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AUTHOR'S PREFACE

'Lastly, I stand ready wlth a pencll ln one hand, and a sponge ln

the other, to add, alter, lnsert, expunge, enlarge and delete,

accordlng to better Inîormatlon. And lt these my palns shall be

tound worthy to pass a second lmpresslon, my taults t w¡il conless

wtth shame, and amend wlth thankÍulness to such as wlll

contrlbute clearer lnteillgence unto me'

Preface to 'The H¡story of the Worth¡es of England'

Thomas Fuller (f 662)

Such, as technical author of the Official Handbook of Mascot Version 3.1, has been my attitude over the

past two and a half years to the scientific worthies of the Mascot 3 Definition Team; albeit my pencil and

sponge are of an electronic variety. Some sections of the handbook, having stimulated particular

controversy among the Team or having been more than normally misunderstood by me or having been

especially savaged by the pre-publication reviewers, have been'found worthy'of a whole long series of

impressions. But it has allbeen wellworth the effort from my point of view. When, in 1984, I commenced

work as a freelance lecturer and writer, I could hardly have expected the good fortune of becoming

involved in such a stimulating and rewarding project. I am grateful to all concerned.

I would like to express my thanks, first of all, to the Royal Signals and Radar Establishment for financing

the task of writing the Handbook. My gratitude is specially due to Ken Hayter and Keith Oliverwho shared

the job of Technical Authority for the project. I would also like to thank the Roya! Military College of

Science, and particularly Tony Sammes as head of the Computing Science Group, for performing project

administration. To the members of JIMCOM I am greatly obliged for their faith in ratifying my original

appointment as author and for their forbearance in accepting a series of revised target completion dates

which seemed at times to be diverging to infinity. I would like to thank all those who, in the course of the

limited public review of the draft Handbook, provided helpfulcomments leading to clearer exposition and

pointed out many typographic, grammatic and orthographic errors.

Finally, to the members of the Definition Team itself and especially to Hugo Simpson, Ken Jackson, Tony

Riddiough and BillTaylor, I owe an immense debt of gratitude. Throughout my period of involvement i

the work, they have striven to communicate their ideas to me and to correct my misconcept¡ons w¡th

unfailing patience. While rightly insisting that the concepts of Mascot 3 be presented to the world with

technical accuracy and appropriate relative emphasis, they have allowed me to take full responsibility in

matters of presentation and have tolerated my occasional stylistic idiosyncrasy with commendable

resignation.

George Bate

Wantage, May 1987
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PREFACE

The development of complex, computer based systems poses major problems to the people involved.

These problems encompass both managerial aspects, concerned w¡th control of the overall

development, and technical aspects concerned with the interaction of the individually designed

components of the system. Mascot offers a wide-ranging and homogeneous approach to the

development of such systems. lt provides signíficant contributions to the solution of both managerial and

technical problems.

Historical Background

Mascot was originated by Ken Jackson and Hugo Simpson over the period 1971 to 1975. After the initial

implementation work was completed, the Royal Signals and Radar Establishment (RSRE) formed the

Mascot Suppliers Association (MSA) in order to effect the transfer of Mascot technology into industry.

The MSA, which consisted of individuals from several companies and MOD establishments, produced, in

1978, an'Official Definition of Mascot'. This document described what came to be known, retrospectively,

as Mascot 1 and provided a definitive referencæ for implementors and teachers of Mascot while ideas and

methods continued to evolve.

ln 1980 a sub-committee of the MSA, drawing its membership from the following:

Admiralty Surface Weapons Establishment

Royal Military College of Science

Royal Signals and Radar Establishment

Computer Analysts and Programmers (Reading) Ltd

Ferranti Computer Systems Ltd

GEC Computers Ltd

Software Sciences Ltd

Systems Designers Ltd

drafted a much rnore comprehensive presentation of the Mascot concepts as'The Official Handbook of

Mascot'. This handbook, which was reissued in 1983, constitutes the standard reference for Mascot 2

and has received an extensive distribution. A companion volume to the 1983 issue, 'Additional Features

to Integrate Mascot with Coral 66', provides a formal syntactic description of a set of extensions to the

MOD standard programming language which make it a suitable vehicle for Mascot applications. This

language was named AF Coral2.

The drafting of these documents was one of the last actions of the MSA before it was disbanded, having

achieved its major objectives. Responsibility for maintaining the Mascot standard, in so far as it is íntended

)
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for use in government projects, was taken over by the lnter Establishment Committee on Computer

Apptications (IECCA). A joint committee of the MOD and the Dol, IECCA is composed wholly of otficial

representatives. tn order that the liaison with industry and the computing community generally, so

successfully initiated by the MSA, could be maintained and extended, another organisation, the Mascot

Users'Forum (MUF), was set up in 1980. lnformalsymposia, open to allactual and potential Mascot users,

suppliers and supporters, are arranged by the MUF and some 80 official, industrialand academic bodies

have been represented.

To provide a convenient basis for the continued technicaldevelopment of Mascot, IECCA and the MUF

formed, ¡n 1981, the Joint IECCA and MUF Committee on Mascot (JIMCOM). lt is underthe aegis of

JIMCOM that the work on Mascot 3, the subject of this present version of the OfficialHandbook, has been

carried out. This new Mascot definition has been developed by a team in which the following have been

principal contributors:

Lawrence Collingbourne (Systems Designers plc)

Gerry Docherty (YARD Ltd)

Giles Forster (MOD -EOC)

Ken Jackson (Systems Designers plc)

Tony Riddiough (Software Sciences Ltd)

Hugo Simpson (British Aerospace plc)

Bill Taylor (Ferranti Computer Systems Ltd )

The enormous contribution of George Bate who was the technical author responsibte for translating the

ideas from the development team into a consistent, coherent text is gratefully acknowledged.

Acknowledgement is also due for the support of RSRE. Finally the contribution of the people who

commented on the draft versions of the Handbook is gratefully acknowledged.

Handbook Organisat ion and Conventions

This Handbook has been written principally for the benefit of users and potential users of Mascot. The

presentat¡on is therefore. broadly tutorial. However, within this general approach an attempt has been

made to be as helpful as possible both to the implementors of Mascot and to those concerned with

assessing and evaluating the resulting implementations. There are three major sec{ions. The first of

these is introductory, providing the background to the present stage of Mascot development and

presenting, in an informal manner, the main innovations of Mascot 3. Then follows the Official Definition

which is the essent¡al core of the book. lt conta¡ns both descript¡ve passages suitable for those requiring

an overall understanding of the ideas and rather more formal material intended to be used for reference

purposes. Finally, there is a section devoted to guidance in the use of Mascot. lt is of course only through

practical experience that the optimum application of the Mascot 3 features will emerge but the advice

given here reflects the rationale upon which they have been devised.

Preface 0 - 5 Mascot Version 3.1



The new c,oncepts which this handbook introduces into the Mascot philosophy demand an extended

technical vocabulary for their description. Devising acceptable and consistent terminology has not proved

easy. There are a limited number of possible words available (if we reject the idea of coining entirely new

ones) and they are att inseparable from their existing associations in both technical and everyday usage'

The importance of the glossary which appears at the end of the handbook can, therefore, hardly be

emphasised too strongly. lt contains definitions of all the Mascot technical terms. ln order that the reader

will be aware that a word is being employed in a precise sense, all such instarrces are signalled throughout

the Definition by the use of bold type. This will help to make more comprehens¡ble those passages in

which technical terms have had to be used before being fully explained in the text. lt will be advisable,

even for those already familiar with earlier versions of Mascot, to consult the glossary regularly while

reading through the handbook for the first t¡me.

The only other typographical convent¡on is the use ol bold itallc tor text which would othenrise need to

be in quotation marks. Examples include identifiers used in sample program fragments and names

invented for the syntactic elements of the design representation language.

Mascot designs have two parallelforms of representation: graphical and textual. The former presents no

problem here. lts conventions are well defined and are summarised in an appendix. There is no barrier to

the¡r standard use in all Mascot applications. The textual form, however, does raise difficulties. The

Mascot tradition of programming language independence is retained in Mascot 3 even though, for many,

the choice in the past has been 'any language provided it is Coral' and in the future will presumably be
'any language as long as it is Ada*'. Neither of these languages is ideal as a vehicle for expressing the

textualform of the Mascot design representat¡on though e¡ther w¡ll serve in practical use.

The solution adopted has been to invent a design representation language to fulfil a twofold purpose.

First, it serves here to define and explain the design constructs in a rigorous and consistent manner and

can be used for a similar purpose in future publications. Second, it is proposed as the notation in terms of

which practical Mascot 3 designs willactually be devised and communicated. Whlle it is very desirable that

some automat¡c means of translation, such as a pre-processor, should be made available for mapping

these designs ¡nto particular programming languages, there is no implication that this is an essential

prerequisite to the use of Mascot. Expedenced programmers have long recognised that the language'in

which they program' need not be the (rnore or less ¡nadequate) implementation language which has to be

used for other, often non-technical, reasons. The same considerations apply here and the sole criterion

must be, as ¡n the past, that the concepts described in the Mascot Definition are capable of being

expressed in the chosen implementation language.

The design representat¡on language is broadly Pascal-like in that, where a suitable Pascal convention

exists, it has been adopted. This choice was made partly on the grounds that Pascal is widely familiar to

the international comput¡ng community and partly because of its use as the base language in the
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development of lhe NATO preferred programming language, Ada*. The syntax of the language itself has

been defined by means of the type of syntax diagrams first employed by Wrth to describe Pascal. The

autho/s experience of teaching programming languages at a variety of levels has produced a strong

conviction that such diagrams provide the best available means of combining rigour with

comprehens¡b¡l¡ty. A complete set ¡s presented, for ease of reference, in appendix A which also presents

the syntax in BNF together with an index to the Handbook itself. Where dífferences occur between the

syntax diagrams used in the text and the corresponding diagrams in Appendix A, those in the appendix

constitute the full definition.

* Ada is a reg¡stered trademark of the U.S. Government - Ada Joint Program Office
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a)

b)

c)

d)

e)

1"  INTRODUCTION

Mascot is a Modutar Approach to Software Construction Operation and Test which incorporates:

a means of design representat¡on

a method for deriving the design

away of constructing software so that it is consistent with the design

a means of executing the constructed software so that the des¡gn structure

remains visible at run t¡me

facilities for testing the software in terms of the design structure.

Of particular importance in the design representat¡on is the ability to represent, directly, concurrent

functions and the data flows between them. An equally important facet of the method is the fact that

individual components in the design structure are de-coupled from each other. This has a significant

impact on both the design method and the testing strategy and leads directly to a form of 'component

technology'familiar in all other branches of engineering. lt causes a design to be expressed as a structure

(or assembly) of ¡nterconnected components each of which is of a specific type. Thus each component

type has its own characteristics and embodies constraints on where and how it may be connected to

other component types. But, and this is a critical feature, no component refers directly to another

component. Such interconnect¡on information is specified in a separate form rather like an engineering

drawing.

The software structure, by its insistence upon decoupling, also has a significant impact upon the

components' potent¡al for re-use and specifically makes the creation of test systems very much more

straightforward.

Mascot can be and has been used in a wide range of application areas. lt is however aimed primarily at

real-time embedded application areas where the software is complex and highly interactive.

1.1 Structure. Modularitv and Management

One important motivation for the provision of modularity stems from the need to employ a team of people

on one single job. ln such circumstances it is essential that each member of the team can be allocated a

job to do which contributes to the overall success of the project. Many modularity schemes have been

devised to address this problem. Most of them involve creating an overalldesign and then carving up the

design into chunks which can be allocated to an individualteam member. A key feature of Mascot is that,

because the design is expressed as an interconnected network of otherwise independent components,

each component can be developed in isolation from the others. Then the developed components can

1. lntroduction 1 - 1 Mascot Version 3.1



be brought together into assemblies or sub-assemblies at a later stage in the secure knowledge that,

because the interconnection constra¡nts have been policed during development, the components willfit

together and will have a high probability of working together conectly.

Thus, through a modularity scheme based on sound and secure component technology, Mascot

provides not only the basic ingredients for sound team management, but also allows the use of traditional

approaches to engineering management.

'1.2 Derivat ion of Mascot

1.2.1 Historical (see also the Preface to th¡s Handbook)

The antecedents of Mascot can be traced back to the period 1965 -1970. During this time the originators

of Mascot were involved respectively with the development of control programs for an automatic

computer controlled radar and a mult¡-access operating system for the control of on-line experiments in

realtime, and the in-service maintenance of various operational, embedded, real-time RAF systems. This

early experience in tackling the problems of embedded real-time systems culminated in the successful

development of a large air defence system. lt was during this last pro¡ect that the originators came

together and began to investigate the possibility of creating an alternative and well delined method of

software development. These investigations led to Mascot.

1.2.2 Technical

Much of the motivation behind Mascot lay in the apparent preoccupatíon with control{low design which

was prevalent in the late 60s. For complex real-time systems it was obvious that there could not be a

unique control flow design which satisfied all the functional requirements because of the highly

stochastic nature of the inputs. Therefore the originators looked to their training as electrical engineers

for inspiration. Here they discovered that concurrency was a key feature together wlth the notion of data

flow or information flow from one stage to another. For example, in a radio receiver RF signals are

amplified by the RF stage and the output is detected by the denpdulator stage. The demodulator output

is fed to an audio amplifier and its output is fed to the loudspeaker. Thus there ¡s the notion of informalion

flowing from one (concurrent) stage to the next and the very important concept of well defined interfaces

between stages to decouple the design of one stage from the next. There is !O notion of control flow

because each stage is performing its own special function all the time. Thus this model of analogue

electrical circuits became the foundation for the Mascot design representation and method of software

construction.

From the outset, the originators held the v¡ew that writing sequential programs (or modules) was not a

problem - or rather it was not a problem which Mascot would address! Instead Mase¡t would concentrate

on what was perceived to be a more difficuh problem, namely that of representing concurrency and data

flow in embedded real-time systems.
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1.3 Software Structure in Mascot

1.3.1 General

One of the key problems with software is its intangibility and this is especially true of large systems.

Hence, a way of describing the software is required which presents just sufficient detail for the purpose.

This usually involves a top-down presentation so that an overall view can be given at first. Further, more

deta¡led, views follow until the lowest level of detail, which is usually the source text in an appropriaÌe

programming language, is reached. The key requirement of a design representation medium is this ability

to present a design at appropriate levels of detail.

In Mascot the starting point was to represent the design graphically with emphasis on the presentation of

data flow and concurrency. From such a diagram one can gain an overall impression of what each

component has to do and how the overallfunctionality of the software system is achieved. Also from the

diagram it is possible to write down an equivalent textual representation of the whole system structure

and of the individual components required to build that structure. Then the other details of the

components can be added as the design effort proceeds. Once components have been built, test

systems can be created in which the components can be tested. Fínally the complete desígn structure

can be built for system testing.

These characteristics are evident in both Mascot 2 and Mascot 3. In the following sections we describe

first the Mascot 2 method and then indicate how and why Mascot 3 differs. A fuller introduction to Mascot

3 design representation can be found in section 2.1. Here we merely touch upon the salient features of

both Mascot 2 and Mascot 3 in order to make the comparison and to identify the motiviation for updating

Mascot 2.

1.3.2 Mascot 2

The basic notion in Mascot is that the flow of data through a system, from input sensors to output

actuators, is controlled solely by a set of concurrent software processes. These processes are known as
'activities'and are separately scheduled by a run{ime system usually referred to as a Mascot 'kernel'. Data

enter and leave the system through'devices'which are software accessible registers in the hardware with

which the software system communicates. The data are moved around the system and transformed by

act¡vities. Mascot activities thus need to co-operate with each other by passing data but they are not

allowed to communicate directly; their immediate communication is with special modules, provided for this

purpose, called 'lntercommunication Data Areas' and usually referred to as lDAs. lDAs are passive

components which exist only to satisfy the intercommunication requirements of activities. They contain

data areas which are completely private to the IDA and support the intercommunication requirements by

providing a procedural interface which can be used by activities. ïhus the designer can design in terms of

concurrent processes which are purely sequent¡al (ie activities) and lDAs which are passive but

encapsulate the interactions between the activities.
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This represents a significant separation of concerns:

activities are sequent¡al processes concerned primarily with perfoming a

single function and communicating with a (usually small) set of lDAs

- lDAs contain any data sharable by activities. Access to the data is provided by a

procedural interface whose constituent procedures must ensure the integrity

of the data in the IDA by using the synchronisation facilities of the Mascot

kernel.

Two distinct classes of IDA have been identified in Mascot: the'channel'and the 'pool'. The channel is

used to pass data between activities on a'producer/consume/ basis. Producer activities send messages

via an input interface and consumer activities receive messages via an output interface. There can be a

buffer of messages in a channel at any instant. These are messages which have been sent but not yet

received (ie they are currently ¡n trans¡t). This property of a channel is useful in relieving the consumer

activity of the necessity of running in synchronism with the producer activities.

The pool is used to hold data which may need to be referred to by activities and, in particular, in cases

where the frequency or pattern of references to the data is completely independent of the frequency or

pattern of operations which bring it up to date. Thus there could be many references w¡thout any change

being made to the data or lhe data might be changed many times between successive references.

It is ¡mportant to realise that Mascot does not provide a specific and fixed set of lDAs. Facilit¡es are

provided for a designer to define and build the specific types of lDAs required by his application.

The graphical representat¡on used for Mascot 2 is known as the ACP (Activity, Channel, Pool) Diagram.

An example is given below together with a key to the symbols used. Note that the producer/consumer

characteristic of channels is indicated by connecting one side of the symbolto producer activities and

connecting the other side to the consumer act¡v¡ty. ïhe direction of data flow is indicated by the arrow

heads.
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The ACP diagram depicts the instances of the activities, channels and pools required. The types of the

@mponents can also be depicted on the ACP diagram (usually by enclosing the type in parentheses).

As mentioned earlier activities do not refer directly to IDA instances. lnstead they are defined and coded

in terms of the set of IDA types with which they need to communicate. During the software construction

process the activities are created(ie manufactured) and then 'connected' (i.e. assembled) to the set of

IDA instances required by the design and expressed in the ACP diagram. The unit of construction ¡n

Mascot 2 is the 'subsystem'. This is merely a collection of activities which have been connected to their

lDAs at the same t¡me. The subsystem is also the unit which can be conlrolled at run time by being

started, terminated, halted or resumed. This provides the facility for evolving a Mascot network. The

operational network consists of the set of subsystems which have been 'formed' and 'started'. By forming

new subsystems, terminating old subsystems and starting the new subsystems it is possible to change

an operationalsystem as time passes.

1.3.3 Mascot 3

Motivation for the development of Mascot 3 has stemmed from two considerations. First, experience of

Mascot 2 in practical use has inevitably revealed, within its proper province of application, some areas of

weakness which it is desirable to remedy. Second, the emerging prospect of implementing systems for

large, multiprocessor networks has brought with it a need for more powerful and flexible means of design

expression than those available in Mascot 2. The aim has been, therefore, both to consolidate and to

extend the Mascot method.

Perhaps the most significant refinement which Mascot 3 brings to existinE Mascot concepts concerns the

manner of expressing network connections. Mascot 2 networks are formed from system elements which

have been created from templates held in a constructional database. Every activity template contains a

fixed number of external connections each of which is expressed as a reference to an IDA template. An

assembly of inert activities is converted into a network of communicating activities by supplying lDAs of

the appropriate type, created that is from appropriate templates, to store information and control its

transmission in each of the data flow paths. The choice of valid network configurations is thus constrained

by a type checking mechanism based on the fact that activity templates contain direct references to IDA

templates. Such an arrangement allows much greater flexibilty than one in which the references are to

specific IDA ¡nstances.

Although this Mascot 2 style of expressíng design definition is very flexible it does conta¡n one major

restriction, namely that an activity template depends upon IDA templates. In Mascot 3 this dependency

has been changed so that the inter-dependency between activities and lDAs ís focussed on the ¡nterface

which exists between them. This interface exists implicitly in Mascot 2 and consists of the set of access

procedures implemented in the lDA. In Mascot 3 the procedural interface is specified explicitly and is

1. lntroduction 1 - 6 Mascot Version 3.1



called an'access intedace'. Thus in Mascot 3 an activity template is specified ¡n terms of its requirement to

use one or more access ¡nterfaces. A component derived from that template may be connected to a set

of IDA components (derived from thelr templates) subject to the condition that the access interfaces

provided by the IDA are those required by the act¡v¡ty.

The terminology introduced into Mascot 3 to describe these ideas is that an IDA 'provides' an access

interface at a'window'and an activity 'requires' an access interface at a'port'. Thus activities can have

several ports, as indeed they could in Mascot 2. However, in Mascot 3, lDAs can provide severalwindows

whereas in Mascot 2 an IDA could provide only a single window.

