template_constant_definition
template_constant_group
with_section

access_interface
activity

definition_unit

ida

library
library_interface
port_definition
port_window_connect
renamed_declaration
renaming_equivalence
root

server

subroot
subroot_interface
subsystem

system
window_declaration

window_window_equivalence

activity_component_part
access_interface_declaration
component
comprise_declaration
needed_interface
template_constant_group

access_interface
access_interface_declaration

activity

activity_component_part

component
composite_activity_implementation_part
comprise_declaration

definition_unit

Appendix A Syntax ~A-50

2.14

2.8 -

28
23

2.3

2.5

2.3

2.6, 29
2.9

2.9

2.4, 2.14
2.4

2.6

2.6

2.12
27,29
212
2.12

2.4

2.4
24,214
2.4, 2.14

2.12
23
2.4
2.14
2.12
2.8

2.3

2.3
25

2.12
2.4 °
2.12

2.3
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ida 2.6, 29
library 2.9
library_interface 2.9
library_specification 2.9
library_specification_part 2.9
needed_interface 2.12
network_implementation_part 2.4
root 2.12
server 2.6,29
simple_ida_implementation_part 26,29
simple_server_implementation_part 27,29
subroot 2.12
subroot_interface 212
subroot_specification_part 2.12
subsystem 2.4
system 2.4
system_implementation_part 2.4
with_section 2.3
port_port_connect 24,214
port_window_connect 2.4
renaming_equivalence 2.6
simple_equivalence 2.6
sub_element_link 2.12
template_constant_identity 2.8
window_port_equivalence 24,214
window_window_equivalence 24,214
[
access_interface_array_description 213
template_constant_group 2.8
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(7))
E o o w
USE OF KEYWORDS E W W [ >
w > > 5 o &% r & 3
e g:Hz: Bt
oo £ O Z O = o 3
4
S | Definition - - - - - - O+ - -
o
2 |Simple Access Interface e P
S | Subroot Interface - - - - - - O+ - -
g Library Interface - - - - - - O+ - -
§ Composite Access Inteface - - - - - 1+ - - -
Q.
(7))
Specification Implementation
Dependencies Dependencies
Simple IDA * 0+ 1+ 0+ - - - 0+ - O+
@ Simple Activity 0+ - 0+ - - - 0+ - 0+
g Simple Root 0o+ - o+ - 0+ - 0+ - O+
= S|mp[e Subroot 0+ - 0o+ 1 O+ - 0+ - 0+
:% lerary 0+ - - 1+ - - 0+ - 0+
Q.
g Composite IDA  * 0+ 1+ 0+ - - - - 1+ 0+
-
Composite Activity 0+ - 0+ - - - - 1+ 0+
Composite Subroot o+ - 0+ 1 0+ - - 1+ 0+
Subsystem 0+ 0+ O+ - - - - 1+ 0+
System o+ - - - - - - 1+ 0+
- = Prohibited 1 = One and only one

1+ = One or More

O+ = Zero or more

* Channel, Pool and Server have identical characteristics
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DEFINITION OF GRAPHICAL CONVENTIONS

The purpose of documentation is to convey information to the reader. One technique for achieving this is
the use of diagrams. The Mascot definition contains equivalent graphical and textual design
representations. Conventions are defined for annotating the diagrams in the graphical representation so
that they reflect all but the program code of the corresponding modules. However, a diagram containing
too much detail can actually convey less information than a less detailed diagram. The optimum level of
detail could well depend on the purpose for which the diagram is intended. Design and implementation
documents, for example, form two relatively independent sets. Documents may be explanatory or
definitive in purpose. In the course of design, omission of detail may reflect the postponment of

decisions.

The definition recognises sufficient variability in the use of the standard graphic conventions to allow for
local variance and for the desirability of employing different levels of detail for different purposes provided
that consistency is maintained within sets of related documents.

Symbology

Symbols are introduced, in the appropriate sections of the Handbook, for the various entities employed
in Mascot designhs. This appendix presents the complete set of symbols and is to be regarded as the
definitive document for this purpose.