This greater degree of design decoupling provides several advantages in terms of design expression

and eliminates some of the causes of inefficiency in Mascot 2 design. F¡rst, an activity may be connected

to any IDA type provided that the port to window connectivity constraint is satisfied (ie that the access

interface required at the port is that provided at the window). This means, for example, that for test

purposes an activity can be connected to an IDA which is of a different type from the one to which it is

connected in an operational network.

Second, the ability of an IDA to provide more than one window means that, in Mascot 3, a channel can

provide two interfaces, one for the writers and one for the readers. The same idea can be extended to

pools where a set of access interfaces can be provided each encompassing a limited capability

corresponding to the particular requirements of the activities using it. The use of multiple windows by the

designer is also valuable in identifying how the functions of a system are distributed in relation to the IDA's

position in the network.

A third major advantage concerns the freedom, in Mascot 3, to design lDAs which provide several

windows of the same type. Thus a special significance can be attached, within the lDA, to any of these

windows. For example, one window might be given priority over the others or actions within the IDA can

be made dependent on the location of the caller within the connected network. The ability of an IDA to

provide severalwindows, combined with the decoupling arising from separate definition of the access

interface, is considered to be one of the key contributions of Mascot 3.

Another major departure from previous Mascot philosophy is the adoption of hierarchical structure. A

Mascot 2 design is conceived in terms of a flat, data flow network whose nodes consist of alternate data

processing and data communication elements. While higher level descriptions may be used in the

process of devising the network, they have no permanent standing and are not recognised as design

entities by the supporting constructionaldatabase. The final, essentially two-dimensional structure may

be partitioned into an arbitrary patchwork of subsidiary networks, the adjacent members of which share

common communication elements. These are the Mascot 2 subsystems which subsequently constitute

units of control at run time.
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In Mascot 3, the role of the subsystem has been greatly elevated. While it continues to represent a

subsidiary network, it no longer possesses shared components but may be used as a network node in its

own right. As such it is capable of being connected to either processing or communicat¡on elements and

so may perform the function of either or behave as a mixture of the two. lt may also possess lower level

subsystems among its components so as to facilitate an hierarchical form of design expression. At the

same time, with appropr¡ate database support, it makes it possible to develop and capture a design,
progressively.

The modules of text which represent subsystems (and systems) in the Mascot 3 database contain,

between them, all the information needed to establish the content and connectivity of the complete

network. The processing of these modules, supported by all the remaining modules which define the

system, leads to the construction of a template from which a complete collection of application software

can be created and loaded ¡nto appropriate locations in the target hardware. They thus embody allthe

information which, in the Mascot 2 method of software construction, is provided at the stages of system

element creation and subsystem formation.

Whereas in Mascot 2, therefore, the connectivity of the software network is not established untilthe last

stage of construction, in Mascot 3 it is established as the first stage. The advantage of the Mascot 2

approach is that it readily supports evolutionary construction, the ability to make adjustments to the
network without regenerating the system or even terminating its execution. This may be less easy to
achieve in Mascot 3 but a compensatory gain, in addition to hierarchical design expression, is the facility

of validating the overall design structure in terms of the inter-module dependencies before any detailed

implementation coding has been submitted to the database.

It will be clear from the earlier discussion that a Mascot 3 subsystem is a composite entity. lt defines a set

of interconnected components. Most other design elements have composite as well as simple forms. For

example, a composite IDA defines a network of internal, component lDAs. This is made possible by
another extension of the Mascot philosophy which allows lDAs to communicate with each other direc¡y
without an intervening active element. Such relatively complex constructions are panicularly usefulwhere

the IDA is required to control communication between act¡v¡ties located in different parts of distributed

hardware.

The fundamental notion in Mascot 2 that activities must only communicate via lDAs is retained in Mascot 3.

However, because Mase¡t 3 lDAs can have ports, it is possible that the ¡nteraction between any two

activities may involve more than one lDA.

The concept of composite templates in Mascot 3 extends to sequential as well as network

decomposition. An individual thread of execution, an activity, may be composed of a number of

separately created components whích communicate with each other through well defined procedural

interfaces. These components share with the simple form of activity the ability to make external network
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connect¡ons. Since the components may themselves be composite the facilities exist for hierarchical

expression of this level of the design also.

The Mascot model for device handling is essentially unaltered in Mascot 3. lt is, however, catered for in a

more formal manner by the provision of a new class of design element, called a server, which is dedicated

to communication with hardware devices. lt is similar to the generalised, Mascot 3 lorm of IDA but is the

only design element which communicates w¡th devices and to facilitate this is allowed to contain an

interrupt handler.

1.4 Method

In Mascot 2 the method could be divided ¡nto three phases:

Network Design - which created the ACP diagram and identified the purpose

of each component

Component Design - in which each component was designed and coded

Integration and Test - in which each component was tested first individually

and then in conjunction with other components

In Mascot 3 the same set of phases can be identified but there are some additionaltasks within each:

Network Design in Mascot 3 is an iterative process involving (potentially)

the creation of an hierarchy of subsystems, lDAs and servers.

Component Design in Mascot 3 can involve the decomposition of activities

into lower level components

lntegration and Test in Mascot 3 is similar to Mascot 2 except that it must

take account of the additional levels of decomposition.

1.5 Development  Envi ronment

The Mascot 3 development environment is far less specilic than that defined for Mascot 2 . This is

primarily because Mascot 3 is considered to be more capable of being used as a stand alone design

method than Mascot 2. An important contributory factor here is the need to work with languages such as

Ada which do not allow the intimate integration that has been possible with, say, Coral 66. Therefore, the

Mascot 3 development environment has been defined in terms of a set of functions to control the

progressive capture of a design. These functions are known as the 'status progression commands' and

allow a template in Mascot 3 to be first 'registered', lhen 'introduced', and finally 'enrolled'. These

operations work primarily on one specific template, but they also require a specific status to be achieved

by other templates upon which that template depends.

b)

c)

a)

b)
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1.6 Execution Environment

The execution environment of Mascot 3 is again very much less specific than for Mascot 2. None of the

facilities specified have been significantly changed, but, in recognition of the existence of languages -

which directly suppott concurrency, the Mascot run-time facilities (ie those provided by the Mascot kernel)

aiä no bnger mandatory.
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2.1.1 ln t roduct ion

This part of the Official Definition of Mascot, 'Design Representation', contaíns the quintessence of the

Mascql approach. lt ¡s the portion of the Handbook to which those familiar with the earlier (1981) edition

will wish to give closest attention in order to gain an understanding of the ideas which have been

developed during the past five years. An attempt has been made to present these new concepts with the

rigour and completeness befitting a formaldefinition while, at the same time, making it afr easy to read as

possible. Opinions will differ as to how successfully these obiectives have been attained but it is a safe

assumption that most readers willfind some of the material relatively demanding. Hence the need for an

informal introduction.

The exposition in this section is neither rigorous nor complete and should not be taken as definitive.

While it is, of course, accurate as far as it goes, it is in no sense a substitute for the sections which follow

but rather is intended to establish a framework within which the detail, presented later, may more readily

be understoqd. lt concentrates on the simpler aspects of each topic in order to introduce the principal

concepts and terms. The Definition describes a set of facilities judged sufficiently powerful, in their

entirety, for use in addressing the design of extremely complex computer systems. Here, however, the

more complex constructions and most of the supplementary features are omitted in the ¡nterests of

displaying the essential simplicity of the underlying ideas. In practice, the users of Mascot will adopt as

many oí its features as may be required for the application in hand.

2.1.2 Design Representat ion

The architecture of Mascot designs is expressible in two equivalent forms: graphical and textual. Each

one may readily be derived from the other. For example, a design which is conceived and developed in

the graphicalform may be transformed, in a wholly mechanical manner, into the textualform and hence

progressively captured in the Mascot database to establish the structure of the software.

lmplementation is then completed by specifying details of the interfaces through which the components

of the system communicate, together with the data types with whích they are concerned, and by

supptying the executable code expressed in whatever implementation language has been adopted.

Alternatively, a'system might be designed directly in the textual notation and the graphical form

subsequently derived from it to become the centralfeature of ils design documentation and to provide a

primary medium of discussion for everyone involved with the system throughout its lifecycle.

One of the prime features of the Mascot method is concurrency. A typical design defines, in an

hierarchical manner, a set of parallel co-operating processes. At the higher levels of the hierarchy these

parallel threads of execution are bunched together in constructional units cal led subsystems.

Progressive expansion of the subsystems separates the larger bunches into smaller ones and

eventually, at the lower levels, teases out the individual threads. These individual units of concurrency in
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a Mascot design are known as actlvltles. They are executed in a standard run-time environment

provided by a collection of context software whose functions are implicitly available to the application

software. The interface between the context and the application sottware is expressed in a form which

is generally compatible with the style of the application software modules and is known as the context

in ter face.

The hierarchical nature of this structure permits the design to be viewed at various levels of abstraction,

examination of any one of which immediately highlights the second salient feature of the Mascot design

representation. This is data ffow. Each level of the design is conceíved as a network through which data is

transmitted from one active entity (subsystem or actlv¡ty) to another. The ultimate sources and sinks

of this information are provided by a set of hardware devices which are regarded as being outside the

Mascot system but with which communication may take place through a class of software design

elements called seruers which are dedicated to this purpose.

2.1.3 A Samole Out l ine Desion
In Section 5.1 of the Handbook the approach to the development of a Mascot design is described in

detail. For our purposes here we will suppose that a design has already been completed to the point at

which the overall software structure has been established. The diagram is drawn and there exists in the

Mascot database a module, that ¡s a named textual representation, for each of the des¡gn elements

that has been used. Furthermore, allthe inter module references have been checked and found valid.

We are not concerned with what our imaginary system is designed to do. ldentifiers have deliberately

been chosen for their inherent lack of meaning, or else to be so general as to achieve the same effect, in

order that there shall be no temptation to be distracted by this question. This would, of course, be as
reprehensible in a real design as failing to use meaningrful identifiers in a sequential program. In practice it

is recommended that template names reflect the function provided by the template; wheras

component names should reflect the purpose of the component in the network which contains it.

The only purpose of the system we are about to examine, however, is to demonstrate aspects of Mascot

design representation. lt should not, in particular, be taken as exemplifying specially recommended
practice.

The natural place to begin is with the diagram represent¡ng the top level of the design.
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This diagram shows our example system. lt corresponds to what, in the Mascot method, is called the
'initial design response'. lt shows, on the outside of the system, the set of hardware devices the

system is required to interact with. lt shows, on the inside, a set of high level design components which

represent the initial design of the system. The system itself is symbolised by the round cornered

rectangle which identifies the boundary between hardware and software and indicates the flow of data

into, out of and within the system in very broad brush terms. The name of this particular system is

example_sys. lt consists of five communicating components three of which, like the system itself,

are symbolised by round cornered boundaries and represent subsystems. Throughout the Mascot

graphical convention round corners generally indicate active ent¡ties and, although occasional

exceptions can occur, it is normally safe to assume that a subsystem contains at least one of the

concurrent threads of execution which constitute the active constituents of the system. The thre¿

components, sl, s2 and s3 may therefore be thought of as being executed in parallel.

The two remaining components of system example_sys illustrate the feature which, more than any

other, distinguishes Mascot from other approaches to the problems of large scale concurrency. In order

that asynchronously executed processes may exchange information in a secure manner, it is necessary

to provide mechanisms to effect mutual exclusion and cross-stimulation for use at the points where data is

transferred to or from common storage areas. As explained inSection 4.2 of the Handbook, failure to do

this may lead to information becoming corrupt and failure to do it adequately may result in the processes

becoming deadlocked. In many approaches to the organisation of paraliel, co-operating processes, these
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fundamental mechanisms are not made directly available by the run-time system. lnstead, a set of higher
level operations/facilities such as mon¡tors, message passing or rendezvous are provided. ln Mascot the
view was taken that, in order to obtain the optimum performance which is always vital in in embedded
systems, it was best for the run-time system to make the low level facilities dírectly available. This has the
advantage of making the run-time system smalland efficient.'lt also gives the designerfreedom to design
exactly the right set of higher level operations required for his application. The design entity in which atl
these requirements are satisfied is called an Intercommunication data area or, more succincily, an
lDA. lt is the responsibility of IDA designers to implement the required operations as access
procedures (or functions) within an lDA. These operations use the low level synchronisation facilities
to maintain both data flow and data integrity. A further contribution is made to system integrity by ensuring
that only lDAs contain data which can be the subject of interaction from several ac¡v¡tles and that only
lDAs may use the low level synchronisation facilities. The most general form of IDA is represented
graphically by a rectangle; sll and sl2 are examples.

The thin lines, bearing arrow-heads, which link the subsystem and IDA symbols into a network are lines
of data flow known in Mascot as paths. Thus, data flows from subsystem s2 to subsystem s3 along
the two paths, labelled ack and rec respectively, which enter and leave the IDA si2. In IDA sif a
merging of information flow occurs with paths put and trans, from st and s3, entering and path sig
to s2 leavíng. lt will be seen that in one ¡nstance a path, gef, links two subsystems direcily. However,
as we shall discover, this does not reflect any failure to carry out the necessary synchronisation. The
concepts of both paths and lDAs wlll be discussed in greater detail later when our example system has
been expanded to revealthe lower levels of its structure.

We shall eventually return to this system diagram and examine the module (textual unit)which is
equivalent to it. For the moment, leaving some of its detail unexplained, we shall consider what further
information is needed for software construction. Obviously it is necessary to know how to create the
components. A pattern, or in Mascot terms a template, is required for each of the three subsystems
and two lDAs. Consider, for example, the component labelled s3. The identifier suösys_3 which
appears inside the corresponding symbol is tfre name of the template from which this subsystem ¡s
created. Expansion to a further levelof decomposition reveals the graphical representation of its internal
composition.
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It will be seen that the template's external connections match those of the component wh¡ch it

describes. Data flows into the subsystem along a path labelled rec and out along paths labelled gef

and trans, respectively. All three of these paths are connected, internally, to one of the template's

two components, s4, which is immediately recognisable as another subsystem. The second

component, called sv and represented by a D-shaped symbol, is an example of a server. This is the

design element, referred to earlier, which is able to communicate with external, hardware devices. A

device is represented here by a hatched rectangle joined to the server by a broken line. We shall return

to this diagram later but, for the present, further discussion will once again be postponed in favour of
performing one more level of decomposition. In order to show what is required for the creation of

component s4, it is expanded to reveal its template, subsys_4.
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No further network decomposition is possible in this branch of the hierarchy. The components of

subsystem subsys_4 include two individual actlvltles, represented by the two large circular

symbols labelled a1 and a2. Actlvltles, as already indicated, are fundamental processing elements.

Each one is to be regarded as implementing a separate parallelthread. Any further analysis of them can

only be ¡n terms of sequential, rather than network, decomposition.

The template, suösys_4 also contains two lDAs. They are represented by slightly modified versions

of the simple rectangular symbol seen earlier ¡n the sys{em diagram. This shows them to be special

cases corresponding to the channels and pools of previous versions of Mascot. The channel is

characterised by a destructive read operation; data flowing through it is temporarily accommodated in

internal storage which may become full as a result of repeated wr¡te operations or empty as a result of

repeated read operations. In a pool it is the wr¡te operation which is destructive. lts contents consist of a

collection of variables which are given initial values when the system commences execution and which

may subsequently be examined and updated.

2.1.4 The Communicat ion Model

Having now looked briefly at the graphical representation of these three hierarchically related levels of the

imaginary design, we shall now consider each in more detail. For this purpose it will be convenient to

proceed from the lowest level upwards, examining the modules which represent the various

templates as we go. But first it is necessary to dealwith a topic which is so fundamentalto Mascot as to
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demand separate treatment. So far, data flow through a network has been taken for granted. lt is now

t¡me to examine the Mascot communication modelin rncre deta¡|.

The fundamentalconcepts are illustrated in the diagram below which shows a simplified fragment of the

subsystem subsYs_4.

t ¡ ¡ ¡ r r l ¡ l t l

Here we have the simple case of a producer actlv¡ty, a2, supplying data to a consumer actlv¡ty, at.

The IDA (a channel), connected between the two actlvltles and represented by a modified

rectangular symbol labelled clr, acts as a temporary repository for items of data en route lrom a2 lo al.

An intermed¡ate storage buffer, together with coding to operate on it, is encapsulated in the lDA. ctl

might, for example, contain a procedure which adds an item of data to the buffer and a procedure which

removes items from the buffer. lt is in the coding of such procedures, known as access procedures,

that the mechanisms for effecting cross-stimulation and mutual exclusion are employed.

Procedures encapsulated by lDAs are made selectively available for use by act¡v¡t¡es through the

concept of windows. These are represented graphically by the small, filled rectangles labelled sw and

frrn which appear, each at the end of a path, just inside the boundary of the IDA symbol. A wlndow of

an IDA makes externally available a sub-set of the interactions which the IDA is able to provide. The

nature of the interactions provided at a particular wlndow matches the type of the path connected to it.

This is indicated on the diagram as an identifier labelling the path. Thus sw and fw are connected to

paths of type send and tetch, respectively.

The type of a path is defined in a module called an access Interface. This is classified as a

sgrclficatlon as distinct from the templates which define the types of Mascot components such as

act¡v¡t¡es, lDAs, servers, subsystems and systems. lt contains sufficient information to allow the

a_temp_ c h a n

fw

a_tem.p_2
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corresponding set of interactions to be invoked. Typically this includes procedure headings and,

indirectly, definitions of the data types which appear in their parameter lists. The types of the two labelled

paths in our subsystem fragment, for example, might be defined as follows:

ACCESS INTERFACE send ; ^
WITH flow_data ;
PROCEDURE insert ( item : flow_data ) ;

E N D  .

ACCESS INTERFACE felch ;
WITH flow_data ;
PROCEDURE extract ( VAR item : flow_data ) ;

E N D  .

The WITH clause which appears in each of these modules is a reference to the common source from

which they obtain their definition of the data-type tlow_data needed in both of the access

procedures. This is provided by a speclflcatlon known as a deflnltlon which might, in this instance,

take the following form:

DEFINITION flow_data ;
TYPE

flow_data = RECORD

END;
E N D  .

Def¡nltlons are the means by which other Mascot modules, whether representing spec¡ficat¡ons or

templates, share data-type definitions. Depending on the particular programming language being

employed, Mascot implementations may impose additional rules concerning the naming of definitions

and the point in the progressive elaboration of a design at wh¡ch they are required to be present in the

database.

Coding capable of implementing procedures lnsert and extracf ¡s included in the template,

chan_l, which defines the IDA ctt. ln outline, chan_1 looks like this:

CHANNEL chan_l ;
PROVIDES sw:  send  ;

fw : fetch :

ACCESS PROCEDURE insert ( item :flow_data ) ;

E N D  ;
ACCESS PROCEDURE remove ( VAR item : flow_data ) ;

Lr.¡o;
fw.extract = fêflìovê

E N D  .

After the heading, which names the template, a PROVIDES section lists all the w¡ndows of the lDA,

giving each a name and a type which relates it to an access Interface. The procedures which

implement the interactions specified ¡n the Interfaces are identified in the body of the IDA by the
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language word ACCESS. Other procedures might be declared in the template together with data

structures such as the storage butfer and its associated pointers. These program ent¡ties would all be

local to lDAs (such as cå ) created from the template and inaccessible to all other components.

This example demonstrates the two ways in which lhe correspondence between the access

procedures and the wlndow specifications may be established. In the case of procedure inserf the

correspondence is established implicitly by name. Procedure remove, on the other hand, is explicitly

identified with the access interface procedure specified as extract. This is achieved through an

access equivalence list at the end of the module. Thus while simple cases can be dealt with simply, an

unrestricted facility exists whereby internally defined procedures may be allocated between the

wlndows of the lDA.

Returning to the fragmentary subsystem diagram, it will be seen that each of the two paths that we

have been discussing connect, at the ends remote from the IDA wlndows, to small, filled circles

labelled sp and fp, respectively. These are situated just inside the boundaries of the two act¡v¡ty

symbols and are known as ports. They are the means of expressing the requirement of an act¡v¡ty for

the interactions specified in an access Interface. For a valid network connection to be established

between a port of one component and a wlndow of another, they must refer to the same access

lnterface. Appropriate ports are specified in the actlvlty templates a_temp_2 and a_temp _1
as follows:

ACTIVITY a_temp_2 ;
REQUIRES sp : send ;

E N D .

ACTIVITY a_temp_1 ;
REQUIRES fp : fetch ;

E N D .

Thus objects, such as a2, created lrcm a_temp_2, conlain coding to invoke the interactions

specified in access Interface send. The port name is used as a selector:

VAR
val : flow_data ;

BEGIN

sp.insert( val) ;

With the interconnectioás as described, actlvlty component a2 would, by this means, invoke

execution of procedurc Insert in the IDA component crr. Similarly actlv¡ty al would in'¡oke

procedure nemove (recallthe access equivalence list)of ch by:
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V A R
next : flow_data ;

BEGIN

fp.extract( next ) ;

Furthermore,lhe îlow_dafa ¡tems can be transmitted, in this way, from one actlvlty to the other via a

buffer in IDA cñ which is not directly accessible to either.

2.1.5 A Subsystem Containing Activi t ies and lDAs
These, then, are the principalfeatures of the Mascot communication model. All the internalfeatures of

tempfate subsys_4 should now be understandable from the diagram which, for convenience, is

reproduced below.

trans

ln addition to the interactions just described in detail, al also transfers information into the pool pl

along a path of lype put. Each of these internal paths has a port at its actlvlty end and a wlndow at

its IDA end. Notice that in this example data in some paths flows from a port to a wlndow and in others

from a wlndow to a port. Data flow in both directions along the same path is also possible.

Allthe remaining connections on th¡s diagram pass through the subsystem boundary. They represent

the external dependencies of subsystems created from this template. As we have seen, the external

dependencies of actlv¡tles and lDAs are expressed as ports and wlndows. The same is true of
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subsystems wh¡ch may possess both ports and wlndows. This one, for example, has three ports

and one wlndow as may be seen more clearly in the higher level diagram, representing the template

suösys_3, of which it is a component.

Allthe coding of a subsystem template is encapsulated in its components and, consequently, each

of the template's ports or wlndow must be connected directly to a port or wlndow of i ts

components. lndeed, it is reasonable to regard the specification of a subsystem port or wlndow as

a method of making a port or wlndow of one of its components available for connection outside the

subsystem. This is illustrated on a diagram by 'port to port'and 'wlndow to wlndow'connections.

Thus the wlndow gw4, ot type get, on the boundary of subsystem suösys_4 ¡s equated to the

wlndow gw of the same type belonging to the pool p|. The two names are, of course, localto their

individual templates and arbitrarily chosen. Their types, however, must refer to the same access

¡nterface if the equivalence ¡s to be valid. Similarly each of the three ports of suösys_4 echoes a
port of the same type belonging to one of ¡ts component act¡v¡tles.

Remembering that the program coding for our imaginary design has not yet been written, we will now

examine some of the modules from the Mascot database which represent the templates and

spec¡flcatlons we have been discussing in their graphical form. We will begin wtth a_temp_2i the

template from which a2 is to be created.

ACTIVITY a_temp_2 ;
REQUIRES sp  :  send  ;

otp : out ;

E N D  .  
f p : r e c ;

The local declaratíons and the program codíng which implements this thread of execution will eventually

be added after the three port specifications. The external interactions of ob¡ects created from the
template are limited to those specified ¡n the access Interfaces sen4 out and rec, lo which it
refers. The corresponding speclflcatlons take the form illustrated earlier (forsend and fetch ) and so
need not be included here.

The channel template chan_1, which depends on another access Interface, tetch, is
represented textually as follows:

CHANNEL chan_l ;
P R O V I D E S  s ¡ v : s e n d :

fw :fetch ;
END .

When the contents of the speclf¡catlons send and îercn have been completed, access
procedures and pr¡vate data storage can be added to chan_1 and correspondence establ¡shed
between the procedures and the var¡ous interactions provided at the luiodows.
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The existence in the database of access Interfaces put, trans and get, together w¡th any

necessary supporting defln¡tlons, perm¡ts the external dependencies of the remain¡ng template

modules to be validated in the following form:

ACTIV¡TY a_temp_l ;
REQUIRES fp : fetch ;

þ: trans ;
p p : p u t ;

E N D .

POOL pool_1 ;
PROVIDES pw:  pu t  ;

g w : g e t ;
E N D .

We are now in a position to inspect the template text of suôsys_4 itself. lt ¡s presented below in its

entirety.

SUBSYSTEM subsys-4 ;

PROVIDES gr4 : get ;
REQU¡RES rp4 :  rec;

otp4 : out ;
tp4 : trans ;

USES pool1, chan_l, a_temp_l, a_temp_2 ;
POOL p1 : pool_l ;
CÞIANNEL ch : chan_l ;
ACT¡VITY al : a_temp_1 (fp = ch.fw,

tP = tP4,
p p =  p 1 . p w ) ;

ACTIVITY a2 : a_temp_2 ( sp = ch.sw,
otP = e1P4,
l P = l P 4 ) ;

gw4 = pl.gw
END .

After the module heading, which establishes the template's name, comes what is known as the

speclflcatlon part. This defines the dependency of this module on the existence of a number of

access Interfaces. In other words it specifies the subsystem's ports and wlndow. The features of

th¡s part should, by now, be entirely familiar.

Then follows what is known as the lmplementatlon part. This is something new because none of the

modules we have examined earlier conta¡n any implementat¡on. lt starts with a USES sect¡on which is

simply a list of allthe templates needed to create the components of this subsystem. There is one

for each actlvlty and one for each of the ¡DAs and we have already examined all four of them. After the

USES section the following four lines of the module spec¡fy what components are to be included

and how they are to be connected together.
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There are to be two lDAs called pf and cä created from templates pool_l and chan_1,

respectively. Examination of these two templates shows that the resultant components each

possess two wlndows which may be referred to as pl.gw, p7.pw, ch.sw and ch.lw. The

connect¡v¡ty of the network is established by using these wlndow references in the specifications of

the actlvlty components which follow on the next two lines of the module. These indicate that there

are to be two actlvltles called al and a2 crealed from templates a_temp_l and a_temp_2,

respectively.

The lists in parentheses define the network connect¡ons by means of the 'formal = actual' convention.

The port names on the left of the equivalences (fp, tp and pp in the case of a_temp_l ) are

analogous, in this context, to the formal parameters of a procedure. The corresponding 'actual

parameters' specify the points in the network to which each port is to be connected. Where the

connection is direct to an internal wlndow, a reference to that wlndow is given in the form indicated

above. Where there is a 'port to port' connection passing out of the template, the name of the

appropriate port on the boundary of the subsystem is given. Thus, in the specification of actlvlty at,

the connections are:

port Þ

port fp ol e1 <-------> port tp4 ot template

port PP

and in the specification of actlvlty a2:

port sp

port otp ot a2

porl rp ol a2

This caters for allthe netwo¡k connections apart from the single 'wlndow to wlndow'case. The last line

of the module takes care of this by equating the subsystem wlndow with that named gw belonging

to the IDA pî. Thus 'port to port' and ' wlndow to wlndow' connections are dealt with differently in

subsystem templates. The former are handled through lhe act¡vlty 'parameter list' and the latter

through equivalence statements.

2.1.6 A Subsystem Çontaining Another Subsystem and a Server
We are now in a position to consider the template text of suösys_3 which utilises suDsys_4 to

creale one of its components. Here, again, is the diagram:
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tP3 su bsys_3

subsys_4

gw4 otp4

serve_l

otw

The template for the second component of this subsystem in its partially completed state is:

SERVER serve_1 ;
PROVIDES otw : out ;

END .

Servers are closely related to lDAs. The main difference is that they provide means of interaction w1h

peripherals. Consequently, as well as access procedures, which can be invoked by acilvliles
connected to an appropriate wlndow, servers may also include handlers. These are sections of code
which can be connected to hardr¡rare ¡nterrupts and which are entered for execution, on a pre-emptive

basis, whenever the appropriate interrupt ocq¡rs. The function of the handler is typically to control data
transfer and the operation of a hardware device. Transfer between the buffer and ac{ive Mascot

components such as actlv¡tles and lDAs is achieved in ihe normal way via a path connected to a
wlndow of the server. This particular server template specifies a single wlndow, ofrry, which is of
type ouf.

We have now looked at all the temp¡ates needed for the components of suösys_3 . Here is the
template of this subsystem:

j¡¡
I

i
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SUBSYSTEM subsys_S ;

PROVIDES gw3 : get ;
R E Q U I R E S  p 3  : r e c ;

tp3 : trans ;

USES subsys_4, serve_l ;
SERVER sv : serve_l ;
SUBSYSTEM s4 : subsys-4 ( rP4 = rP3,

otp4 = Sv.otw,
tp4 = tp3 );

END .g*3 
= s4'gw4

This should readily be understandable ¡n the light of our earlier discussion of temp¡ate subsys_4.

*The speclf¡catlon part specifies a wlndow and two ports in terms of access Interfaces get, rec

and trans all of which we have already considered. The lmplementatlon part l¡sts the required

component templates before specifying the two components and their interconnections. There is

to be a server called sv created from templale serue_l and a subsystem called s4 created from

template subsys_4. The connections to the ports of s4 are:-

porl rp4 ot s4

pott otp4 <---------->¡ window sv.otw

porl tp4 of s4 <-----:--> port fp3 of template

The equivalence statement connects the wlndovv gw4 ol the component subsystem s4 to the

wlndow gw3 ot the temp¡ate.

2.1 Informal Introduction 2 -  1 5 Mascot Version 3.1



subsys_2

sp2

s ida  1

subsys-1

pp1

gp1

aw

s ida

rw

subsys-3

gw3

2.1.7 A System

Finally in our tour of this imaginary design, we retum to our stafting po¡nt: the system diagram'

A module to represent a system template is very similar to one for a subsystem' There are'

however, no external network dependencies. In other words a system does not specify any ports or

wlndows. on the basis of what we have already learned, and assuming the existence of the necessary

addi t ional  suppor t ing templates and specl f lcat ions,  i t  ¡s  easy to  understand system

example_sYs :

SYSTEM examPle-sYs ;

USES subsys-1, subsys 2, subsys-3, sida-1, sida-? ;
IDA si1 : sida-1 ;
IDA si2 : sida-2 ;
SUBSYSTEM s2 : subsys-2 ( sp2 = si1'sw,

aP2=s i2 .aw) ;
SUBSYSTEM s3 : subsys-3 ( tp3 = sil'tw,

rP3=s i2 . rw ) ;
SUBSYSTEM sl : subsys-l ( pp1 = sil 'pw,

gp l  =s3 .gw3) ;

END .

ffi ffi

v?fuÃ
þffiåÅ
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ln this informal survey of the fealures of the Mascot scheme of design representation we have discussed

the funct¡on of ports, wlndows and paths and examined examples of two kinds of speclflcatlon

(access lnterfaces and deflnlt lons) and f ive kinds of template (actlvlt les, lDAs, servers,

subsystems and systems). This selection corresponds roughly to the set of features in the mandatory

subset of the definition. Study of the full definition will reveal many extensions to these basic concepts

and, in part¡cular, the optional availability of composlte forms of most of the templates and

speclflcatlons presented here in their slmple form.

2.1.8 A Composite Act ivi ty
A composlte module is one which is further decomposed in terms of lower level modules. Systems

and subsystems clearly come ¡nto this category. They do not, in themselves, introduce coding but

merely describe a set of related components. Composlte forms of actlvitles, lDAs and servers are

described ¡n the following sections. To complete this introduction we will look at just one of these forms:

the compos¡te actlvlty. This is chosen because it exerñplifies sequential decomposition rather than

the network decomposition which we have already seen. An activity whose implementation is complex

may be designed as a set of components which, in the executing system, communicate via procedural

interfaces. The Mascot design representation provides both graphical and textual conventions to

describe this form of construction.

We return now to a slightly rnodified form of the diagram representing subsys_4 .

su bsys_4

a_temp_1

PP fP

chan_1

a_temp_2
gw pw

pool_1
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This is the lowest level of the hierarchy that we have so far visited. The modification is that the

component symbol al has been drawn with a thick boundary like that for the subsystem. The

implication is that the corresponding module is a composlte one. To investigate its structure we must

expand the symbolto reveal a lower leveltemplate d¡agram.

The coding of component at is to be divided into four separately developed modules. One of them,

labelled r, is a design element known as a root. Every composlte actlvlty contains exactly one root

as this is the component which contains the ¡nit¡al entry point of the coding. This particular root is

created from a template called maln whlch in turn possesses a port of type frans connected, via a
port to port connection, out through the boundary of the actlvlty template.

The other three components, sul , suz and su3 aresubroots created from temptates suöt,

sub2 and sub3, respectively. These are essentially collections of procedures and a compos¡te

act¡vlty may possess any number of them. Their relationships with the root and with each other are

represented graphically by lines bearing hollow arrow heads and known as links. They indicate here that

r calls procedures, directly, in each of the subroots and that sul and su2 both make calls on
procedures in su3. Just as the types of paths in a network take the textual form of access

Interfaces, so l lnk types are represented ¡n the Mascot database by speclf lcatlons called

a_te m p_l

51 52
\ s 3  - /

sub2

S
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subroot f nterfaces. Here is one of the three needed for the new version of template a_temp_1 i

SUBROOT INTERFACE Si1 :

'  
Lr,¡o.

The contents of such modules, when complete, will be similar to those of access lnterfaces.

Principally, they are used to specify the headings of procedures which subroots make available to the

root and to other subroots.

We can now examine the templale, maln, from which the component r ¡s created.

ROOT main ;
REQUIRES t
N E E D S  s 1

s2
s3

trans ;
si l  ;
si2 ;
s ß ;

E N D .

The port is specified exactly as in a slmple actlvlty. The NEEDS section specifies the llnks which are

connected to components of this type ¡n terms of the subroot lnterfaces. Coding will, of course, be

added to this module before the final END.

We now turn to the templale, subl, for component sut. This is a subroot possessing a port

together with links both entering and leaving.

SUBROOT subl ;
R E Q U I R E S  p : p u t ;
GIVES si l  ;
N E E D S S : s i 3 ;

E N D .

The new feature here is the GIVES sect¡on. lt specifies the subroot Interface which this subroot

implements. Every subroot implements precisely one such Interface.

Template suö3 which, however, possesses no ports and no outward going llnks. lt provides

procedural interactions but does not make use of any.

We have now examined all the specificatlons and templates that are needed for the design of the

compos¡te act¡v¡ty at. Here, in its complete form, is the template a_temp_|.
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ACTIV¡TY a_temp_l :
REQUIRES fp : fetch ;

tp : trans ;
p p : p u t ;

USES main, sub1, sub2, subS ;
SUBROOT su3 : sub3 ;
SUBROOT sul  :  subl  (p=pp,

s = S u 3 )  I
SUBROOT su2:  sub2 ( f  = fp,

s = s u 3 ) l
R O O T r : m a i n ( t = t p ,

51 = SUl ,
52 = SU2,
s 3 = s u 3 ) l

E N D .

Following the speclflcatlon part, identical with that of the earlier version, comes the lmplementat¡on

part. Th¡s begins with a USES section which lists the root and subroot templates needed to create

the components. Then follows a specification of each component with its network and subroot

connections. The former are all pon to port connectíons and are dealt with in the same manner as in

subsystems. The remaining parameters specify which subroots implement each of the the subroot

Interfaces specified ¡n the corresponding NEEDS sections.

With this discussion of the Mascot facilities for the sequential decomposition of individual threads of

execut¡on we come to the end of this informal introduction to the Mascot scheme of desígn

representation. Allthe principal concepts have been discussed and; if they have been understood, the

formal deflnition which follows should present no insuperable difficulties.
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In the remainder of this chapter all the design

representation leatures of Mascot, mandatory

and non-mandatory, are discussed. Together

with the relevant parts of Appendices A, D and

E, it constitutes a formal def¡nit¡on of this aspect

of the method.
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ln determining the order in which topics should be presented in this part of the Handbook it was

considered important to focus padicular attent¡on on the subset of features mandatory in any Mascot 3

implementation. Not only are these features presented first but they are described without reference to

the existence of the remaining features which make up the full definitíon. As a consequence of this

strategy many of the diagrams defining the syntax of the Mascot design representation language appear,

in the first few sections, in a simplified form. Where this is the case the simptified diagram has been
identified as such by means of a rectangular frame. There are features of these framed diagrams whose

significance may not be immediately clear. These include the apparently gratuitous use, for exampte, of
the word slmple in the name of a syntac{ic entity or the employment of an ent¡ty which expands directty

into another. These matters can be clarified by reference to Appendix A. The mandatory subset is
identified from the full set of Mascot features in Appendix E.
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Descr ip t ion

The Mascot method addresses the problems of creating application software which consists of

collections of communicating, parallel processes executed on processor configurations of arbitrary

complexity. For any particular Mascot application, the software design is embodied in a set of

hierarchically related templates. At the lowest level of each branch of the hierarchy, element

templates provide patterns for fundamental software objects capable of performing either a data

processing or a data communication function. A path between a pair of these entities denotes the

existence of a set of operations (usually involving data transfeQ provided by one of the participants for

use by the other. All such lransactions thus involve a passive component, concerned with information

storage and transmission, and an active component, concerned with information processing. The nature

of the interactions associated with any particular path is defined, in procedural terms, by a textual unit

(module) called an access Interface. Thus an access Interface is a specificatlon defining a set

of operations, implemented by the passive component and which, when invoked by an active partner,

transmit data in either or both directions.

Data{ype definitions and constants relevant to these ¡nteractions may also be supplied to both

participants from the access Interface. By associating definitions with a communication route in this

way, conformity with the semantic rules of strongly typed implementation languages is made possible and

consistency of usage between separately created communicating ob¡ects is ensured. This data{yping

information is held separately in another kind of spec¡flcatlon, known as a deflnitlon, from where it

can be incorporated into those access Interfaces which require it.

Every path in a Mascot network is connected at one end to a port of a component. Ports are normally

possessed by act¡vltles, which are the fundamental processing elements of a Mascot system, and

by subsystems which may fulfil a similar role at a higher level of the design. They may, however, also

occur in the fundamental communication element, the lDA. A port, as specified in a template, ¡s a

named reference to an access Interface. lt expresses, in terms of the access Interface, a

requirement to invoke data transfer (and other) operations which are implemented outside the

component in which the port is specified. Establishing, in the specification, the type of the port to

which a path is to be connected, thus determines the group of operations which are required.

At the other end of each path, in a communications component (usually an IDA or a subsystem

performing a data communications role) is a wlnclow. A wlndow as specified ¡n a template is, like a

port, a named reference to an access Interface. lt specifies, in terms of the access Interface, a set

of operat¡ons to be provided. These operations may be invoked by other components connected to the
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wlndow. Establishing, ¡n the specification, the type of the wlndow to which a path can be connected,

thus determines the group of operations which are provided. Notice that whereas each port in a

network is connected by a single path to the provider of the interactions which are required, any

number of paths may be connected to a wlndow. This ¡s to say that any number of components,

which possess matchingports, may invoke the interactions provided at a particular wlndow.

Both actlvltles and lDAs may be used at any depth within an hierarchy of subsystems. ln the

network diagram, a port may therefore be separated by the boundaries of a number of enclosing

symbols, from the source of the operations for which it expresses a requirement. A wlndow may similarly

be separated from the nearest port along a given path. In these circumstances, the requirement

expressed by the port and the provision expressed by the wlndow are propagated along the

communicating path through a series of identical ports and wlndows established in the higher level

constructs.

Graphica l  Representat ion

The interactions between components readily lend themselves to diagrammatic representation in terms

of static data flow networks in which the node symbols represent either individual elements or lower

level networks. A path is the route along which information ¡s transmitted from one particular element

or network to another. lts diagrammatic representation is a thin line connect¡ng the two symbols

together. This is normally labelled with the name of the access ¡nterface which constitutes the type of

the path and carrles a solid arrow head to indicate the direction of data flow.

Pr, 
) a 

get

exchanoe

The diagram below shows an active component, on the left, connected via a path to a passive

component, on the right, with a port at the active end of the path and a window at the passive end.

Thus a port ¡s represented in a Mascot network diagram by a small filled circle connected to a line

representing a path. The port symbol may be labelled with an identifier, unique within the template
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wh¡ch possesses it, which is used to distinguish between ports. The path itself, as we have seen, is

labelled wlth the name of the access lnterface which defines its type so that, from an external point of

view, a port represents a network connectivity constraint. As ports may function as either sources or

sinks of data, the solid arrow head which indicates the direction of data flow may point either away from a

port or towards it.

On a Mascot network diagram, a port symbol is placed just inside the boundary of the template or

component to which it belongs.

In cases where data are transmitted, along a path, across one or more boundaries, the port symbol is

repeated at each boundary. This reflects the necessity of respecifying the port in the text of each

template.