Simple Forms

The simple forms of activities, channels, pools, generalised IDAs, servers and subroots,
together with roots, constitute the elements and subelements of a Mascot design (see
Appendix B). They are symbolised as follows:

Simple Activity
Root
Simple Subroot
In accordance with long established Mascot practice, the circular form should normally be used. The
rounded rectangular form is appropriate where it is desirable to provide additional space for the
presentation of information within the boundary of the symbol. This might be the case, for example, with

an activity, root or subroot which possesses an unusually large number of network and/or
subelement connections.
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Simple IDA

Pool

Channel

The channel and pool symbols are based on those used in earlier versions of Mascot. These have
been modified so that, like the activity symbols, they allow information to be presented within the
boundary of the symbol. They may be used where an IDA conforms to the accepted definition (see
Section 2.6) of one of these special forms. The rectangular symbol is a generalised form of IDA. it may be

used to represent any IDA but must be employed where the IDA in question is not strictly a channel or
a pool.

Simple Server

The symbol which represents a server is a combination of those representing activities and IDAs. It
thus emphasises the hybrid nature of the server which behaves in the passive manner of an IDA as far
as network interactions are concerned but, by virtue of being permitted to contain interrupt handlers,

also possesses an active aspect. If the device to which the server is connected is also to be depicted on
the diagram, it should be in the form shown below:

Device

NNABEEEREDEEES (with connection

to server)

The hatched rectangle may, however, may be replaced by a schematic drawing of the device.

Composite Forms

The same symbol is used to represent a template and a component. By definition, a component
must be part of a composite template. This may be a system or a subsystem:
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__System

Subsystem

which is symbolised by any smooth closed curve, drawn with a thicker line than that used for the simple
entities, but should normally take the form of a rounded rectangle.

For the composite forms of activity, IDA, server or subroot, the symbols used are the same as for
the simple forms but normally drawn with thicker lines as they are throughout the Handbook.

Composite Activity

Composite Subroot

Composite IDA
Pool

Channel

Composite Server

Alternatively, for all the composite forms, double lines, or some other convenient locally defined means
of making the distinction, may be used. The same convention should be employed to denote
composite components where the information is known and is considered relevant.

Paths, Ports and Windows

Symbols, illustrated below, are defined for simple ports and Windows and the path which joins them.

The lines which denote data paths may, if desired, be drawn as curves. Arrowheads are used to denote
the direction of data flow and should normally be shown.

Appendix D Graphical Conventions D-3 Mascot Version 3.1



Path
Port Window

There are special rules governing the placement of ports and windows in servers:

5

!

The windows should appear on the straight edge opposite to the semi-circular end of the symbol and
the ports on either of the two adjacent sides.

Where paths pass through the boundaries of enclosing composite design entities, port or window
symbols and data flow arrowheads are repeated at each boundary:

Path through

& g Constructional

Boundaries

Since any number of ports, of the appropriate type, may be connected to a single window, diagrams
frequently depict paths which merge. Normally, these lines are joined at a window. However, where it is
more convenient, they may be merged at an intermediate point provided that merging is in the direction
from port to window. This is illustrated in the diagram below in which the direction of data flow has
deliberately been omitted as irrelevant to the point at issue.

Merging
Paths

Subelements and Subelement Links
The subelement links, between the components of a composite activity, are represented
graphically as follows:
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" Root
W, Subelement Link
Simple Subroot

where the hollow arrowheads indicate the direction of procedure invocation and may be repeated where

the link crosses enclosing boundaries:

Subroot Link
N through
4 Constructional
Boundaries

Links may be merged, in a manner similar to that employed for paths, in the direction of procedure

application:

Merging

Subelement Links

Composit Paths, Ports and Windows
For the template in which a composite access interface is decomposed into its constituent

interfaces, spécial symbols are defined to denote the composite ports and windows. At this level
of decomposition, the composite path should be denoted by a thick (or double) line, where this is

considered relevant:
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composite composite path

port

composite
window

The port and window at each end of a composite path may be represented by a proportionately
larger than normal port or window symbol if so desired.

Composite Port

The internal structure of a composite port is represented by a semi-circle, drawn with a thick line, and
with its component ports illustrated inside the boundary.

—1

Composite Window

The internal structure of a composite window is represented by a rectangle, drawn with a-thick line;
and with its component windows illustrated inside the boundary.
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Ann ion

A template is annotated inside the symbol by the template name. A component of a network is

annotated inside the symbol by the corresponding template name and on the outside by the
component name. The example given below shows a subsystem template called merge . its
components are called a7, a2 and ch and are derived from the templates act 71, act_2 and
chan , respectively. | i

A path is annotated by the name of the corresponding access interface and windows and ports by
their local names:

port access interface : window
identifier identifier

A subelement link is annotated with the name of the corresponding subroot interface and the
active end of the link by its local name:

subroot interface
subelement |\ | |
link ,
identifier I V I i

Where a component or template possesses a template constant, the name, type and value of the
constant may be shown on the diagram:
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data type | constant

value identifier

and the value may be depicted as being supplied across one or more enclosing boundaries:

constant
data type [identifier

constant
identifier

'value’

Annotation Options
In the sense of their inclusion in a Mascot diagram, template names and path names are essential but
component names and window/port names are less important. This is especially so where no
ambiguity arises as, for example, where the components are all derived from different templates or
the windows or ports of a template or component are of different (access interface) types.

Extensions

In addition to the name associated with an access Interface, it may be considered desirable to
annotate a path by the name of the data objects and/or the type of the data objects that flow along the
path. This could be indicated by the name of the definition module which defines the type of the
object.

Port, window and interface qualifiers can also be used to annotate the appropriate features of a

diagram.

Although intended to denote only one level of decomposition at a time, it is sometimes useful to show
multiple levels of decomposition in one diagram. The consequent increase in the amount of information
1o be conveyed would probably necessitate showing only a subset of that available.

The Mascot diagram can give a one-to-one representation of the information contained in the
specification part of a simple module. It is therefore biased towards design expression. However,
during design derivation, it may be highly desirable to use 'Mascot-like' diagrams which use a subset of
the standard conventions. For example, a path may be identified between two components before
the decision is made as to which component possesses the port and which the window (which

possesses the 'motive power’). This is acceptable.
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For information purposes only, it may be desirable to generate Mascot diagrams showing only a subset of
the components (for example omitting pools or channels or servers). Again this is acceptable
provided the diagrams are described as such.
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CLASSIFIED SUMMARY OF MASCOT FEATURES

Introduction

The purpose of this appendix is to provide a summary of all the Mascot features defined elsewhere in the
Handbook and to identify those parts of the definition which are mandatory in any Mascot 3 development
environment. These mandatory features have been selected on the basis of a standardisation
philosophy whose objectives are to enable products to be assessed for conformance with the definition
and to enable designs to be portable between Mascot development environments. This philosophy is

presented below.
Philosoph f _Standardisation

As the first element in the philosophy of standardisation, every effort has been made to define all the
Mascot features in an unambiguous manner. Secondly, a mandatory subset of the definition has been
identified. This is reflected in the order of presentation of material in the Handbook sections on the
design representation facilities and is summarised for reference at the end of this appendix. All mandatory
features must be provided by any Mascot 3 development environment. Where features not included in
this subset are implemented, they are required to conform {o the definition given in the Handbook.

The third element of the philosophy is the requirement that a development environment include
adequate linguistic support for the features which it implements. The design representation language
used in the Handbook provides definitive guidance as to what concepts need to be expressed but need
not necessarily be literally implemented. The linguistic support may take the form of an Additional
Features design language (cf AF Coral 2 for Mascot 2} for the programming language or languages
supported by the development environment. This should be considered the preferred option as it will
reduce the resources required to verify design compliance of Mascot software and will enhance software
portability.

Alternatively, the Mascot 3 module classes could be implemented in a native programming language,
without additional features, by a code of practice. In this case the mapping of each characteristic of each
module class onto the programming language must be defined as part of the code of practice. This
should be done in a form which provides a suitable basis for validation testing, for transporting a design
and for design conformance checking or other verification of application software designs.

The fourth element of the philosophy is that module classes do not need to be supported in full. A
mandatory subset of characteristics has been defined for each class. Thus the definition contains
characteristics which not all development environments will implement even within the mandatory
classes. This element of the philosophy guarantees a minimum level of portability as it defines the
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minimum characteristics of all Mascot 3 development environments. It also defines the minimum set of
characteristics which must be provided for each non mandatory module class implemented. Where a non
mandatory characteristic is supported it ‘must be supported in all appropriate module classes. It is
recognised that design authorities may wish to control or restrict the use of certain facilities, such as direct
data visibility, and therefore warning reports of their use may be generated by a development
environment.

The fifth and final element of the philosophy concerns extensions to Mascot 3. It is recognised that the
definition cannot be maintained, either in scope or in functionality, in advance of users' requirements and
that therefore certain applications will need facilities added to their development environments that are
not covered in the Mascot 3 definition. implementing a superset of the facilities, whilst not encouraged, is
therefore permitted. Implementors must define fully any extensions provided and must declare them to
any testing authority so that they may be documented in a test report. Such additional features must not,
of course, interfere with or partially overlap any of the defined facilities.