Different actlvltles al the same or different levels of the hierarchy may share a set of operaiions
provided by a common source. The diagram may be simplified in such cases by merging lhe paths. This

is illustrated in the diagram below which shows two act¡v¡tles reading data from a common source and

incorporated, at the same level, within a subsystem.
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performing the operations, defined by means of a port and its associated access Interface, demands

the execution of code. This code is conta¡ned ¡n the passive communicat¡on element of a Mascot

system, the tDA, and is executed in response to direct invocation by one of the active processing

elements. On occasions, especially where distributed processing hardware is involved, one passive

component may need to use the operations implemented by another in order, for example, to propagate

information from one hardware unit to another. lt is thus necessary that communication components

should be permitted to possess ports so that this type of requirement may be met. Despite the

presence of a port on the boundary of the symbol shown below, it nevertheless represents a passive

component and consequently is drawn with square corners.

A wlndow is represented in a Mascot network diagram by a thin, filled rectangle connected to a line

representing a path. The wlndow symbol may be labelled with an identifier, unique within the

template which possesses it, which is used to distinguish between wlndows. The path itself, as we

have seen, is labelled with the name of the access Interface which defines its type so that, from an

external point of view, a window, like a port, represents a network connectivity constraint. As windows

may function as either sources or sinks of data, the solid arrow head which indicates the d¡rect¡on of data

flow may po¡nt e¡ther away from a wlndow ortowards it'

On a Mascot network diagram, a wlndow symbol is placed just inside the boundary of the template

or component to which it belongs.
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In cases where the operat¡ons provided transmit data along the path, across one or more boundaries,

the wlndow symbol is repealed at each boundary. This reflects the necessity of respecifying the

wlndow in the text of each template.

An IDA inside a subsystem may provide operations to satisfy the common requirements of several

port bearing actlvltles or subsystems. The diagram may be simplified in such cases by merging the

paths together. This is illustrated in the diagram below.
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Textual Representat ion

The module which defines the operations, required by a port, provided by a wlndow, and hence

defines the interactions along a path is the access Interface. This is a specif¡cation. ln the

mandatory subset of the Mascot definition, the contents of an access Interface are procedure

headings. These provide sufficient information for interactions to be invoked by an active component.

For each procedure heading in the lnterface, a corresponding complete procedure, known as an

access procedure, appears in the template for the passive component. The syntactic structure is

shown in outline below:

access_interface

acc_int_nameJsart

s i m p I e_acc_i nt_s pec_part

It consists ol a name parú, wh¡ch establishes the class of the module and gives the specification a

name:

acc_int nafte_pad

and a specfileatlon pafif wh¡ch takes the following form:

si mple_acc_inLspecJrart

with_section

The speclflcatlon part opt¡onally begins with a ' WITH section' which expresses the dependency of

this module on other modules. The simplest Interfaces (those which refer only to data{ypes which

are basic to the implementatíon language) conta¡n no dependencies, and the speclticatlon part lhen

reduces to a set of procedure headings.
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The following is an example of a slmple access Interface with no external dependencies.

ACCESS INTERFACE send_l ;
PROCEDURE secure ;
PROCEDURE release ;
PROCEDURE transmit ( i : integer ) ;

END .

The '  WITH sect¡on' of an access Interface contains a l ist of references to defln¡t lon

speclflcatlons and so implements the mechanism, referred to above, by which def¡n¡tions may be

shared by several lnterfaces.

with section

WITH flow_data, table ;

The syntactic structure of a deflnltlon, which has no graphical representation, is as follows:

definition

def_nameJcart

def spec part

def_name_part
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( 1 )

(2)

(3)

The content of a deflnltlon module is limited to the definitions of symbolic constants and data-types. lt

is beyond the scope of this Handbook to define precisely how types are defined ¡n a deflnltlon

module and how these types can be used by other modules, since this impinges on the syntax and

semant¡cs of the implementation language selected. However, a particular implementation may:

ins is t  that  any data- type used in  the In ter Íace wi l l  be def ined in  a def ln l t lon

module of the same name and named in the'WITH section', or

allow any data-type used in the lnterface to be undefined, on the assumption that it

will be defined in one of the deflnlt¡on modules named in the'WITH section', or

insist that any data-type used in the Interface is already defined in one of the

definltlon modules named ¡n the ' WITH section'.

The following examples illustrate the use of defln¡tlons.

DEFINITION colour ;
T Y P E

, END .colour 
= (red, green, yellow, blue) ;

DEFINITION palette ;
WITH colour;

C O N S T
m a x = 1 0 i

TYPE

END .palette 
= ARRAY[1 .. max] OF colour ;

ACCESS INTERFACE spectrum ;
WITH palette ;

PROCEDURE paint( shade_card : palette ) ;
END .

Por ts

The textual representation of a port ¡s shown, in syntactic form, below:

oort soec
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acc_int_ref_list

The following are examples of individual port specifications:

REQU¡RES g  :  ge t ;
pa, pb : put;

where get and put are the names of access Interfaces defining two sets of operations required in

th¡s template. The formal port names g, pa and pb are used for two main purposes. First they are
used, in network modules, to express the connectivity of the components. Second, in a slmple
module, they must be used to identify a particular port procedure. The syntax of such a reference is as
shown below:

where the procedure identifier after the '.' is specified in the access lnterface which defines the type

of the selected port.

Windows

The textual representation of a wlndow is shown, in syntactic form, below:

window spec

where the form of the list is the same as that shown above for port specifications.

The following are examples of window specifications:

P R O V I D E S  g : g e t ;
pa, pb: put ;

port_identifier procedure_identifier
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where get and put are the names of access ¡nterfaces defining two sets of operations which this

module makes available to the outs¡de world. The implication of these specifications is that the module

implements, directly or indirectly, the procedure headings in the bodies of the access ¡nterfaces gef

and put.

The formal wlndow names g, pa and pb are used for two main purposes. First, they are employed, in

network modules, to express the connectivity of the components. Thus a construction such as:

is used lo refer to a specific wlndow of a specific IDA component.

Second, the following construction:

(similar to that already discussed in connection with ports) may be used in establishing the

correspondence between access procedures and the procedures made available at specific

wlndows. References of this type are to be found ¡n the access equìvalence lists described in

Section 2.6.

procedure identifierwindow_identifier
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Descript ion

Mascot supports progressive development of a design, from outline to completion, with checks

performed for logical consistency at each stage. The detailed arrangements whereby this is achieved are

described in Section 3.1. In this section we examine the design feature which makes hierarchical,

top-down design expression possible in Mascot: the concept of systems and subsystems. These

design elements perform a constructional role. Known formally as networks, they define, for part

(subsystem) or all (system) of a Mascot application, the components which are to be created and how

they are to be connected together.

In choosing the order of presentation of topics in th¡s Definition, it has been judged desirable that the

decompositional aspects of Mascot should be treated before embarking on detailed descriptions of the

various forms of system component. Inevitably, then, this section is concerned with the construction of

systems from building blocks whose nature remains to be fully revealed. This should present no

insuperable difficulties provided that the general principles covered in Section 2.1 have been

understood.

ln its initialstages, a Mascot design may consist simply of a set of subsystems representing the principal

functional or geographical units of the application. Since subsystems may possess ports and

wlndows, they can be interconnected by paths which, through their associated access Interfaces,

define the nature of the interactions that are to take place. Subsequently, the details of the

subsystems are added in the form of templates for networks of actlvltles, lDAs and servers

together with other, lower level, subsystems. lt is this last feature, the ability to ¡nclude subsystems

within subsystems to any depth, which facilitates an hierarchicdlform of design expression. As a design

entity a subsyslem may play the role either of a processing or a e,ommunication element or of a mixture

of the two.

As will be seen below, the graphical representation of a subsystem would lead one to suppose, on the

basis of a familiarity with the rest of the Mascot graphical conventions, that it necessarily incorporated one

or more independently scheduled threads of execution. However exceptions can arise. Since the

existence of a subsystem ¡s established before its internal design is carried out, there is always the

logical possibility that subsequent decomposition will show that no component actlv¡tles or

subsystems are required. This is an allowable form and, where it arises, the subsystem is functionally

identical to either a composlte IDA or a composlte server (both of which are the subject of later

sections).
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A system is a network which encompasses the whole of the application. Explicitly or implicitly, it

constitutes a complete description of the sottware. lt ¡s the highest or outermost level of the hierarchical

design expression. Consequently it differs from a subsystem only in having, by definition, no external

dependencies other than those which may be satisfied during system building (see later Section 2.8). All

communication with hardware or software objects in its external environment is implicit. In the remainder of

this section, attention will be directed largely to subsystems of which the system will be treated as a

specialcase.

Graphical Representat ion

A subsystem is represented in a Mascot network diagram by a closed curve with rounded corners. As

it is by nature a composlte entity, it is drawn as a thick or double line or in such other distinctive form as

may have been adopted as a suitable convent¡on. The shape is usually that of rounded rectangle.

External dependencies are shown by lines which pass through the boundary of the symbol and where

these represent paths they terminate in either a port or a wlndow symbol.

The diagram below shows a subsystem as it might appear in the early stages of design. lts external

dependencies are determined but not its internalstructure.

This particular example possesses two ports and a wlndow and its purpose is to process two input data

streams to produce a single output stream. The next diagram displays the internal structure of the

template suösys_5

su bsys_s
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tw 
merge

tw1act_1

c tP1

Two actlvlt¡es, a and a|, created from templates acf and act_1 respectively, are connected to the

two externally visible ports wh¡ch evidently receive the two input streams. Each actlvlty is connected

via a separate path to a separate wlndow of the IDA m. These two ¡nternal paths are represented by

distinct access lnterfaces, trans and trans_1. Finally it is IDA m, created from the template

merge, which provides the externally accessible wlndow.

subsys_5 is a simple example but is relatively general in possessing both ports and wlndows.

subsys_6 below, on the other hand, has only ports and lherefore externally resennbles an ac{lvlty.

Conversely, subsys_7 externally resembles a pure communication element.

su bsys_6

gp pp
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su bsys_7

As a final graphical example, trlplex, to seasoned Mascot users an old friend in a new guise, illustrates a

subsystem with embedded subsystems in its structure.

The thick lines of the symbols dup_1 and dup_2 reveal these components to be of a compos¡te

nature. They are subsystems and, furthermore, they are both instances of the same template,

dupllcate. Notice that the design would have to be expanded to at least another level down to reveal

the components which actually provide the facilities, defined in access ¡nterface gef, provided at

the three subsystem wlndows. trlplex itself possesses a port, tn, and three windows, oufl,

outz and outS all ol lype get.

Mascot 2 users may be inclined to wonder at the complication of the well known elementary example of

trlpllcated_expanslon Under what circumstances would it be necessary to use a subsystem rather

than an eminently simple actlvlty to duplicate a data stream without transformation (for such is the

traditional version of this example)? The explanation arises from the applicability, mentioned in the

tr¡plex

exp

ep

dupl icate

p 9 1

dupl icate
g 1

p
g

copy
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Introduction, of Mascot 3 to very large distributed computing systems. lf each of the three data streams

associated with the lwo instances of subsystem template dupttcate fall under the jurisdiction of

different processors with private and shared memory units, something considerably more complicated

than a two-statement ac{lvlty may be needed.

Textual Representation

The syntactic structure of a Masc,ot subsystem template is shown, in outline, below.

The name parf establishes the class of the module and gives the template a name.

su[-sys-nams-¡ad

For example:

SUBSYSTEM subsys_S ;

The specltlcatlon part specifies the network dependencies.

defined in the diagram below.

Its syntax, in the mandatory subset, is

subsys_spec part

The form of port and wlndow specifications is defined ín the preceding section of the Handbook. For

subsystem suösys_5 lhe speclflcatlon part is:

subsystem

network_¡mp_part
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PROVIDES 94 :  get  ;
REQUIRES p4 :  get  ;

c 4 : c o m ;

An important point to understand is that the subsystem template conta¡ns no algorithmic coding. lt

merely defines the nodes and interconnect¡ons of a network. As explained above, the modules which

represent ¡ts component parts, the nodes, are actlvltles, lDAs and servers together with other

subsystems. The interconnections are paths whose types are defined by access Interfaces. All

the information needed to create the components and connect them together is provided in the

modufe's Implementatlon part. lts syntact¡c structure is shown below.

network ¡mp part

equ¡valence_list

It begins with a USES section which lists all the templates needed for the components of the

subsystem. This list may not include a system template.

subsys_S
subsys_6
subsys_7
tdplex )

Next comes lne component part in which components der¡ved from the templates mentioned

the USES section are specified.

componentJcart

USES act, act_1, merge ;
USES ad_2, act_3, chan;
USES act_4, ch, ch_l ;
USES exp, copy, duplicate, díctionary ;

connection_spec
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There are, ¡nclud¡ng the two special varieties of lDA, six different classes of component which can be

included in a subsystem.

component_class

SUBSYSTEM

SERVER

I cHnrururl

Each component is individually introduced by the appropriate language word : ACTIVITY, lDA,

CHANNEL,  POOL,  SERVER oTSUBSYSTEM and  g i ven  a  name.  These  names  a re  the

component names that, in the graphical form, appear just outside the corresponding symbols. The

template reference which follows is the name of the template from which the component ¡s to be

created. The component class must be the same as the class to which th¡s template belongs.

Where there are ports, their connections must be specified in the following manner:

connection_spec

port_window_connect

This is equivalent to a set of actual parameters in the call of a procedure. To continue the analogy, the
ports specified in the component templates correspond to the formal parameters. For every port a

connection to a matching wlndow must be established, either explicitly or by way of another matching
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port on the boundary ot the enclos¡ng template.

port_window_connect

po(pod_connect

Thus the interconnection information consists of a list of identities expressed in the 'formal= actual'

convention. Where the connection is an internal one, the reference is to an explicit internal window.

Wlndow names must be qualified with the name of the component wh¡ch provides them. Where the

connection is an externalone, the'actua! paramete/ is the formal name of a port on the boundary of the

subsystem.

Returning to the subsystem diagram lor trlplex, it is now possible to derive the equ¡valent textual

representation. lts speclflcatlon part is:

PROVIDES outl, out2, out3 : get ;
REQUIRES ¡n : get ;

and its components are :

POOL look_up : dictionary ;
SUBSYSTEM dup_1 : duplicate ;
SUBSYSTEM dup_2 : duplicate ;
A C T I V I T Y e : ' e x p (  g = i n ,

ep = dup-1.p,
dp = look_up.dw);

ACTIVITY c:coPY ( g = duP-1.92,
cp = dup_2.p) ,

The port specifications of the exp template are:

2.4 Systems and Subsystems 2 -  4 0 Mascot Version 3.1



and that of the template copy:

REQUIRES g : get ;cP : Put ;

Notice that the port to port connection is represented by specifying in as the connection

corresponding to the port g of acilvlty e. That is, instead of specifying an explicit window to satisfy

this requirement, the port of the actlvlty is identified with that of the enclosing subsystem. A

corresponding wlndow would have to be provided within any system or subsystem having a trlplex

componen t .

The next aspect of subsystem templates to be discussed is the representation of (boundary)

wlndow to (¡nternal) wtndow and (boundary) wlndow to (boundary) port connections' These are

dealt with by means ol an equlvalence list (not to be confused with the access equivalence list

used in IDA temptates to establish a correspondence between windows and access

procedures) .

Using suÞsys-7 as an examPle :

P3 = c.Pw ;
93 = c1.gwl

ln the case ol trlplex, allthe externally visible wlndows are provided by subsystems'

outl = dup_1.91 ;
out2 = dup_2.91 ;
out3 = dup-2.92

To iflustrate to boundary wlndow to boundary port connection, a path straight through subsys-a

(below) would be defined thus:

9 = P

2.4 Systems and Subsystems

component_ident

window_ref

boundary_port_ref
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su bsys_8

The following examples summarise the features of subsystem modules.

SUBSYSTEM subsys_S ; I name partl
{ speclflcatlon dependencles I

PROVIDES 94 :get ; {windowspecification}
REQUIRES p4  :ge t  ;

c4: com; { port specifications }
I Implementatlon dependencles I

USES act, act_1, merge ; { component templates }
I components and lnterconnectlons I

IDA m: merge;
ACTIV ITYa :ac t (  p=p4 ,

p = m . t w ) i
ACT|V|TY a1 :act_1 ( c=cA,

t p l = m . t w l  ) ;
I equlvalence IIst I

g4 = m.Q
END .

SUBSYSTEM subsys_6 ; I name partl
{ speclflcatlon dependencles I

{ PROVIDES ; no window specifications }
REQUIRES 92  :  ge t  ;

p2 : prrt ; { port specifications }
I lmplementatlon dependencles I

USES acl_z, act_3, chan ; { component templates }
I components and lnterconnectlons I

C H A N N E L c : c h a n ;
ACTIVITY a1 : act_2 ( gp = 92,

P P = c . P w ) ;
ACTIVITY a2 : act_3 ( gpl = c.gw,

p p 1 = p 2 ) ;
I no equlvalence lÍst I

END .
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SUBSYSTEM subsys_7 ; I name Partl
I speclîlcatlon dependencles I

PROVIDES p3  :  pu t ;
g3 : get ; { window sPecifications }

{ REOUIRES ...,............. I no port specifications }
{ tmplementatlon dependencles I

USES acl_4, ch, ch_1 ; { component templates }
I components end lnterconnectlons I

CHANNEL c :  ch  ;
CHANNEL C1 : Ch_1;
ACTIVITY a: act_4 ( gP=c.9w,

PP = c1.Pw1 );
I equlvalence ilst I

P3 = c.Pw;
93 = cl.gw1

END .

SUBSYSTEM triplex ; I name partl
I speclÍlcatlon dependencles I

PROVIDES outl, out2, out3 : get ; { window specificatíons }
REQUIRES in : get ; { port specificalion }

I Implementatlon dependencles I
USES exp, dictionary,

copy, duplicate ;{ component templates }
I components and lnterconnectlons I

POOL look_up :dictionary ;
SUBSYSTEM dup_1 : duplicate ;
SUBSYSTEM dup_2 : duplicate ;
ACTIVITY e:  exp(  g=in,

ep = dup-1.p,
dp = look_up.dw) ;

ACTIVITY c : copy( g = dup_l.92,
cp = dup_2.p);

I equlvalence ilst I
outl = dup_1.91 ;
out2 = dup_2.91 ;
out3 = dup_2.92

END .

Finally ¡n this section we turn to systems. As explained earlier, a system is simply a subsystem with

no ports or windows. In the graphical form no paths cross the boundary of a system symbol which is

otherwise identical to that representing a subsystem. The system diagram below uses three of the

subsystems which have been discussed above.
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a1

ss2

put

get

SS1
get lget I get

s s 3 t s s 4 ü s s S

put  lPu t  lpu t

¡1 ¡Tl i2[--- l  ¡3

total

out2 outS

p3
g3

subsys_7

subsys_6 subsys_6subsys_6

The syntax which describes the textual form of a system is a modification of that for a subsystem to

take account of the absence of ports and windows and the fact that no equivalence l¡st is

required.

svstem

system_imp_part

2.4 Systems and Subsystems 2 -  4 4 Mascot Version 3.1



system_nameJcart

system_imp_part

The list of temptates ¡n the USES sect¡on may not include a template for a system.

Us¡ng system total as a basis, the following example summarises the features of a system module.

SYSTEMtolal ; I name partl
I Implementatlon dependencles I

USES a, subsys_7, triplex, subsys_6, drive-í, drive 2, drive-3 ;
{ component templates }

I components and Interconnect¡ons I
SERVER i1 : drive_l ;
SERVER i2 : drive 2 ;
SERVER i3 : drive_3 ;
SUBSYSTEM ssl
SUBSYSTEM SS2 :
SUBSYSTEM ss3

SUBSYSTEM SS4

subsys_7 ;
triplex ( in = ss1.g3 ) ;
subsys_6 ( g2 = ss2.out1,

p2  =  i 1 .p  ) ;
subsys_6 ( g2= ss2.out2,
.  p Z  = i 2 . p ) ;
subsys_6 ( g2=ss2.out3,SUBSYSTEM

ACTIVITY A1
END .

p2 = i3.p );
: a ( p = s s 1 . P 3 ) ;
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Descr io t ion

Mascot application software is conceived in terms of a set of independent threads of execution which is

mapped onto a hardware configuration containing an arbitrary number of processors. There are normally

fewer processors than there are computational threads and it ¡s the responsibility of the scheduling

function of the Mascot Context software, acting either pre-emptively or in co-operation with the

application software, to allocate the available processing power appropriately. The unit of scheduling for

this purpose, an individualprocess, is known as an actlvlty.

Thus actlvltles are the fundamental processing elements in a Mascot applicatîon. Conceptually, all

act¡v¡t¡es are executed in parallel. In practice, when any two communicating act¡v¡t¡es are considered,

there may be literal parallelism resulting from their being mapped onto distinct processors or

pseudo-parallelism if they share the same processor. In the latter case, depending on the mode of

scheduling being employed, the synchronisation problems arising from their use of common data may be

klenticalwith those met with in true parallelism.