The Mandatory Subset

The mandatory facilities have been divided into three categories: module classes, commands and
primitives. The mandatory facilities specified below must be provided by all Mascot 3 development
environments. However, users are not obliged to use all the mandatory features. Thus, for example, all
development environments must support the use of the WITH keyword within access interfaces.
However, it is possible to have a syntactically correct access Interface which does not use the feature.
It is not required that support for unused features be present in target systems.

(a) Module Classes

The diagram of Appendix B shows the complete set of Mascot module classes, the mandatory subset
being highlighted by means of a shadowed font. All Mascot 3 development environments must provide
these classes. The first of the tables below specifies all the defined characteristics of the subset and
identifies, with an M for mandatory, those features which it is obligatory to provide.

The second table specifies all the features of the non-mandatory module classes. Mascot 3 development
environments which support any of these classes must provide support for use of the characteristics
identified with an M. '

The third table specifies the features of particular module classes which become mandatory when specific
non mandatory features are supported.

(b) Commands
It is mandatory to provide facilities for registration, introduction, enrolment, building, initialisation and
starting which accord with the Mascot definition. They may be provided in one of two ways: either
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explicitly through a command interpreter in the form shown in the fourth tabnle'bel"ow, or by h‘sé'of other
user facilities such as those provided by most computer operating systems. When a.command interpreter .
is not being used the documentation of the Mascot development environment must define explictly how

the functions are provided.

(c) Primitives
There are no mandatory primitives in Mascot 3. However, there are inter-dependencies between the
primitives described in the Handbook. The fifth of the tables below divides these primitiVés into sets
which are required to be implemented together as a group. It also indicates which of the other primitive

groups are also mandatory for each group supported.
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1. CHARACTERISTICS OF MANDATORY MODULE CLASSES
CHARACTERISTIC

WITH

Procedure specifications
Variable specifications
Read-only data constants
Qualifiers

ACCESS INTERFACE

DEFINITION o WITH
Symbolic constants
M Type definitions

IDA CONSTANT

PROVIDES

REQUIRES

WITH

LIBRARY

Window qualifiers

Port qualifiers

Data area

Access procedures

Access data

Window-to-local equivalence

Window-to-remote equivalence

Window-to-port equivalence

Arrays of CONSTANTs

Arrays of ports

Arrays of windows

M Initialisation procedure
Reset procedure
Termination procedure

SERVER CONSTANT

PROVIDES

REQUIRES

WITH

LIBRARY

Window qualifiers

Port qualifiers

M Dataarea
Handler

M Access procedures
Access data
Window-to-local equivalence
Window-to-remote equivalence
Window-to-port equivalence
Handler-to-interrupt connection
Arrays of CONSTANTSs
Arrays of ports
Arrays of windows

M Initialisation procedure
Reset procedure
Termination procedure
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MODULE CLA

ACTIVITY

SUBSYSTEM

SYSTEM

Appendix E Summary of Features
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CHARACTERISTIC

CONSTANT
REQUIRES

WITH

LIBRARY

Port qualifiers

Arrays of CONSTANTSs
Arrays of ports

CONSTANT
PROVIDES
REQUIRES

USES

Window quaiifiers

Port qualifiers

Arrays of CONSTANTs
Arrays of ports

Arrays of windows
Library instantiation

IDA components
SERVER components
ACTIVITY components

"SUBSYSTEM components

Window-to -window equivalence
Window-to-port equivalence

CONSTANT

USES

Library instantiation

IDA components

SERVER components
ACTIVITY components
SUBSYSTEM components
Arrays of CONSTANTs

1
()]
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2. CHARACTERISTICS OF NON-MANDATORY MODULE
CLASSES

MODULE_TYPE CHARACTERISTIC

COMPOSITE ACCESS INTERFACE M COMPRISES

SUBROOT INTERFACE M WITH

Procedure specifications
Variable specifications
Read-only data constants

LIBRARY INTERFACE M WITH
Procedure specifications
Read-only data constants

COMPOSITE IDA CONSTANT
PROVIDES

REQUIRES

USES

Window qualifiers

Port qualifiers

Arrays of CONSTANTSs
Arrays of ports

Arrays of windows

Library instantiation

IDA components
Window-to-window equivalence
Window-to-port equivalence

COMPOSITE ACTIVITY CONSTANT
REQUIRES

USES

Port qualifiers

Arrays of CONSTANTSs
Arrays of ports

Library instantiation
ROOT components
SUBROOT components

ROOT CONSTANT
REQUIRES

NEEDS

WITH

LIBRARY

Port qualifiers

Arrays of CONSTANTs
Arrays of ports
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MODULE CLASS

SUBROOT

COMPOSITE SUBROOT

LIBRARY

COMPOSITE SERVER
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CONSTANT
REQUIRES

GIVES

NEEDS

WITH &

LIBRARY

Port qualifiers -

Arrays of CONSTANTs
Arrays of ports

CONSTANT

- REQUIRES -

GIVES

NEEDS

USES

Port qualifiers

Arrays of CONSTANTSs
Arrays of ports
SUBROOT components
Library Instantiation

CONSTANT

GIVES

WITH

LIBRARY

Arrays of CONSTANTSs

CONSTANT
PROVIDES
REQUIRES

USES

Window qualifiers

Port qualifiers

Arrays of CONSTANTs
Arrays of ports

Arrays of windows
Library instantiation
IDA components
SERVER components

Window-to-window equivalence

Window-to-port equivalence
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3. MANDATORY GROUPS OF MASCOT 3 MODULE CLASSES

Group Name

COMPOSITE ACTIVITY

COMPOSITE SUBROOT

COMPOSITE ACTIVITY
SUBROOT INTERFACE
ROOT

SUBROOT

COMPOSITE SUBROOT

LIBRARY LIBRARY INTERFACE
LIBRARY template
Appendix E Summary of Features E-8

Implement as a group

implement COMPOSITE
ACTIVITY group

Support keyword
LIBRARY

Support library
instantiation at least in
SYSTEM
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4. MANDATORY GROUPS OF MASCOT 3 OPERATIONS

Group Name Group
Status progression REGISTER
INTRODUCE
ENROL
Building BUILD
Execution Control INITIALISE
START
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5. GROUPS OF MASCOT 3 PRIMITIVES

Group Name

Control Queue

Checking

Basic Interrupt

Interrupt Connection
Interrupt Disconnection

Timing
Timeout

Co-operative Scheduling
Activity Termination
Error Handling

Monitoring

Execution Control

Group

JOIN
LEAVE
WAIT
STIM

CHECK

STIMINT
ENDHANDLER

CONNECT
DISCONNECT

TIMENOW
DELAY

WAITFOR

SUSPEND
ENDROOT

GETERROR
ERROR
FATAL_ERROR

SELECT
EXCLUDE
RECORD

HALT
RESUME
START
TERMINATE
RESET

Control Queue

Control Queue

Basic Interrupt

Interrupt Connection

Control Queue
Timing

If any primitive in a group is implemented then all primitives in that group and in any ‘groups required’ must

be implemented.
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MASCOT GLOSSARY
Access Interface o A speclfiéation d_ef_ining the possible interactions

(eg procedure specifications) between the components connected by a path. In its composite
form it comprises a set of other access Interfaces.

Access Procedure - Aprocedure, implemented in an IDA or server, and
corresponding to a procedure heading specified in an access interface to which a window
specification of the IDA or server refers. It provides a network interaction along a connected path of

the appropriate type.

Activity The Mascot design entity representing a single
independent information processing element. An activity module is a template which may be used
to create activity components each of which is an independently scheduled single sequential
program thread, conceptually executing in parallel with other activities. An activity usually specifies
one or more ports each of which defines a connection to be established from the activity to a
window on a neighbouring component in the execution environment. A composite form of .
activity is provided for sequential program decomposition in terms of subelements known as roots

and subroots.

Building The process by which executable software is created A

from its defining templates, which must have achieved fully enrolled status.

Channel A special case of an IDA having destructive read

properties. The channel provides facilities for transmission of information.

Class ’ The category of a Mascot design entity. Design
entitiés are grouped intb specifications and templates. Specifiéatlons comprise the classes:
access Interfacé, 'subroot Interface, library interface and definition. Templates
comprise the classes: systenﬁ, subsy“stem,‘activity, channel, pool, IDA, server, root,
subroot and library.