It is a principle of the Mascot philosophy that the mechanisms necessary to safeguard the integrity of data

communicated between act¡vlt¡es should be embodied not in the actlv¡tles themselves but in a

separate commur:lcation element. This is the intercommunication data area or IDA which is discussed in

detail in a separate section. lt encapsulates the shared data area and normally provides access to it

through a procedural interface. Mascot act¡vltles therefore never communicate with each other directly

but always through the intermediary of an lDA. ln such transactions the actlvlty is the active partic¡pant

which invokes the operations specified in an access interface and provided by the passive lDA.

A consequence of this approach is that an act¡v¡ty's influence on the remainder of the application

software is restr¡cted to its interactions with the lDAs to which it is connected. In particular, it is

uninfluenced by the existence of any other component. lts part ¡n the overall application is limited to

using, processing and transm¡tting the data which flows to it along the paths of the network.

A Mascot system consists of a network of act¡vlt¡es and lDAs. Each of the act¡vlt¡es present has

been created from an act¡v¡ty template. In some cases several of the activ¡t¡es may have been

created from the same template. S¡nce each template ¡s a distinct design ent¡ty, developed

independently, it is important that there are means of exercising control over the formation of a network.

The validity of the connections must be capable of being checked during the construction process. The

formal arrangements whereby a Mascot database records the status or degree of validation of each

module is described in Section 3.1.
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The validation is carried out in terms of access Interfaces. An actlvlty template establishes a

network connection point by specifying a port. Each port implies a connection to a path of a particular

type whose associated access Interface specifies a set of data transfer or other operations. The

coding necessary to implement these operations is provided by an IDA possessing a window of

matching type. Valid actlvlty to IDA connect¡ons are ones for which this type checking proves

successful.

Graphical Representat ion

An activity is represented in a Mascot network diagram by a closed curve with rounded corners and

drawn with a thin line. Normally, in accordance with historical convention, the curve is a circle. External

network dependencies are shown by lines which pass through the boundary of the symbol and

terminate, just inside the act¡v¡ty boundary, in the port symbol.

The diagram below shows an act¡v¡ty template. The name of the template, and of the module

which represents rt, is act_temp and this identifier is placed inside the act¡vlty symbol. As a general

ru!e the name of an act¡vlty should clearly reflect its function. The act¡vlty possesses two ports, g and

p and, as the labels on the two connected paths indicate, the external requirements which they

represent are specified by access Interfaces get and put, respectively.

An activity component, as opposed to an activity template, would be represented as part of a

network . In this case the symbol would represent a particular component created from a template

and would be given a name distinct from that of the template itself. This name is placed outside the

act¡v¡ty symbol. Examples are to be found in Section 2.4.

Textual Representation

ln the mandatory subset of the Mascot definition, an act¡v¡ty module takes the syntactic form shown, in

outline, below.

act_temp
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activitv

simple_act_imp_part

The name parf establishes the class of the module and gives the template a name.

ac1-nane-.0aft

For example:

ACTIVITY acuemp ;

The speclflcatlon part specifies the network dependencies. lts syntax is defined in the diagram

below.

act soec part

The form of port specifications is defined in a preceding section of the Handbook:

REQUIRES p :  put  ;g  :get  ;

Finally, the lmplementatlon part detines, explicitly or implicitly, the coding of this parallel thread of

execution. lts syntax is shown in Pascalstyle below:

simple_act_imp part
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In its simplest form it consists solely of a block represent¡ng a set of private declarations and a sequence

of program statements. The program pafi may define procedures, variables and constants etc. which

are localto the actlvlty.

Definitions of globally used data-types and symbolic constants are normally specified in definition

modules (described in Section 2.3). They are made available for use ¡n an act¡v¡ty modute through

the W|TH section ol tts lmplementatlon part. This simply lists the names of the relevant

speclf¡catlons.

WITH dataflow_types, realconstants ;

The following outl¡ne example summarises the features of actlvlty templates described above:

ACT|VITY actjemp ; I name partl
I speclllcatlon dependenctes )

R E Q U I R E S  p :  p u t  ;
g : get ; { pon spec¡ficat¡ons }

I lmplementailon dependenctes l
WITH dataflow_types, realconstants ; { globatdefinitions }

I local declaratlons I

I actlvlty codlng wtth tntuat entry pointl

END .
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2.6 INTERGOMMUNIGATION DATA AREAS ( lDAs)

Descr ip t ion

Any scheme for the organisation of co-operating parallel processes must include mechanisms for the

control of data intercommunication. where these mechanisms are imposed, globally, by a run-time

system they may often present themselves as a constraint on the software design process. The Mascol

phitosophy is to provide the designer with the means to create precisely the communication facilities that

are required between any two actlvltles in the system. Previous sections of this Definition have

described how the external network dependencies of an act¡v¡ty are expressed in terms of the

procedure specifications which constitute the body of an access Interface. These procedures, which

perform the necessary data transfers, are implemented in a Mascot design element called an

intercommunication data area or, more shortly, an lDA. Wherever information ¡s transmitted between

act¡v¡t¡es it is communicated through an intervening IDA;wherever common information is shared by

act¡vit¡es it is stored in an lDA. Thus, in general, lDAs encapsulate both the shared data and the

custom designed access mechanisms necessary to safeguard the integrity of information being held in or

propagated through the lDA.

An IDA is a passive element. The code which it conta¡ns is never scheduled for execution in its own right.

The independent threads of execution which form the run-time manifestation of actlvlt¡es simply pass

through the IDA coding at points where intercommunication is taking place. Several such threads may

simultaneously be active, or temporarily suspended, within an IDA which thus encapsulates the critical

occasions where act¡vltles require concurrent access to the same data structure. When these

circumstances arise they may involve rnore than one act¡vlty utilising the same access mechanism, and

therefore actively using the same section of IDA code, or alternatively, several different access

mechanisms may be operating concurrently on the same items of data. The Mascot method, while leaving

the software designer firmly in control of the means of solving the system's concurrency problems,

restricts the location of the coded solutions to this one type of component.

An lDA, therefore, is an encapsulated data type whose deta¡led physical representation is hidden from its

users and whose component values may be manipulated indirectly through a procedural interface. lt fulfils

two principal purposes in a Mascot network. By providing mutual exclusion wherever necessary between

act¡v¡t¡es competing for the use of a common resource, it safeguards the integrity of data. By providing

cross stimulation between co-operating actlvltles, it maintains the propogat¡on of data in the network.

Through experience with earlier versions of Mascot, two simple classes of IDA have been lound to be

particularly useful. The first of these provides for uni-directionaltransmission of data from one or more

producer act¡v¡t¡es to one or more consumers. lt is known as a channel and is characterised by a

destructive read operation and a non-destructive write. As a consequence it can become empty of data

and, as its capacity is finite, it can also become full. The other specially usefultype of IDA is known as a
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pool. In th¡s case it is the write operation which is destructive and the read non-destructive. A pool is

therefore a suitable kind of IDA to represent a table or dictionary whích act¡v¡t¡es periodically consult or

update. Many of the simpler Mascot networks can be built satisfactorily from actlvltles, channels and

pools. The graphical forms of such networks are normally referred to as ACP (Activity-Channel-Pool)

diagrams.

ln general, active and passive components, actlv¡t¡es and lDAs, alternate along the paths of a Mascot

network. Certainly adjacent activities neveroccur. However, it is sometimes necessary lor data to be

projected directly from one IDA to another. Typically this requirement might arise where the two lDAs are

to be accommodated in separate storage units addressable by separate processors. Mascot caters for

this contingency by allowing lDAs to possess ports as wetl as wlndows. Thus an IDA may use access

mechanisms as well as providing them and so may be connected, by a path, to another lDA.

Graphica l  Representat ion

An lDA, in its most generalform, is represented in a Mascot network diagram by a rectangular shape.

The square corners of the symbol ¡ndicate the passive nature of the component it represents.

Throughout the Mascot graphical notation, an exclusively square cornered symbolic outline certifies that

decomposition, to any depth, will not reveal an active element. A rounded c,orner, on the other hand,

affirms the probabilitv, but not the certainty, of one or more independently scheduled threads of

execution being involved.

External network dependencies are denoted by lines which pass through the boundary of the symbol.

These lines are terminated, within the boundary, by a wlndow symbol. The diagram below shows an IDA

temp la te .

The name of the template is tda_temp and this identifier is placed inside the rectangular lDA symbot.

As a general rule the name of the template should clearly reflect its function. The IDA possesses two

wlndows, p and g/, represented by the filled rectangular symbols with which two of the externally

connecting paths terminate. The labels on these paths show that the procedures provided by the IDA

at the corresponding wlndows are specified in the access interfaces, put and gef, respectively.

ida_temp
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A third path, labelled transmlt, is shown crossing the bottom boundary of the symbol and this

terminates ¡n the port, f. The procedures specified in the corresponding access ¡nterface, transmit,

may be used by the IDA coding in order to project information directly to or from another lDA. This mode

of data transfer takes place only when a thread of execution passes through the tDA.

An IDA component, as opposed to an IDA template, would be represented as part of a network. In

this case the symbolwould represent a particular component created from a template and would be
given a name distinct from that of the template itself. This name is placed outside the tDA symbol.

Examples are to be found in Section 2.4.

Two alternative graphical representations are available for channels and pools (described earlier) and

these are shown below.

The standard rectangular symbol is slightly modified in each case to make it more reminiscent of the

original Mascot 2 channel and pool symbols.

Textual Representat ion

In the mandatory subset of the Mascot definition, an IDA module takes the syntactic form shown, in

outline, below.

idê

simple_ida_imp_part

chan_temp

p g w1 w2

pool_temp
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Tne name part establ¡shes the class of the module and gives the template a name. lt also

distinguishes between a generalised IDA and the two special cases: channel and pool.

ida name oart

Examples are:
IDA ida_temp ;
CHANNEL chan_temP;
POOL pool_temP;

The speclîlcatlon part specifies the network dependencies.

below.

Its syntax is defined in the diagram

ida_spec oart

w¡ndow_spec

The form of the wlndow and port specifications is defined in a preceding section of this Handbook.

Notice that at least one wlndow must be specified.

P R O V I D E S  p : p u t ;
g : g e t ;

REQUIRES t : t ransmi t ;

The lmplementatlon part detines, explicitly or implicitly, all the coding contained in the element. lts

syntact¡c structure is defined below.
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access_equ ¡vale nce_list

ln its simpfest form it consists solely of a declaratlon part.. Prog(am obiects to which external access is

provided, via a window of the lDA, are distinguished from purely local entities by the use of the word

ACCESS in their declarations. lgnoring, for the moment, the WITH section an elementary example

might begin:

C O N S T
bufsize = 100 l

V A R
buffer : ARRAY[1 .. bufsize] OF data_flow_type ;
in¡cointer, outJcointer : integer ;
inq, outq :controlq ;

ACCESS PROCEDURE put_data ( item : data_flow_type ) ;

ACCESS FUNCTION get_data : data_flow_type ;

ln this lDA, a data buffer is declared together with a pair of pointers and two control variables, Inq and

oufg, whose significance in the Mascot method of process synchronisation is explained in the relevant

section of this Handbook. In conformity with the principle of data hiding, all these variables are entirely

private to the lDA. The procedure declaration section must include an implementation of every

procedure made externally available in the IDA's PROVIDES list. Thus if this was:

PROVIDES p : put ;g : get ;

then, access ¡nterface puf might contain the specification :

PROCEDURE put_data ( i: data_flow_type ) ;

and access Interface get, lhe specification :

FUNCTION ge[_data : data flow_ flow_type ;

The purpose of the wlndow identifiers, p and g, willbe explained shortly.
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Three other special procedures may be included in lne declaratlon part and identified by the words

|N|T|AL¡SAT|ON, RESET and TERMINATION respect¡vely. Their execut¡on is invoked by system

control functions as described in Section 4.6 of the Handbook. Any other procedures declared here are

local to the lDA. They can only be executed as a result of being called from either get-data or

put_data. The procedures get_data and put_data themselves are of course invoked from

act¡vlles connected by paths to the appropriate wlndow. They constitute the mechanism whereby

access is obtained to the hidden data buffer.

There is a need to establish the correspondence between the access mechanisms in an IDA and the

procedures which the windows indicate are to be provided. This may be achieved by identity of names

as in the above example, or alternatively by the optional access equivalence fist shown in the

implementatlon part of the syntax.

access equivalence list

Thus, there is provision for equating each identifier in each window with a corresponding identifier

declared inside the tDA; this is known as window-to-local equivalence. ln addition where, for example,

data propagation takes place directly between two connected lDAs, an identifier in a window may be

equated to an identifier in a port so that it is a second IDA which provides the functionality; this is known

as window-to-remote equivalence. For the particular case where all the functionality of a window is to be

provided externally there is a shorthand form which equates all the features of the wlndow to those of a

matching port in a single access equivalence statement; this is known as window-to-port equivalence.

Two examples of window-to-local equivalence are:

p.put_data = put_data ;
g.get_data = get_datâ

identifier

internal_identifier
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In general, using this notation, the corresponding procedure names need not be the same. Indeed, like

the names of corresponding formal and actual procedure parameters, they may be expected to be

different in other than simple ¡nstances of lDAs.

lf our example IDA possesses a port:

REQUIRES t  :put  ;

it could be equated with the matching wlndow:

P = t

implying that the the access Interface procedure put_data is to be provided from elsewhere.

Alternatively, an individual procedure in the wlndow may be equated to a procedure ¡n the port:

p.put_data = t.put_data

It witl be observed that, in the above example, data-types are used which are not defined in the lDA. This

will normally be the case with data-types and symbolic constants which are used in more than one

module. ln order to supply such global definitions, a specification module, known as a def¡n¡t¡on

and described in Section 2.3 of the Handbook, is provided for them. lt is the purpose of the WITH

section inlhe tmplementatlon part ol the simple IDA to import such additional global definitions thal

are needed but which are not inherited from an Interface.

WITH data_type_defs, control_type_defs ;

The following outline example summarises the features of simple lDAs described above :

f DA ida_temp ; I name pa¡t I
I speclîlcatlon dependencles I

P R O V I D E S  p :  p u t ;
g : get ; { window specifications }

REQUIRES t : transmit ; { port specification }
I Implementatlon dependenctes I

WITH ; {globaldefinit ions}
I local declaratlons I

ACCESS PROCEDURE .... . . . . . .  ;  t  to match al l  procedures )
{ specified }

ACCESS FUNCTION ; { in the windows provided }
{ access equlvalence ,isf }

END .
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2.7  SERVERS

Öescr ipt ion

A Mascot application interacts with its environment via a set of peripheral devices attached to the

processor or processors on which it is running. These devices generally appear to the software as

sources, sinks or temporary repositories of data. In some cases, however, they appear as initiators of

signals, acquainting the software with information concerning external events. The range of processors

for which Mascot systems are likely to be implemented possess a variety of different interrupt handling

architectures. Absolute standardisation is therefore not poss¡ble and this section of the Definition is

intended to establish guidelines as to what Mascot facilities are provided to allow devices to be handled in

a manner appropriate to the application.

ln order to enhance the portability and flexibility of a Mascot system, it is desirable that the application

dependent details, relat¡ng to specific devices and to the architecture of particular computers, should be

localised. This requirement ¡s met by a Mascot design element called a seruer which encapsulates the

mechanisms that control and transfer data to and from a particular device. Servers communicate with

other Mascot components through access Interfaces which enable them to be treated, as far as

possible, like lDAs. The aim is to hide the application dependent details in the same way as the physical

representation of shared data structures is hidden.

The constituent parts of a seruer vary accord¡ng to the characteristics of the device with which it is

concerned and the uses to be made of this device by the application software. The interactions it

provides will normally include 'driver' mechanisms to allow control signals and/or data to be sent to the

device. When an interrupt occurs, the action of the Mascot scheduling function is overridden by hardware

and control is transferred to a section of code encapsulated in the server and known as a handler. lt is

the handler which transfers information between the, frequently volatile, data registers of the device

and the internal data structures of the seruer which are accessible to the Mascot network via windows.

Servers share many of the attributes of lDAs;they may possess both wlndows and ports. They differ

from lDAs, however, in being the only Mascot design elements which may include handlers and other

code which communicates directly with devices. Where the mechanisms used for device interaction are

not available to the application software but are provided by low level procedures within the environment,

the use of these procedures is restricted to code encapsulated by a server.
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Graphical Representat ion

A template for a server is represented in a Mascot network diagram by a D-shaped symbol as illustrated

below.

Th¡s template is called devl_server and possesses two wlndows, I of type get and e of type

enable, and a single port, , ol lype lnlt. The various forms of connection are shown in their

convent¡onal positions. The rounded edge of the server symbolfaces towards the device, wlndows

are placed on the opposite, square cornered edge and ports on one of the s¡des of the symbol (top or

bottom of the D). The orientalion of the complete symbol may be chosen to su¡t the layout of the

diagram. The diagram also shows the device controlled by the seruer. This is represented here by a

hatched rectangle but a schematic sketch of the hardware would be equally acceptable. The presence of

the device symbol and its connection to the server are optional.

Textual Fepresentat ion

In the mandatory subset of the Mascot definition, a server module takes the syntactic form shown, in

outline, below.

server

si m p le_se rve r_i m p_part

devl_server
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server name oart

The name parf identifies the class of the module and gives the template a name. For example:

SERVER devl server ;

The spectllcatlon part is identical with that of an IDA as described in the previous section of the

Definition. Reference to that section shows that ports may be included and that at least one window

must be specified. Without the latter it could convey no information to the network and, therefore,

perform no useful role.

The syntact¡c structure for the lmplementation part of a server is shown below.

simple server imp part

access_equivalence_li st

First an opt¡onal WITH sect¡on allows globally accessible data type definitions to be imported from

definit ion specif ications. The explicit  contents of the server template are contained in the

succeeding declaration part. . This is similar to that of an lDA. lt shares with the IDA the requirement

that its procedure declarations include implementations (distinguished by the word ACCESS) of the

procedure headings offered by its one or more wlndows. Correspondence between the access

¡nterface headings and the internally declared procedures is established, as for lDAs, either by name

identity or by means of an access equlvalence llst, the form of which is described in the previous

section of the Definit ion. INITIALISAT¡ON, RESET and TERMINATION procedures may also be

included (see Section 4.6 of the Handbook).

Unique to this type of template, is the abilty to declare handlers. These routines are distinguished

from other procedures by use of the design language word HANDLER in place of PROCEDURE.

Now follows an outline example, based on the earlier graphical example, of a complete module

representing a server.
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SERVER devl server ; I name part I
I specltlcatlon dependencles I

P R O V I D E S  g : g e t ;
e : enable ; { window specifications }

REQUIRES i : init; { port specifioations }
I lmplementatlon dependencles I

WTH .............. ; { globaldefinitions }
I local declaratlons I

ACCESS PROCEDURE ; { including allprocedures }
{ specified }

ACCESS FUNCTION ; { in the wíndows provided }
HANDLER ; { handler declarat¡on }

{ access equlvalence ,lst I
END .
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Descr ipt ion

This feature is not part of the mandatory subset of the Mascot definition.

Collections of ob¡ects, of any kind, although all created from the same template, may nevertheless be

required to behave ditferently from each other in minor ways. These individual secondary characteristics

may be bestowed by specifying, in the template, constants whose values are to be supplied to

individual components of this type. Such constants constitute another form of external dependency

and are known in Mascot as template constants.

The range of template constant types is dependent on the implementation language, but could be

expected to include any of the implicit data types of the language. The use made of these values is again

dependent on the implementation language but they could typically be used for:

- device addresses (in a server)

- interrupt levels (in a seruer)
- buffer sizes (any slmple template)

- lteration control (any simple template)

This latter use might for instance govern the number of terms in a series to be evaluated and hence the

accuracy and computation time of a result.

Just as network paths may be carried, v¡a 'port to port'or'window to window'connections, across

the boundaries of composlte design elements, so template constants may be transmitted in a

similar way to individual components. Indeed powerful use of the facility may be made by bringing

template constant dependencies out to the enclosing system to be supplied dynamically during

system bulldlng (see Section 3.2 of the Handbook).

Template constants may be specified either individually or in the form of arrayq in any template.

Graphica l  Representat ion

A template constant is distinguished from a communication path, in a Mascot network diagram, by the

âbsence of any terminating symbol (such as those representing ports and windows) inside the

boundary of the temptate or component to which it belongs. Taking an act¡vlty template as an

example:
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integer

act_temp_a
g p

The tempfale act_temp_a possesses a template constant, of type integer, known internally as m.
Supposing act_temp_a to be used to generate a component of a surrounding subsystem whose
instantiation is to supply the value of tn , this would be indicated graphically as shown below:

f t ! ! t t ¡ t t ¡ ¡ t l

This diagram shows that the template constant, which is to be known as k in the subsystem, is to be
given the value 10 when the subsystem is itsetf created. Similar diagrammatic conventions apply to all
other types of template.