Component A constituent of a composite template. The type
of a component is identified by the name of the template which is used in the definition of the

component.
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Composite A composite module is one which is further
decomposed in terms of lower level modules. For specifications the decomposition is in terms of
the same class of specification. For templates the decomposition depends on the class of the
template. The only specification with a composite form is the access interface. The following
templates have composite forms: system, subsystem, IDA, server, activity, subroot.

Context That part of the executable software which supports
(but is not part of) the application software defined by the system template. it implements the
facilities specified in the context interface.

Context Interface A special form of specification which defines the
facilities offered (implicitly) by the context to all applications modules. It is usually a collection of
other specifications.

Control Queue An object, declared in an IDA, which may be operated

upon by a set of primitives to ensure mutual exclusion and cross-stimulation between activities. The
relevant primitives are CHECK, JOIN, LEAVE, STIM, STIMINT, WAIT, WAITFOR.

Definition A specification defining a set of data types and
named constants for use by simple Interfaces and simple templates. It may refer to other
definition modules.

Element A fundamental Mascot design entity: simple
activity, simple IDA, simple server, composite activity.

Enrol The enrol operation checks that the name part,
specification part and implementation part of a template module have been defined and
are legal. It may involve using information in the specification parts of the modules to which it
refers. If the checking is successful, then the module will be accorded partially or fully enrolled
status, depending upon the type of the module itself and on the status of the modules to which
it refers.

Fully Enrolled A status value achieved by a template module as
a result of a successful enrol operation. For a composite template, the status indicates that all
the templates which define the module's components have also achieved fully enrolled
status.
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Fully Introduced A status value achieved by a module as the result
of a successful Introduce operation. The status indicates that all specification modules
referred to in the module’s specification part have also achieved fully introduced status.

Handler A routine invoked as a direct consequence of a

hardware interrupt. All handiers are located within servers.

IDA The Mascot design entity representing a passive
independent information storage or information transmission element. In the simple form it contains
both shareable data and the access mechanisms which can operate on this data; these access
mechanisms safeguard the integrity of information within or passing through an IDA and sustain
information propagation for intercommunication between activities. An IDA module is a template
which may be used to create IDA components each of which allows several independently
scheduled single sequential program threads to be simultaneously active or suspended within the
IDA. An IDA specifies one or more windows defining the connections which can be established from
ports on neighbouring components in the execution environment. An IDA may also specify ports
each of which defines a connection to be established from the IDA to a window on a neighbouring
component; such ports allow data to be projected from one IDA to another with no intervening
activity. A composite form of IDA is provided for network decomposition in terms of internal IDAs.

Implementation part The part of a template module which defines the
internal details of the template. For simple tempiates it defines the data and algorithms together
with references to the required definitions and library interfaces. For composite templates it
defines the components and their interconnections. For simple templates this corresponds to
the information necessary to achieve fully enrolled status. For composite templates it
corresponds to the information required to achieve at least partially enrolled status.

Interface A specification for a connection between two
components. There are three types of interface: access interface, library interface, subroot
interface. An interface may refer to one or more definitions to import supplementary

specifications.

Introduce The introduce operation checks that the name part

and specification part of a module have been defined and are legal. If the checking is
successful, then the module will be accorded partially or fully introduced status, depending
upon the status of the modules to which it refers in its specification part.
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Library The Mascot design entity implementing the set of
procedures specified in one or more library Interfaces. This module supports procedural
decomposition of simple templates and must be capable of multi threaded operation. 1t differs from
an IDA which is also multi threaded in that there is no interaction between the threads.

Library Interface A simple specification defining the operations

which a library makes available to any simple template.

Link A control flow connection from one subelement to
another. Its diagrammatic representation is a line which carries a hollow arrowhead to indicate the
direction of invocation. The type of a link is a subroot interface which defines the nature of the
interactions between these subelements.

Mascot Database . The collection of all Mascot modules, their status

and their derived products known to a particular support environment.

Module A textual unit (or possibly a set of such units)
representing a specification or a template. It possesses an explicit class which refiects its
contents. In their completed form, all classes of module have a hame part and a specification
part, and in addition the template modules have an implementation part.

Name part The section of a module which defines the class

and name of the template or specification which the module represents.

Network A set of interconnected Mascot components
(elements and other networks) which constitutes the whole (system) or part (subsystem,
composite IDA, composite server) of a Mascot application.

Partially Enrolled A status value given to a composite template
module for which the enrol operation was successful, but which failed to achieve fully enrolled
status. It indicates that at least one of the templates which define the module's components
has not yet achieved fully enrolled status.

Partially Introduced A status value given to a module for which the
introduce operation was successful, but which failed to achieve fully introduced status. It
indicates that at least one of the specification modules referred to in its specification part has
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not yet achieved fully introduced status.

Path A data flow connection between a port of one
component and a window of another. Its diagrammatic representation is a line which normally
carries a solid arrowhead to indicate the direction of data flow. The type of a path is an access
interface which defines the nature of the interactions between these components. A
composite form of path is available, where the type of the path is a composite access

interface.

Pool A special case of an IDA having destructive write

properties. Data in a pool is overwritten on a write operation but may be read repeatedly.

Port A named reference to an access interface by
means of which a template expresses its requirement for interactions with other templates.
Externally it expresses a connectivity constraint of the template. Internally, the port name is used as
a means of selecting between ports. A port is the active end of a path. Its diagrammatic
representation is a small filled circle on the boundary of a component. A composite form of port is

available.

Registered A status value indicating that the name part of a

module has been defined and is legal.

Root The Mascot design entity representing the
subelement which contains the initial entry point of a composite activity. A root usually specifies
one or more subroot interfaces which define connections to be established to subelement
components in the same activity. A root may also specify one or more ports each of which
defines a connection to be established from the root component to a port of the enclosing
activity. A root module is a template which may be used to create root components.

Server The Mascot design entity representing a single
independent device handling element; it is the only form of design entity which can be used for this
purpose. It has all the features of an IDA and in addition may contain one or more handler routines to
be invoked as a direct consequence of hardware interrupts. A server module is a template which
may be used to create server components each of which allows several independently scheduled
single sequential program threads to be simultaneously active or suspended within the server. A
composite form of server is provided for network decomposition in terms of internal servers and
IDAs.
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Simple A simple module is one which is not further
decomposed in terms of lower level modules. Some templates and all specifications have a
simple form which is described in detail under the appropriate heading.The following templates
have simple forms: activity, IDA, server, root, subroot, library.

Specification A module defining an interface or definition. All

have a simple form but only an access interface may be composite.

Specification part The part of a module which specifies the external
view of the template or specification which it represents. In the case of a specification, it
completes the module. In the case of a template, it contains sufficient information for
components of that type to be included in a composite template. it also constrains the
implementation part. it corresponds to the information required to achieve at least partially

introduced status.

Status An attribute associated with a module indicating the
degree of progress made in the definition and checking of the module and of any other modules to
which it refers, and hence indicating its fithess for use by other modules. Five status values are
defined: registered, partially introduced, fully introduced, partially enrolled and fully
enrolled.

Subelement A Mascot entity supporting sequential decomposition

of an element or subelement (ie a root or subroot}.

Subroot The Mascot design entity representing a
subelement. A subroot specifies a single subroot interface defining the connections which may
be established from other subelement components in the same activity. A subroot may specify
one or more subroot interfaces which define connections to be established to other
subelement components in the same activity. A subroot may also specify one or more ports
each of which defines a connection to be established from the subroot component to a port of the
enclosing activity. A subroot module is a template which may be used to create subelement

| components. A composite form of subroot is provided for decomposition in terms of internal
subroots.

Subroot Interface A simple specification defining the possible

interactions (eg procedure specifications) between the components connected by a link.
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Subsystem A network representing part of a Mascot application.
Subsystems may possess both ports and windows and may therefore communicate directly with
each other. Where a subsystem contains no actlvity, either directly or indirectly, it is functionally
identical to a composite IDA or a composite server.

System A network representing the outermost level of
software description. When supported: by all the modules referred to explicitly or implicitly, it
constitutes a complete Mascot application software description.

Template A pattern from which components may be created
during building. The creation of these components is controlled by definitions within composite
templates.

Template Constant A constant, named in the specification part of a
template, for use within the implementation part. Its value is usually supplied when
components to be created from the template are named in a (higher level) composite
template. in the case of a system template, the value is supplied as part of the building

process.

Window A named reference to an access interface by
means of which a template expresses the interactions it provides for use by other templates.
Externally, it expresses a connectivity constraint of the template. Internally, the window name is
used as a means of allocating internal features between windows. A window is the passive end of a
path. Its diagrammatic representation is a small filled rectangle on the boundary of a-component. A
composite form of window is available.
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