Textual Representat ion

Reference to the complete syntactic descriptions (to be found in Appendix A) of any of the Mascot
tempfates shows that template constants may be specified at the beginning of their specfflcation
parts. ln the case of a subsystem, for example, the complete syntactic structurè of rls spectficatton
part (as opposed to that previousty presented for the mandatory subset) is:

subsys_g

act_temp_a
g p
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subsys spec oart

window_spec

The additionalsyntactic structure is shown below:

temp const_spec

const_spec_list

Using the graphical example above to illustrate the textualform, the act¡vity template would include:

ACTIVITY act_temp_a ;
CONSTANT m : integer;

E N D .

The enclosing subsystem transmits the constant through the connection specification of the

component derived from template act_temp_a . This is the same notation as that used to provide

port to window and port to port connections. The complete syntax lor a connectlon_spec isi

$-öö'ry:öiäñî
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connection spec

const_¡dentifier

constjdentifier

The additional structure required to identify template cons'tants is:

This identifies a template constant with either its ultimate value or with another constant identifier at a
higher level. Thus, the subsystem ¡n our example would contain:

SUBSYSTEM subsys_9 ;
CONSTANT k : integer;

ACTIVITY act : act_temp( m=k,
P  = . . . .  I
I  =  . . . . )  ;

END.

and the system:

SYSTEM sys;

SUBSYSTEM s : subsys_g ( k= 10 ;.. . . . . . . . . .  ) ;

E N D .
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Finally, an array of template constants might be specified as:

CONSTANT c : ARRAYI1..101 OF char ;

and its values provided by a construc{ion similarto an Ada positionalaggregate:

c = ('â', tb', 'c', 'd', 'ê', T', þt, 
tht, ti', tj' 

)

Alternatively, the array name c may be equated with that of an assignment compatible array at a higher

level of the design hierarchy.
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2.9 LIBRARIES :  :

Descr io t ion

This feature is not part of the mandatory subset of the Mascot definition.

ln Section 2.12 ot the Handbook it will be seen that facilities exist in Mascot for the sequential

decomposition of act¡v¡tles. The products of decomposition are roots and subroots whose

relationships to each other, and to the adjacent parts of the data flow network, are formally shown on the

diagram. This feature is limited to act¡vlt¡es but all simple templates are open to procedural

decomposition in terms of librarles which may be shared by any number of templates. A llbrary,

which may be instantiated in any composlte module, consists of a set of externally accessible
procedures encapsulated with other purely pr¡vate declarations. lt does not conta¡n static data and
consequenlly cannot be used as an lDA.

A Mascot l¡brary implements one or more llbrary Interfaces specifying which of the program objects
declared in a given library may be used by templates possessing a LIBRARY statement which refers
to that interface. Candidates for including such a specification are slmple lDAs, llbrarles, slmpte
actlv¡t¡es and the slmple components of composlte act¡vit¡es. l t  is clear, therefore, that
libraries, like lDAs, must be capable of supporting multi-threaded operation. However they must not
allow interaction between the threads and so are not involved in problems of process synchronisation.

Graphica l  Representat ion '

Neither l¡brar¡es nor library Interfaces are represented on Mascot network diagrams.

Textual Representat ion

Library lnterface

A l¡brary Interface speclf¡catlon has the following ouiline syntax:
library interface

lib_int_name_part
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l ib int name oart

lib int spec part

The optional WITH section allows globaltype and symbolic constant definitions to be imported to the

library Interface.

Notice that variables are not allowed in a library ¡nterface. Some examples follow:

LIBRARY INTERFACE trig_funct¡ons ;
FUNCTION sin (x : reat) :  real i
FUNCTIOIU cos ( x : real ) : real ;
FUNCTION tan (x : real) :  real ;

END .

DEF¡NIT|ON complex ;
TYPE

oomplex = RECORD
reaþar t : rea l ;
imaginarypart : æal

END;
END .

LIBRARY INTERFACE complex_1 ;
WITH complex ;

FUNCTIONedd ( x, y :complex ) :complex ;
FUNCTHCN sub ( x, y :complex ) :complex ;

END .

LIBRARY INTERFACE complex_2 ;
WlTi{ complex ;

FUNCTION div (x, y :complex ) :  complex ;
FUNCTION mult x, y : complex ) : complex ;

END .

proc_headings
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Librar ies

The outline syntactic structure of a library module is shown below

l ibrarv

library_nameJcart

The specltlcatlon part permits the specification of template constants and requires that the library

¡nterface, for which this template describes an implementation, should be identified in a GTVES

section.

library_spec_part

Where a library is to give more than one Interface, the interactions provided ¡n the spec¡f¡cat¡ons

must be distinguishable from each other.

It can be seen from the syntax of the lnplementatlon part, given below, that def¡n¡tion and library

dependencies may be included

library_namelcart

library_spec_part

library_imp_part
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l ibrary imp part

A ttbrary spectîtcatton may appear in any actlvlty, lDA, server or llbrary template. Thus in the

compfete Mascot definition, an actlvlty lmplementat¡on part takes the form in Pascal style:

simple act impJcart

The additional structure is a list of llbrary Interfaces:

library_spec

The remainder of the library lmplementatton part takes the form of a set of declarations which may

not, however, include variables. This reflects the fact that static variables are not allowed in a library. In

Some implementation languages this prohibition might be expressed in a different manner. The

procedure declarations must include al l  the procedures specif ied ¡n the given interfaces. The

correspondence is by procedure name.

with_section

library_int_ref

2.9 Libraries 2 -  6 9 Mascot Version 3.1



The following is an example of a llbrary template.

L¡BRARY trig_lib ;
I speclllcatlon dependencles I

{ CONSTANT ............. ; no template constants }
G¡VES tr¡g_functions ;

I Implementatlon dePendencles I
{ wrTH ........... ; no definition dependencies )
{ LIBRARY ; no library dePendencies }

I local declaratlons I
PROCEDURE .... ; { including all procedures specified }
FUNCTION ......... ; { in library interface trlg-tunctlons I

END .

Finally, a library module may be instantiated within any composlte module and then becomes

implicitly available throughout all the other components. Thus the full syntax for the the

component_ctass in the Implementatlon part ol a network module (given in part in section

2.4) is;

Taking subsystem suösys_6 (Section 2.41as an example, library trlg_llb could be made available

to the two actlv¡ties, al and a2, and the IDA c by extending the subsystem module as shown

below:

comoonent class

SUBSYSTEM

CHANNELËI
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SUBSYSTEM subsys-6 i I name Partl
I speclflcatlon dePendenclesl

{ PROVIDES .......... ; no window specifications }
REQUIRES 92 :  get  ;

p2 : put ; { Pod sPecifications }
I lmplementatlon dePendencles I

USES acÍ.-z, acï-3, chan, trig-lib ; { component templates }
I components and lnterconnectlons I

LTBRARY t : trig-lib;
C H A N N E L c : c h a n ;
ACTIVITY a1 : acI'-2 ( gP = 92,

AcrlvlrY /az: aa-q 83t=jlH,
p p l = p 2 ) ;

I no equlvalence tlst I
END .

The tibrary temp¡ate name has been added to the USES statement and a llbrary component,

derived from this template, defined in the mOdule. An ¡nstance name for the new component is

included for the sake of consistency but is not used for any practical purpose.

Use of the llbrary Interface, trtg_tunctlons, implemented by trlg-llb, would be indicated in the

template act_2 as follows:

ACTfVITY ac:l_2 ; I name part I
I specltlcatron de9endencles I

REOUIRES gp :  ge t  ;
pp : to ; I Port sPeclîlcatlons I

I Implementatlon dependencles l
WITH ......... ; I global dellnltlons I
LIBRARY trig_functions ; l r¡brary Intertaces used I

I local declaratlons )
E N D

END .

The coding of the act¡vlty could then call the functionç sln, cos and fan.

Llbrarles may also be ¡nstantiated in modules which represent Sequent¡ally composlte design

entities rather than networks (see Section 2.121.
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Descr io t ion

This feature ¡s not part of the mandatory subset of the Mascot definition.

Often, whe¡'e a network of interconnected lDAs occurs in a Mascot design, it takes the form of a

composlte component. Such composlte lDAs furnish another means of performing network

decomposition in Mascot, supplementing that described in Section 2.4. A compos¡te IDA consists of a

network of internal !DAs connected by paths and thus utilises the facility,'described in Section 2.6,

whereby lDAs may possess ports.

' ,

Graphical Representat ion :

Compos¡te lDAs are represented in higher level network diagrams by symbols of the same shape as

those used for slmple. lDAs.,Their possible external.dependencies, paths,terminating in either

wlndows or ports, are also represented in an identical manner. The following diagram illustrates a

template for a composlte lDA. lts composlte nature is indicated by the use of q thick line for its

boundary. Alternatively a double line would have the same significance and other conventions, defined

for some specific set of documents, would be acceptable.

The squared corners proclaim that this symbol represents a wholly passive entity. The template ¡s called

ctda and its external dependencies are embodied in windows p and g, expressing the fact that it

provides procedures specified in access interfaces put and get.
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The internal structure of lDAs created from template clda involves three componentÖ called ip, op

and ex. Each of these is a slmple IDA and each is derived from its own template. The three

tempfates are catted tp_tda, op_lda and ex_lda, respectively. In the more detailed diagram it can be

seen from the wlndow to wlndow connection at the left of the diagram that the interactions associated

with the externally visible wlndow, p, aÍe provideð by a corresponding window, named pp, of the

internaf lDA, tp.In a similar way wlndow , gg, ot the intema¡ lDA, op, is echoed to the outside world at

the dght of the diagram.

The lDA, ex, is a purely private component of this template. I ts single wlndow,ev, provides

facilities, defined by access Interface, vls, which are required by both of the other components.

Here, then, is a more complete example of direct IDA to IDA communication.

Further levels of network decomposition are possible. A thick line boundary to any of the component

lDAs of a composlte IDA would indicate this. Such an hierarchical network structure is illustrated in the

diagram below in which it is the component previously called ex which has become compos¡te. lt

woufd be necessary to expand the new template, cex_lda, to at least one level down in orderto

determine the component which actually provides the ínteractions defined in access Interface vrs

in this case.
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Textual Representation

Where the module scheme provides for both slmple and composlte forms of lDA, the syntax is as

follows:

The speclticatlon part is as for the slmple lDA.

lt is in lhe tmplementatlon part lhal the d¡stinction between slmple and composlte forms occurs.

ida_imp-part

Like all other composite Mascot entities, the composite form of an IDA contains no explicit coding. lt

merely defines the nodes and interconnections of a network. The modules whích represent its

component parts, the nodes, are simple IDA temp¡ates or other composlte IDA templates or a

mixture of both. The interconnections are paths represented by access Interfaces.

The name and speciticatlon parts are identical to those of the corresponding simple form.

Windows and ports are specified in the normalway. The lmplementatlon part takes a similar form to

that of a subsystem.

Thus the implementation part begins with a USES section which lists the slmple and compos¡te

IDA temptates from which this composlte ¡DA is to be constructed. Referring back to the graphical

representation of the composlte IDA clda:

ida

ida_name_part

ida_imp_part

simple_ida_imp_part

network_¡mp_part
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USES iP-ida, oP-ida, ex-ida;

Notice that references lo deflnltlons are not allowed at this level;there is no code to make use of their

cÐntents.

Next comes a list of componenfs. The¡r syntactic form is as described for Subsysilems earlier in the

Handbook except that the al lowed component classes are lDA, CHANNEL, POOL and

LIBRARY. Finally, an equivalence list establishes which of the wlndows provided by the internal

components sat¡sf¡es each wlndow of the enclosing lemplate.

To complete this section, the template d¡agram, clda, is used as the basis of a summary of the features

of the textual representation of a composlte lDA.

IDA cida ; I name Pdrtl
I specltlcatlon dependencles I

{ CONSTANT ........... ; no template constants }
P R O V I D E S  p :  p u t ;

g :ge t ; {w indows}
{ REOUIRES ... . . . .-. . .  ;  no ports }

{ lmplementatlon dependencles I
USES ip_ida, op-ida, ex-ida ; { component templates }

I components end lnterconnectlons I
IDA ex : ex_ida ;
IDA ip : iP-ida (ei= ex.ev) ;
IDA op : op-ida (eo = ex.ev) ;

I equlvalence ilst I
i 'P = IP.PP ;
I = oP.99

END .
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2 .11  COMPOSITE  SERVERS

Descr ipt ion 
:  :

This feature is not part of the mandatory subset of the Mascot definition.

A composlte form of server is provided in Mascot which consists of a network containing at least,one

slmple or composlte server and any number of lDAs. These components communicate with, each

other by means of paths.

Graphical Representation

When drawn with a thick line the D symbol is to be interpreted as representing a compos¡te server. lts

constituent network of servers and lDAs, drawn inside the symbol, completes the representafion of

the composlte template.

The template shown here, c_serve_temp, represents a composite server with components

consisting of one slmple server and one slmple lDA. The former, s is of type ser. lts two w¡ndows,

via window to window connections, are accessible from outside the template. lts single port is

connected to a wlndow of the IDA component, d of type detail, whose other window is carried to

the outside world.

Textual Representat ion

Where the module scheme provides for both slmple and composite forms of server the syntax is

as follows:

, 
"_rerve_tem 

p g

deta i l

d i  dp
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server

Tne name and speclîtcatlon parts of a compos¡te server are entirely similar to those of the

corresponding slmpte form. Wlndows and ports may be specified in the normal way. lt is in the

Implementatlon part that the two forms are distinguished:

Thus the tmplenentatton part takes the same form as in the subsystem and composite IDA with

the components consisting of at ¡east one server possibly combined with one or more lDAs (which

may be channels and pools) or llbrarles. The USES sect¡on presents a list of all the templates

needed to construct the network. Then follows lhe component Part which defines the network

components and their interconnect¡ons. An equlvalence llst is t¡sed to deal with window to

wlndow connections.

This section ends with an outline example, based on c_serue_temp, of a complete compos¡te

server template.

S E R V E R  s e T ;
PROVIDES sg  :  ge t  ;

se :enable ;
REOUIBES si : inil ;

EN;

IDA detai l ;
P R O V I D E S

E N ;  .

2.11 Compos¡te Servers

di : init ;
d p : p u t ;

server imp oart

simple_serveilmp_part

network_¡mp_part

2 - 7 7 Mascot Version 3.1



SERVER c_serve_temp ; I name part I
I specltlcatlon dependencles I

{ CONSTANT .......... ; no template constants }
P R O V I D E S  g :  g e t  ;

e : enable ;
p : rut ; { window specifications }

REQUIRES......... ; { no port specifications }
I lmplementatlon speclflcatlons I

USES ser, deta¡l ; { component templates }
I components and Interconnecttons I

lDAd:deta i l  ;
SERVER s : ser (si = d.di) ;

I equlvalence fist I
9 = s . s 9 i
ê = S . S ê l

P = d.dp
END .
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Descr ipt ion

This feature is not part of the mandatory subset of the Mascot definition.

Act¡vlty templates have both the shple and composlte forms. The latter type is not, of course,

concerned w¡th network decomposition but represents the sequential decomposition of the detailed

coding of an act¡v¡ty. The principalproduct of this sequentialdecomposition is a design element called a

root wh¡ch contains the ¡n¡t¡al entry point of the composlte actlvlty. The remaining products of

decomposition consist of one or more subroots.

Communicat¡on between the components of a composlte act¡v¡ty is expressed and controlled in a

manner analogous to that employed for network interactions. Corresponding to the path between the

elements of a network there is the link between the sub-elements of a composlte activity. A

subelement link, l¡ke a path, possesses a type in the form of a specif¡catlon: in this case a subroot

interface which defines a set of interactions that a root or subroot is said to need and which is

correspondingly given by another subroot. The validity of root and subroot connections is checked

in terms of the type of the link, the subroot ¡nterface, exactly as network connections are checked

in terms of access ¡nterfaces.

Further tevels of sequential decomposition are available through templates for compos¡te subroots.

By this means a subroot may by decomposed into a set of ¡nternal subroots which together perform

the same function as a slmple subroot. That is to say, the ensemble is able to give the interactions

specified in exactly one subroot Interface.

External network connections may be made from any component of a composite actlvity. Thus

ports may be specified in a root or in any subroot to correspond with those specified in the template

which describes the composite actlvity at its outermost level. The nature of this correspondence is

discussed in more detail ín connection with the graphicaland textualforms of representat¡on.

Graphical Representation

The graphical conventions for roots and subroots, in composlte actlvlt¡es, are similar to those for

slmple act¡v¡t¡es. They are normally represented by circular symbols to which port connections may

be made but they also possess sub-element llnks to illustrate sequential decomposition. The latter

connect¡ons are shown as th¡n lines broken by hollow arrow heads which indicate the direction of

procedure invocation. The following diagram illustrates a template for a compos¡te act¡v¡ty. lts
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composlte nature is indicated by the use of a th¡ck line for its boundary.

The rounded corners proclaim that it defines an active design element. The template is called

compact and its dependencies are embodied ¡n ports g and p expressing requirements specified by

access lnterfaces get and put.

The internal structure of act¡vltles created from this template involves four components, a root

called r and three subroots called suí, su2 and su3. The templates which define these four

components are cal led malna , subla, sub2a and suÞ3, respectively. Three subroot

fnterfaces, stl,slz and si3 specify the interactions which the three subroots make available via

sub-element llnks. rmakes use of allthree sets of interactions while sul and su2 utilise only the set

compact
ma¡na

sub l  a
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defined in sl3.

The manner in which these ¡nternal components re¡ate to the template's external dependencies is

shown by the port to port connections which continue through the outer boundary. From these it can

be seen that both rand sul utilise the operations defined in access Interface get and that rand

suz use those in access Interface puf.

Since roots and subroots contain sect¡ons of coding which are all conceptually part of the same

actlvlty, ports may be established anywhere in the internal structure. This is illustrated in the telnplate

compact_1, below.

Further levels of the sequential decomposition of actlvlt¡es, in the form of compos¡te subroots,

possess a similar graphical representation. However, a composite subroot will show a link whích

penetrates its boundary and terminates on a slmple internal root component derived from an

appropriate subroot temp¡ate.

co m pact-1 r
ma¡na

rg rF

s1 s2

sub2bsub l  b
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compsub

su1 \- v su2

sub2csubl  c

Subroots established at these deeper levels of nesting retain all the usual properties inherited from

acüvltles. Thus, on the diagram below, two components of the composlte subroot possess

ports.

Textual Representat ion

Before describing the textual form of a template for a composlte actlvlty it is necessary first to

discuss the templates for its component parts and their interconnections, namely roots, subroots

and subroot Interfaces. The latter has a structure similar to that for an access Interface.

compsu b_l mr
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subroot interface

Tne name part employs the appropriate alternative language word to establ¡sh the class of the

modu le .

sub int name_paft

while the remainder of the module is exactly as defined for the access lnterface since the

specltlcatlon part is common to these two types of Mascot Interface.

The following examples ¡llustrate some of the possible forms :

{ subroot ¡nterface with procedure specifications }
SUBROOT ¡NTERFACE locprocs ;

FUNCTION factorial( i :  integer): integer;
FUNCTION modulo( i, j : integer ) : integer ;

END .

{ subroot ¡nterface with definitlon dependency }
DEFINIT¡ON conventions ;

T Y P E
vector = RECORD

x_coord :real ;
y_coord : real ;
z_coord : real

END;
direction_cosines = RECORD

cos_alpha :real ;
cos_beta: real ;
cosSamma: real

Et{);
E N D .

DEFINITION diagram ;
TYPE

diagram = RECORD

END;
E N D  .

si m pl e_acc_i nt_sp ecJcart

2.1 2 Compos¡te Activities 2 -  8 3 Mascot Version 3.1



SUBROOT INTERFACE geometry ;
WITH conventions, diagram ;
PROCEDURE translate(d : diagram;v : vector ) ;
PROCEDURE rotate( d : diagram; dc : direction_cosines ) ;

END .

A template for a root naturally bears a close resemblance to a template for a simple act¡v¡ty. Ports

and template constants may appear in the speclîlcatlon part ; definitlon and library

dependencies may be expressed in the lmplementatlon part whose block section also contains the

initial entry point of the composlte actlvlty of which it is a component.

root name part

The speclîlcatlon part of a root module differs from that represent¡ng a slmple act¡v¡ty only in its

ability to express dependencies which are satisfied through subelement links. The following diagram

shows how this feature is incorporated.

root_specJart

root
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There foilows a possible outline for the root module in lhe compos¡te act¡v¡ty template compact

shown in graphicalform earlier.

ROOT maina ; I name partl

{ speclîlcatlon dePendencles I
{ CONSTANT ......... ; no template constants }
REQUIRES rg :  get ;

lp : f r t ;  {por ts}
N E E D S  s 1  : s i 1 ;

s 2 : s i 2 ;
s 3 : s i 3 ; { ortward subroot lirks }

I lmplementatlon dependencles I
{ globaldefinitions }wTH........ ;

{ LIBRARY ......... ; no library dependencies }
I local declaratlonsl

BEGIN

=*to",ttent 
sequence )

END .

The syntax of a subroot module differs from that of a root in ways which reflect the following different

properties :

(a) A subroot may appear at either end of a subelement l¡nk. That is, it may

implernent facilities for use by a root or by other subroots as well as using

such facilities.

(b) A subroot may be comPoslte.

(c) Unlike a root, a subroot cannot be entered for execution directly. The

executable code that it contains is all encapsulated in procedures which are

called through a subroot Interface. lt therefore has no outer block

statement sequence.

Difference (a) implies an addition to the speclflcation part, compared with a root module, and (b)

and (c) involve variations in lhe lmplementatlon part. As elsewhere, the outline syntax is presented

first with an expansion of the name and speclîlcatlon parts.

subroot
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subroot_name part

subroot_spec part

The diagram describing the spec¡fication part shows that, after optionally specifying ports and

template constants, a GIVES section identífies the subroot Interface which is implemented by

th¡s template. lt should be noted that there is precisely one such Interface. On the other hand, like a

root, a subroot may utilise (keyword NEEDS) the services of any number of other subroots through

subelement  l inks.

Turning now to lhe implementatlon part ; a distinction has to be made between the simple and

compos¡te forms :

For a slmple subroot he lmplementatlon part is similar to that for a slmple act¡vlty except for the

omission of the statement sequence.

subroot imp oarl

si mple_su brootj m p_part

comp_act_impjart
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w¡th sect¡on

declaration_part

simple subroot imp part

Thus, global definitions and library sub-threads may be used exactly as in slmple actlvlt¡es and in

roots. ln the declaration part, constants, types and variables, pr¡vate to the subroot, may be

defined. These are followed by definitions of the procedures which are specified in the subroot

lnterface mentioned in the GIVES section, together with any purely private procedures which the

¡nterface procedures use.

It is now possible to provide, in outline, the text needed to represent templates for each of the

components of the compos¡te act¡v¡ty illustrated earlier as compact. But first the Interfaces

must be specified. Two access Interfaces are required for external network communicat¡on and

three subroot ¡nterfaces for internal communication between the root and subroot

componen ts .

DEFINIT¡ON network_data_def ;
T Y P E

network_datâ = ........ i
END .

ACCESS INTERFACE put ;
WlTl'l network_data_def ;
PROCEDURE write( item : network-data ) ;

END .

ACCESS INTERFACE get ;
WITFI network_data_def ;
FUNCTION read :network-data ;

END .

DEF¡N|T|ON subroot_data_def ;
T Y P E

subroot_datâ = ........ i
END .

SUBROOT INTERFACE Si1 ;
WITH network_data_def , subroot-data-def ;
FUNCTION process-1( item : network-data ) : subroot-data ;

END .
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SUBROOT ¡NTERFACE si2 ;
WITH network_data_def, subroot_data_def ;
FUNCTION process_2( item : subroot_data ) : network_data ;

END .

SUBROOT ¡NTERFACE si3 ;
PROCEDURE calculate( in : integer ; VAR out : integer ) ;

END .

Templates for the root and the three subroots can now be ouilined:

ROOT maina ;
I spectf lcatlon dependencies I

{ CONSTANT .......... ; no template constants }
REQUIRES rg  :  ge t ;

rp: frt; { ports }
N E E D S  s l  : s i 1  ;

s 2 : s i 2 ;
s3 :si3 ; { outward subroot links }

I lmplementatlon dependencies I
wTH .......; { globaldefinitions }
{ LIBRARY ......... ; no library dependencies }

{ Iocal declaratlonsl
I root cod¡ng wlth Inlual entry point l

E N D  .

SUBROOT subfa ;
I speclllcatlon dependenctes I

{ CONSTANT............ ; no template constants }
REQUIRES gg : get ; { ports }
cilì/ESsil; { inward subroot link }
NEEDS s : si3 ; { outward subroot link }

I Implementatlon dependencles I
{ globaldefinitions }

{ LIBRARY ; no tibrary ddependencies }
I lntertace procedures I

FU¡|CT|ON process_l( i : network_data ) : subroot_data ;

END .

SUBROOT sub2a ;
I speclflcat¡on dependenctes I

{ CONSTANT ............... ; no temptate constants }
REQUIRES pp :put ; { ports }

WTTH.... . .  ;

GIVES si2 ;
NEEDSS: si3 ;

{ inward subroot link }
{ outward subroot link }

I tmplementatlon dependenctes I
wïH...... ; { globaldefinitions }
{ LIBRARY ......... ; no library dependencies }

I lnterlace procedures I
FUNCTION process 2( i : subroot_data ) : network_data ;

END .
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SUBROOT sub3 ;
I speclflcatlon dePendencles I

{ CONSTANT ............. ; no template constants }
{ REQUTRES ....... ; no Ports used }
Gl\lESsi3; { inward subroot link }
t NEEDS ........ ; no outward subroot links )

I Implementatlon dePendencles I
wïH...... ; { globaldefinitions }
{ LIBRARY ; no library dePendencies }

I lnterîace procedures I
PROCEDURE calculate( in : ¡nteger ; VAR out : integer );

EN;  .

To see how to express the template lor compacf itself, it is necessary to return to the discussion of

acilvliles and, in particutar, to the composlte form which has yet to be described. The name and

speclltcailon parts are ent¡rely similar to those of the corresponding simple template. Thus, ports

may be specified in the normal way. The Implementatlon part, however, as in the case of a root, takes

alternat¡ve forms for slmple and composlte actlv¡tles.

comp_act_imp part

I t  begins with a USES section which l ists the root template and the highest level subroot

templates from which the act¡v¡ty is to be constructed. Referring back to the graphical representation

of the composite actlv¡ty compact I

USES maina, sub1a, sub2a, sub3 ;

acLimp_part

simple_act_imp_part

comp_act impjart
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This indicates which templates are needed to create the component parts of the actlvlty. Notice that

references to deflnltlons are not allowed at this level. The lmptementatlon part contains no local

declarations or program statements. This is a composlte module and its purpose is to specify the

internal structure of the actlvlty ¡n terms of root and subroot components, created from the

templates mentioned in the USES sect¡on, and the subroot lnterfaces through which they

communicate.

act component oart

act_component_class

Every compos¡te act¡v¡ty specifies a single root component together with any number of

subroots and any l¡brar¡es which are to be made available to the components. The specification of

each component defines any connections it possesses to ports of the actlv¡ty and any l¡nks to

subroots.

act_connection_spec
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act connection spec

temp_constjdent

sub_element_link

The general form of the connection specification is very similar to that already encountered for a

subsystem. The syntax of port to port connections and template constant ¡dentit¡es have already

been described in earlier sections of the Def¡nition. The subelement llnk syntax is given below:

sub_element link

Each outward link of the component being defined is equated with the subroot component which

is to give the required interactions.

The template for the compos¡te activity compact may now be written:

ACT¡VITY compact ;
I speclÍlcatton dependencles I

{ CONSTANT ... . . . . . . . .  ;
R E Q U I R E S  g  :  g e t ;

no template constants )

p : p u t ;  { p o r t s }
I implementatlon dependencles I

USES maina, sub1a, sub2a, sub3 ; { component templates }
I components and lnterconnections I

SUBROOT sul :  subla ( gg = g,
s = S u 3 )  i

SUBROOT su2 : sub2a ( pp = p,
s = S u 3 ) i

SUBROOT su3 : sub3 ;
ROOT r: maina ( rg = g,

f P = P '
51  =  Su1 ,
52 = Su2,
s 3 = s u 3 ) l

E N D .

out_link_identifier
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One topic remains to be covered to complete the syntactic description of actlvlties. This is the

composlte form of the subroot. Like the composlte actlvlty, it differs from Ìts simple form only in

lhe lmplementatlon part. Furthermore, this ditfers from the corresponding part of a compos¡te

actlvlty only in that it cannot contain a component derived from a root template. ¡nstead, the root

component is derived from a subroot template which gives the appropriate ¡nterface.

The template diagram, compsub, at the end of the description of graphical representation will now be

used to illustrate the application of these syntax rules.

SUBROOT compsub ;
I speclllcatlon ctependencles I

{ CONSTANT .......... ; no template constants }
{ REQUIRES ...... ; no ports }:
GMES si ; { inrad subroot lirk }
{ NEEDS...... ; no outward subroot links }

I lmplementatlon dependenctes I
USES sub, sublc, sub2c ; { component templates }

I components and lnterconnectlons I
SUBROOT sul :  subic :
SUBROOT su2 : sub2c ;
ROOT su :sub (  s l  =  su1,

s2 = su2 )l
END .
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Descr ipt ion

This feature is not part of the mandatory subset of the Mascot definition.

Temptates for both the slmple and composlte forms of lDAs, actlvltles and servers together

w¡th subsystems, roots and both slmple and composlte subroots may specify ports by means

of a REQUIRES section in their specltlcatlon parts. The identifiers so introduced represent ports

which may be referred to in the code sections of the simple templates. In some cases it may be

required to transmit data via each member in turn of a group of ports from a program loop. lt is therefore

valuable to be able to specify such a group as an array. Since all or some of the paths associated with an

array ol ports may pass through the boundary of an enclosing composlte design element it is also

usefulto be able to use arrays at that level.

Of the above list of template types, slmple and composlte lDAs and servers together with

subsystems may also specify wlndows by means of a PROVIDES section. These identifiers are

used in lhe connectlon speclîlcatlons of slmple templates and the equivalence lists of

both forms. Here again it is useful to have arrays in order to express logical groupings of windows.

The complete definition of Mascot caters for both these requirements.

Graphica l  Representat ion

An array of ports or wlndows may be representeds by a single symbol or, alternatively, each element

may be shown individually. Where the elements are shown individually the array index should also

appear.

Textual Reoresentation

The extension of the design language syntax to accommodate arrays of ports and windows in

REQUIRES and PROVIDES lists (see Section 2.3) is shown below:
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acc int array descrip

Thus the REQUIRES list of an actlvlty, say, might be:

REQUIRES p-set : ARRAYIl . .5] OF Put ;

where put as an access Interface. This would facilitate coding such as:

FOR line := 1 TO 5 DO
B E G I N

p_setlinel . send(itemfline]). ;

E N D

where send is a procedure specified ¡n the access Interface.

An array of wlndows in an lDA, say, might be specified as:

PROV¡DES w_set : ARRAY[1 ..3] OF get ;

and utilised in an equlvalence llsf as:

w_set[1] . fetch = fetchi ;
w_set[2] . fetch = fetch2 ;
w_set[3] . fetch = fetch 3

to designate three separate ACCESS procedures for use in connection with three logically related

paths.
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Descr ip t ion

This feature is not part of the mandatory subset of the Mase¡t definition.

Mascot allows a system design to be expressed in an hierarchical form such that components at the top

level are decomposed into the more detailed components at lower levels of the hierarchy. lt follows that

the granularity of the interactions on a path in network diagrams, at different levels in the hierarchy, may

vary. The definition presented so far has only provided for one level of granularity to be used for paths;

that is the access Interface's procedures. The composlte path is provided, in the full Mascot

definitíon, to allow different levels of granularity to be represented.

The basic concept ¡s that a compos¡te path represents a'trunk' route between two subsystems of a

network. The module which defines the type of a composlte path is an access Interface which

itself comprises a set of lower level access Interfaces. A composite path is treated exactly like a

simple path until it needs to be split into its component parts, at which points, a specialform of 'adaptor'

is used: the compos¡te port or the composlte wlndow.

Graphica l  Representat ion

A composlte path is represented on a Mascot network diagram by a thick line connecting a port of

one component w¡th a wlndow of another.

example

d

ssdmpxdsdmpx

This is illustrated in the diagram above in which the two components are a subsystem s and a

subsystem d . The name of the compos¡te path which connects them is cpl.The template for

the subsystem dsdmpx, where the decomposition takes place, shows how the compos¡te window

dswn is represented.
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dsdmpx

Like a slmple wlndow, the composlte wlndow is drawn as a rectangular shape. However it is hollow

and, like allcomposite entities, it has a thick outline. lt can only occur on the boundary of a subsystem

template. On the outside of the template to which it belongs there is an external connection labelled

with the name cpl of the compos¡te access Interface which describes, indirectly, the interactions

it provides. Inside the composite window symbol the individual component windows are shown and

labelled in the normalway. In this case, two of them, a and ö, are simple and are connected via simple
paths, both of lypeall ,  to slmple IDA components q1 and q2 .The third is i tself compos¡te

and is connected via the composlte palh cp2 to a subsystem component pl .ll can be seen
from this diagram how a composlte wlndow acts as an adaptor to 'demultiplex' a compos¡te path.

The template for subsystem ss shows how the compos¡te port sspn is drawn.

ssdmpx
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I

I

The composlte port sspn is shown as a hollow semi-c¡rcle, with a thick boundary, inside which are the
'demuftiplexed'ports a, b, and c which it makes visible. Two of these are simple and are connected via

paths of type all to corresponding ports of the subsystem's components. c is itself composite

and is connected via the composlte palh cp2 to a port of the component three. The external

connect¡on is labelled to show that the interactions which it requires are defined, indireclly, by the

composlte access Interface cpl . Since a composlte port connected to a composite wlndow

must be defined by the same access Interface, not only the types but also the names of the

constituent ports and wlndows must match in order that constituent ports and windows of the same

type may be distinguished from each other.

The symbols used to represent compos¡te ports and windows may be drawn larger than the normal

size so as to be more in proportion to the thickness of the path. This is illustrated by the windowc and

the ports pl and c in the above diagrams.

Textual Representat ion

The module which defines the operations, required by a port, provided by a window, and hence

defines the interactions along a path is the access Interface. This is a specif¡cat¡on which if

composlte defines, indirectly, the possible interactions by specifying the set of access interfaces,

slmple or composlte, of which it is comprised. The complete syntactic structure for an access

Interface shows how the composlte form is catered for:

access_interface

acc_int_spec part

The speclllcatlon part of the composlte form has the following structure:

acc_int_name_part

acc_int_specJcart

si m p I e_acc_i nt_s peclo art

co m p_acc_i nt_s p eca art
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COMPRISES

comp acc int spec part

Taking the ¡nterface cpl from the above graphical examples:

ACCESS INTERFACE cpl ;
C O M P R I S E S  a , b : a i 1 ;

c ; c P 2 ;
E N D .

ail it will be recalled is a slmple Interface while cp2 ¡s compos¡te.

A port or wlndow to handle a composlte path arises in the normal way as a reference in a list

following the keywords REQUIRES or PROVIDES. However in order to indicate that a compos¡te

path is to be decomposed within a composlte template, the compos¡te access lnterface must

be referred to in the USES list of the template. The syntax is:

The manner of expressing the connections which fan out from compos¡te ports is revealed by the

complete syntax diagram for a port to port connection as it appears in a connection specification:

network_imp part

comp_acc_int_ref

template_ref

component_part

equ¡valence_list
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port port connect

boundary_port_ref

compJcort_ref

Returning to the earlier graphical examples, the following is the textualform of the subsystem ssdmpx

SUBSYSTEM ssdmPx;
REOUIRES ssPn :  cPl ;

USES cPl, ss2, ss3, act;
SUBSYSTEM two : ss2 (Pl = sSPn'â)i
SUBSYSTEM three : ss3 (p1 = ssPrì.c)i
ACTIVITY a1 : ac!-S ( P1 = sspn.a,

p2 = sspn.b);
E N D .

At the other end of a composlte path, connections fan out from a composite window. These, being

window to wlndow connections, are defined in an equivalence list for which the complete syntax

diagram is:

Thus the template for the subsystem dsdmpx in the graphical examples is expressed as:

equivalence-list

component_identboundary_window-ref

comp_w¡ndow_ref

boundary_port_ref
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SUBSYSTEM dsdmpx;
PROVIDES dswn : cpl;

USES cpl, idap, idaq;
IDA q1 : idaq;
IDA q2 : idaq;
SUBSYSTEM pl : ssp;

dswn.a = q1.qa;
dswn.b = q2.qb;
dswn.c = p1.pc;

E N D .

and for completion here is the template for the system which connects the subsystem and the

composlte IDA together:

SYSTEM example;
USES dsdmpx, ssdmpx;

SUBSYSTEM d : dsdmpx;
SUBSYSTEM s : ssdmpx (sspn = d.dswn);

E N D .
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2.15 DIRECT DATA VISIBILITY

Descr ip t ion

This feature is not part of the mandatory subset of the Mascot definition.

One of the essential objectives of Mascot is to control access to shared data from concurrently executing

actlvltles. The responsibility for this control, and hence for the integrity of the shared data, is normally

exercised solely by the lDA. In special circumstances, however, it may be necessary to bypass the

proteclion normally afforded by the access procedure mechanism and to allow actlvltles to

manipulate IDA data directly. There are two classes of problem which may be solved by this meansl

The first problem concerns the locat¡on of code and data on multi-processor configurations. lt may

be necessary to locate shared data, that is IDA data areas, and the code which operates on them

in separate areas of merrìory. This problem may also arise in single processor configurations which

possess non-homogeneous memory. A possible solution is to use a compos¡te IDA and to

provide direct data visibility in the lnterfaces between its components. Instances of the

component tDAs can be placed in the appropriate memory locations during the bu¡ld¡ng of

the appl¡cation software.

The second problem is concerned with efficiency of access to data. There are some occasions

when the overhead associated with the call of an access procedure far outweighs the

processing time and memory space required by the access mechanism code itself. lf this applies

in a path along which data transfers occur at a high frequency, the overall efficiency may become

unacceptably low. ln such cases d¡rect data visibility could be used to eliminate the access

procedure calls.

The advantage of solving problems like these by means of direct data visibility is that it is easy to

implement and does not imply great complexity in the Mascot building process. Furthermore, where

actlv¡tles are scheduled for execution in a co-operative manner (see Section 4.4), direct manipulation

of IDA data need present no threat to the¡r integrity. Under a regime of pre-emptive scheduling safe

access may be achievable by very careful programming.

The use of direct data visibility should only be considered, however, where the conventional Mascot

methods are incapable of achieving the required results. Where it is adopted it should only be used in a

disciplined manner. Direct visibility involves extending the traditional sole responsibility of the lDA, in

respect of data integrity and propagation, to a group of several components. The scope of this collective

responsibility needs to be be well defined and should be limited as far as possible by the use of

2 .
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qual¡f¡ers as discussed below.

The programming system in use for a particular application may provide an alternative approach to the

problems of efficiency and code and data location. One of the following techniques, where available, is

generally to be considered preferable.

An option provided by a number of modern compilers allows a procedure body to be included,

inline, in the object code at the point of call and, subsequently, optimised. Where such a facility is

available it might be applied to calls of an access procedure, hence achieving an improvement

in performance similar to that obtainable through direct v¡s¡bility. The feature may also provide a

means of appropriately locating the code.

The problem of explicitly locating code and data may sometimes be solved by means of compiler

segmentation options. Many existing compilers provide facilities for splitting compilation units into

segments which may be independently located in memory. In simple cases this may involve

division into code and data segments but, if steering directives are embedded in the source text,

more complex separation is possible. Mascot bulldlng software could be developed to exploit

such compilation facilities. For example, IDA code could be placed in shared mernory, it could be

duplicated in its entirety in the private memory of each processor which uses it, it could be

segmented manually and segments duplicated in private memory as necessary or the

segmentat¡on could be performed automatically so as to minimise the duplicated code. These

examples would achieve progressively greater efficiency of memory usage in return for
progressively greater complexity of the bulldlng software.

Graphica l  Representat ion

There are no special diagrammatic conventions associated with direct data visibility. The diagram below

shows a composlte IDA in which data in component ex is made directly visible to the other two
components through the access Interface data_vls. ln this example, for which modutes are
outlined below, lp and op arc required to be located in the pr¡vate memory areas of two separate
processors while ex is to be located in a shared memory area. This arrangement is reflected by the
broken lines on the diagram.

2 .
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dp_out
dp_ex

e

dp_in

dp_chan

Textual Representat ion

tDA data may be made directly visible by specifying them in an access interface that appears in the

PROV|DES list of the module. Reference to Appendix A shows that the specltlcatlon part ot a

simple access Interface, in its complete form, ¡s :

simple_acc int spec-part

acc_int_detailjart

acc_int_detaiþart

read_on ly_co nst_specs

proc_headings
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Thus variables and read-only constants may appear in an access Interface together with the

procedure headings already discussed. lt should be emphasised that ¡nterfaces contain specifications

and not declarations. Storage space for ¡nterface variables and read-only constants, like the coding for

Interface procedures, must be supplied by any component which provides a window of that type.

Referring to the graphical example given earl ier, here is the module for the composite IDA

dp_chan:

IDA dp_chan;
PROVIDES in :  in_ch;

out :õut-ch;

USES dp_in, dp_out, dp_ex;
IDA ex : dp_ex;
IDA ip : dp_in (e=ex.e);
IDA op : dp_out (e=ex.e);

¡n = ¡p.in;
Out = OP.out

E N D .

There are three access interfaces, one of which is used internally and involves direct data visibility. lt

could, for example, be of the form:

ACCESS INTERFACE data_vis;
V A R

max : CONSTANT integer; { reading and writing operations }
data : integer; { are assumed to be indivisible }

E N D .

The two Interfaces provided by dp_chan are conventional in containing only procedure

specifications. They are outlined in sufficient detailfor present purposes below:

ACCESS INTERFACE in_ch;
PROCEDURE write( item : integer );

E N b .

ACCESS INTERFACE out_ch;
FUNCTION read : integer;

E N D .

For the purposes of explanation, the following examples are expressed in a Pascal like notation.

Template dp_ex is given in full. Notice the use, in the design representation language, of ACCESS

VAR by analogy with ACCESS PROCEDURE. max has been rendered as a read-only constant

whose value is set in the IDA template in order to demonstrate the facility. In practice it would probably
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be a template constant. The equivalence statements are not strictly required as name identity gives

unambiguous corresPondence.

IDA dp_ex;
P R O V I D E S e : d a t a v i s :

ACCESS VAR
max : CONSTANT integer := 50i
data : integer;

e.data = datâ;
e.m¿X = lTl€lX

E N D .

Only those parts of temptate dp_tn which are relevant to the present discussion are included in the

modufe betow. Access procedure wrtte places input values directly ¡nto the internal store dafa of

IDA ex which is located in the shared memory region.

IDA dp_in;
PROVIDES in : in-ch;
REQUIRES e :data-vis;

ACCESS PROCEDURE write (item : integer);
BEGIN

LO"t":= i tem;

ENb.

in.write = writê
E N D .

The template dp_out provides access functlon read at its wlndow out. This removes values

directly from the store in er.

IDA dp_out;
PROVIDES out : out_ch;
R E Q U I R E S e : d a t a v i s ;

ACCESS FUNCTION read : integer;
B E G I N

read := e.data;

E N b .

out.read = reâd
E N D .

Finally, to assist in maintaining integrity when using direct data visibility, consideration should be given to

the use of the qualifiers SINGLE, READ_ONLY and IDA_ONLY (see later section on this topic).
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The qualifier SINGLE, associated with an IDA wlndow specification, indicates that only a single thread of

execution may pass through this wlndow. This etfeclively limits the scope of any variables directly visible

at the wlndow. The READ_ONLY qualifier can be used to ensure that externally visible variables are not

altered by direct access via that Interface. The effect of the IDA_ONLY qualifier associated with an

access ¡nterface ¡s to restr¡ct its use to the pons and wlndows of lDAs. As a result, responsibility for

the integrity of visible data is limited to the components of a compos¡te IDA or equivalent network.
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2 .16  QUALIF IERS

Descr ip t ion

This feature is not part of the mandatory subset of the Mascot definition.

Mascot provides a rich set of facilities lor representing the structure of concurrent software. The use of

these facilities is constrained in various ways in the interest of maintaining the consistency of the design

and the integrity of the resultant software. Such constraints, built into the def¡n¡tion, apply generally to all

Mascot systems. However, it will sometimes be found desirable to introduce additional, more severe

constraints which apply locally to particular aspects of a design. The concept of a quallfler has been

devised to meet this requirement.

Examples of Mascot entities to which qualifiers may be applied are ports, windows, interfaces and

their components. The effect produced by adding a quallfler might be to ¡mpose or relax some form of

constraint on network connectivity, to limit the operat¡ons which may be applied to shared data, to ¡nd¡cate

(in the textual form of representation) the direction of data flow, to limit the use of selected context

facilities to certain classes of template or to influence the action of the compilation system.

It is open to the implementors of a Mascot development environment to provide support for any

quallflers that are considered useful for the expected applications. For each quallfler that is

supported it is required that the following be defined:

- the name of the qualifier

- the purpose of the qualifler

- where the qualifier may be placed and how it is represented

- the effect of the quallf¡er

- whether placing one quall f ler requires the placement of other similar

complementary qualiflers and, if so, what the rules are

- any other information thought to be relevant such as whether violation of

rules constitutes an error or merely results in a waming

Some examples showing how this information might be presented are given later in this section.

Graphical  Representat ion

Quallflers do not normally appear on Mascot diagrams.

the
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Textual Representation

As indicated above, the representation of quallfiers in modules is implementation dependent. lt is,

however, suggested that qualified wlndows and ports might take the following form:

REQUIRES a, b/READ-ONLY, c : get;

PROVIDES d/SINGLE : put;

where the proposed significance of these quallflers is described below.

Examples

The sample qualiflers given below are those which were suggested during the discussion of this

concept in the course of development of the Mascot 3 definition. They are divided into categories each

of which is now briefly introduced.

Connectivity Constraints

The default connectivity requirement for a wlndow is that at least one port must be connected, and

possibly several. Use of the qualiflers in this category has the effect of adjusting these requirements.

Data Access Constraints

The qualifiers in this category place limÍts on access to variables made directly visible via an access

lnter face.

Data Flow lndicators

These quallflers are used to indicate the direction of data flow with respect to ports and windows.

This is information which, in the mandatory subset of Mascot, is expressible only ¡n the graphicalform of a

design.

Context Qualifiers

ln this category, the qualiflers enable the designer of a context ¡nterface (see Section 4.1) to determine

which facilities are available to which classes of templates. In some cases the limitation is to particular

features of a template class.

Code Generation Constraints

The quatlfler in this category can be used as a possible alternative to making variables visible and

directly accessible via wlndows. For a more detailed discussion of this point see Section 2.15 of the

Handbook.
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Na me

S I N G L E

Place

wlndow of IDA

or server

Descr ip t ion

Purpose: to indicate that the designer of the IDA or

server has optimised the implementation in such a way

that only a single actlvlty may use that window.

Effect: Only one actlv¡ty port may be connected to

this wlndow.

Addl t lonal  ln format ion:  Care is  needed in  apply ing

th is  constra in t  where composl te  des ign ent i t ies are

involved. In part icular the 'singleness' of a window must

be  passed  ou t  t o  t he  w indows  o f  t he  enc los ing

compos¡te structure and the number of internal port

to port connections within enclosing subsystems must

be determinable.

P u rp o s  e :  to  ind icate that  a  window need not

necessari ly be used in an operational network. l t  may,

for  example,  have been inc luded pure ly  for  test ing

purposes.

Effect: The ENROL operation will not issue a warning

if a wlndow qualified as OPEN has no port connected to

¡t.

Add ¡ t l ona l  I n fo rma t ¡on :  OPEN w¡ndows  may  have

zero ot  more connect ions.  W¡ndows marked as both

OPEN and SINGLE may have zerc ot one port connected.

O P E N wlndow
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DATA ACCESS CONSTRAINTS

Name Place

READ_ONLY port or wlndow

I D A  O N L Y wlndow

Descr iot ion

Purpose: to prevent the values of variables, visible

th rough  the  w  I  n  d  ow ,  be ing  a l t e red  v ia  po r t ( s )

connected to the window.

Effect: Any attempt to write data through a READ_ONLY

port/wlndow connection is identified as an error when

the ENROL operat ion is  appl ied to  the template

concerned.

A d d l t l o n a l  l n f o r m a t l o n :  W h e r e  a  w l n d o w  i s

qualified as READ_ONLY, ¡t should only be connected to a

similarly quali f ied port. However, a READ_ONLY port

may be connected to any window. In order to l imit the

scope of cross-checking, i t  may be desirable to insist

that the READ_ONLY qualifier must appear on all of the
ports and wlndows associated with the path.

P u r p o s e :  t o  e n s u r e  t h a t  o n l y  p o r t s  o f  l D A s  a r e

connected to the qualified wlndow.

Effect: Any attempt to connect the port of an aci lvlty

(d i rect ly  or  ind i rect ly  v ia  in tervening subsystem

boundaríes) to an IDA_ONLY wlndow wifi result in an

error being identif ied when the ENROL operation is

applied to the network which contains such a connection.
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DATA FLOW INDICATORS

N,ame Place Descr ip t ion

lN window or port Purpose: to ind¡cate the direction of data flow.

Effect: The direction of data flow may be expressed in

the textual form of a template.

OUT wlndow or port Puroose: to indicate the direction of data flow.

ffi;Jff':;:',o;;1rata 
frow mav be expressed in

IN_OUT wlndow or port Purpose: to ind¡cate the direction of data flow.

Effect: The direction of data flow may be expressed in

the textual form of a template.
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CONTEXT QUALIFIERS

Na me P lace Descr ip t ion

SERVER_ONLY context Interface Purpose: to make quali f ied faci l i t ies available only

or component of to servers.

context lnterface

Ef fect :  The use,  in  a template which ¡s  not  a

server ,  o f  fac i l i t ies qual i f ied in  th¡s  way wi l l

result in an error being identified when the ENROL

operation is applied to the template.

HANDLER_ONLY context Interface Purpose: to make quali f ied faci l i t ies available only

or component of to handlers.

context lnterface

Ef fect :  The use,  in  a template which is  not  a

server ,  o f  fac i l i t ies qual i f ied in  th is  way wi l l

result in an error beíng identified when the ENROL

operat ion is  appl ied to  the template.  Fur ther ,

when a server template is enrolled, only the code

of any handlers inside it will be allowed to use the

quali f ied faci l i t ies. Any other uses wil l  result in an

error  be ing ident i f ied and cause the ENROL

operation to fail.

NOT_HANDLER context Interface Purpose: to prohibit the use of quali f ied faci l i t ies

or component of by handlers.

context Interface

E f f e c t :  T h e  u s e ,  b y  a  h a n d l e r ,  o f  f a c i l i t i e s

quali f ied ¡n this way wil l  result in an error being

identif ied when the ENROL operation is applied to

the server template which contains it.
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IDA_ONLY context Interface Puroose: to make quali f ied faci l i t ies available only

or component of to lDAs.

context lnterface

EffeCl: The use, by any template which is not an

lDA, of faci l i t ies quali f ied in this way wil l  result in

an error being identified when the ENROL operation

is applied to the template.

ACTIVITY_ONLY context Interface PurpoSe: to make quali f ied faci l i t ies available only

or component of to actlvlties.

context Interface

Effegt: The use, by any template which is not an

act lv l ty ,  root  or  subroot  wi l l  resul t  in  an error

being identified when the ENROL operation is applied

to the template.
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CODE GENERATION CONSTRAINTS

N a  m e P lace

I N L I N E port or wlndow

Descr io t ion

Purpose: to avoid the overhead involved in calling

access procedures.

Effect: The comp¡lat¡on system is forced to copy

the code of the access procedures, available at a
qual i f ied wtndow, in to the code of  a  ca l l ing

temp¡ate at the point of call.

Addlt lonal Informatlon: l t  would be reasonable

to provide a faci l i ty whereby the INLINE quatif ier

may be suppressed by means of an IGNORE_INLINE

option of the BUILD operation.
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In t roduct ion

An essential feature of a Mascot development environment is a database capable of containing a

collection of modules from which, together with their derived products, application software may be

created. As will be demonstrated later, Mascot modules are so defined as to fac¡litate the progressive,

incremental elaboration of a design. In support of this, the database accords formal recognition to the

attainment of certain important progress milestones in the development of a module. A status value,

associated with each module, provides a measure of the level of recognition attained and consequently

of the module's f¡tness for use. This value reflects not only the progress made in definíng the module

itself but also the state of other modules to which direct or indirect reference is made. lt is assumed

throughout this section that status values are maintained automatically in the database by the Mascot

development environment but a manual recording procedure would also be possible. A development

environment may provide facilities to display the module status and possibly the inter-module

dependencies.

As slatus progression is closely associated with module structure this is reviewed first.

Module Structure

Reference to the syntax diagrams in Appendix A shows that every Mascot module begins with a name

part which defines its class and gives the template or speclf¡cat¡on it represents a unique name.

This is followed by a speclf¡catlon part whose purpose is to define that part of the module which

needs to be known when it is used by other modules. lt establishes the external view of the module.

For speciflcatlons, the speclflcatlon part consists of the detail of the module together with a

statement of its dependency on other modules. Such external dependencies occur only in slmple

specif¡catlons and are limited to the importation of data-type definitions from other spec¡f¡cat¡ons.

They are expressed in the form:

WITH definition module list lÍmportatlon of data-types I

For templates, the specilication part consists of the information required for components of that

type to be included in a compos¡te template. This ¡nformat¡on includes several varieties of external

dependency. Connections between ob¡ects are expressed in their templates by means of

references to Spec¡f¡cat¡ons. There are two different kinds of connection which are expressed in this

manner and in each case the active partner in the transaction is distinguised from the passive partner.

First there are those which convey network interactions and are concerned with communication belween
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ports and wlndows. These dependencies take the form:

REQUIRES port list
PROVIDES wlndow l ist

I network interactions I

Second there are those which convey sequential program interactions between the individual, separately

developed components ol a single thread of execution:

NEEDS subroot interface list I sequentlal program lnteractlons I
GIVES subroot interface list

A third form of external dependency, closely related to the second category above, occurs in the case of

a template which describes a collection of shared l¡brary facilities. The set of interactions which this

passive entity makes available are expressed as:

GIVES library interface list I provlslon ot library serulces I

The final possible element of a speclflcat¡on part is the template constant expressed as:

CONSTANT template constant list I template constant I

Templates (but not speclflcatlons) possess a further sect¡on known as the lmplementatlon part

which defines the internal details of the template. For slmple temp¡ates this defines the program.

For composlte templates i t  defines the components together with their connections and

template constant values. Slmple templates may import data-type definitions directly from

speclflcatlons and may make use of facilities provided by library modules. These dependencies are

expressed in the form:

WITH definition module list { lmportat¡on of data-types I

LIBRARY library interface list I use of l¡brary serutces I

A compostte template depends on those templates from which its components are derived.

These are listed:

USES template l¡st { templates tor components I

Appendix C (Summary of Keyword Usage) lists all the inter-module dependencies in terms of the

representation language keywords used to express them and distinguishes between those associated

with the spec¡f¡cat¡on and lmplementatlon parts of a module.

Status Values

The status value of a module directly reflects the state of completion and validation of the three

sect¡ons of its structure. There are thus three primary status values, reglstered, Introduced and
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enrolled, the attainment of which record the progressive successful val idation of the name,

speci f ica i lon and implementat lon par ts  of  the module,  respect ive ly .  The operat ions,

computer-assisted or manual, which establish these status values are REGISTER, INTRODUCE and

ENROL.

A module's primary status value may be qualified to reflect the status of the other modules which

belong to the speclf¡catlon and lmplementatlon dependency trees of which it is the root. Thus, a

modute whose spec¡f¡cat¡on part is present and correct, but which has specification dependencies

stiil at registered status, may be raised to the status of partlally Introduced. lt qualifies to become

fully ¡ntroduced when all its specification dependencies have achieved th¡s status.

For a compos¡te template there is a status value of part lat ly enrol led. Th¡s status can be

achieved when all three sections of the module are present and correct and all its specification and

implementation dependencies are at least part¡ally Introduced. As will be demonstrated ¡n the

example below, the partlally enrolled status conditions enable the system designer to complete a

network design before considering the intelace and algorithmic details of the design.

The formal rules governing the achievement of these status values are summarised in a table at the end

of this section. Their application is illustrated below. In the example, status progression is showh as an

orderly increase in status from registered to enrolled. In practice, facilities must be provided to

support iteration and the consequent backtracking.

Example gf Status Progression

The following example illustrates how a subsystem might be developed progressively. The detailed

features of the Mascot development environment employed in this example are not mandatory to the

Mascot definition. The subsystem chosen for illustration is the one called subsys-4 in Section 2.1 of

the Handbook.

The status progression commands may be used to control the development of a system by a team of

people. We shall assume, as the starting point for our example, that subsystem suösys-4 has been

int roduced and has achieved par t la l ly  In t roduced status.  This  impl ies that  the access

¡nterfaces required and provided by suösys_4 have been registered and that the only information

known to the Mascot database about suösys-4 is the following

SUBSYSTEM subsys_4;

PROVIDES gw4 : get;

REQUIRES 1p4 : rcc; otp4 : out;tp4 : trans;
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Our task in the example is to develop subsys_4 and we shall define a series of states through which the

subsystem and its constituents must pass. These states will be visible in the Mascot database as a

result of applying the status progression commands and can thus be used to control, record and

monitor progress.

There are three significant states which arise dudng the development of subsys_4 :

1 Design structure recorded tor subsys_4.

2 Ready lo start implementation of temp¡ates from which the components of

subsys_4 are derived.

3 Completion of implementation of all templates used by suösys_4. This implies that

subsys_4 may be buift.

State I is reached when suösys_4 is partially enrolled. This implies that the templates for all of its

components have been ¡ntroduced and have achieved partlally Introduced status. state 2 is

reached when al l  the simple templates for the components of suösy_4 have achieved ful ly

introduced status and state 3 is reached when subsys_4 is fully enrolled.

Reach¡no State I

To move from our starting po¡nt to state 1, it is necessary to design the internal structure of subsys_4.

This will most probably be represented graphically first and, if a graphics tool is available, could be

recorded directly in this form. In such a circumstance the graphics tool can, via interactions with the user,

determine which addil ional modules need to be reglstered and Introduced in order to render

subsys_4 capable of achieving part¡ally enrolled status. However if a text based design checking

tool is used, then the next step would be to transcribe the graphical representation of suÞsys_4 into its

textual equivalent, thus:

SUBSYSTEM subsys_4;
PROVIDES gw4 : get;
REQUIRES rp4 : rec; otp4 : out;tp4 : trans;
USES pool_1, chan_l, a_temp_1, a_lemp_2;

POOL p1 : pool_l;
CHANNEL ch : chan_1;
ACT¡VITY a1 : a_temp_1 (fp = ch.fw, lp = tp4, pp = p1.pw);
ACTIV¡TY a2 : a_temp_2 (sp = ch.sw, otp - otp4, rp = rP4);
gw4 = p1.gw

E N D .

From this (or directly from the graphical representation) it can be seen that in order to enrol this design, it

is necessary to have the four templates pool_í, chan_1, a_temp_1 and a_temp_2 at

introduced status. Further, before these templates can be Introduced, i t  is necessary to
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reglster them and the access Interfaces upon which they depend.

The specifications for the four component templates of subsys-4 are:

ACTIVITY a-temp-1;
REQUIRES fP : fetch; tP : trans; PP : Put;

ACTIVITY a-temp-2;
REQUIRES sP : send; otp : out; rP : rec;

CFIANNEL chan-1;
PROVIDES sw : send; fw : fetch;

POOL Pool -1;
PROVIDES Pw : Put; gw : get;

It  can be seen that the four component templates between them make use of seven access

Interfaces of which four are visible at the subsystem template. These four will already have been

reglstered to allow subsys_4 to achieve partlally Introduced status. Therefore we need to

reg¡ster the three addit ional ¡nterfaces fetch, send and puf. Having registered the four

templates and the three access lnterfaces, we can Introduce the templates and thereby submit

them for formal checking of their specification parts.

The TNTRODUCE operation first checks that the name parts of the modules have not been changed

since they were reglstered and then checks the speclf¡catlon part. The speclflcation part must

itself be syntactically legal and any other modules, to which the modules be¡ng Introduced refer,

must be at least at reg¡stered status. These are the minimum requirements for the INTRODUCE

command to succeed and, in our example design, these minimum requirements are met. Therefore the

four temptates qualify for partially ¡ntroduced status.

The INTRODUCE operat¡on will also check whether the preconditions for fully introduced status are

satisfied. At this stage in the development of our example these conditions are not met because the

Interfaces are not yet Introduced. Therefore the status achieved is part¡ally Introduced.

It is now possible to enrol the design structure lor subsys_4. This operation checks that the

speclfication part has not been changed since the module was introduced and that the design

details represent a consistent use of the templates and ¡nterfaces involved. As a result, subsys-4

will achieve part¡ally enrolled status. State t has now been reached.

Reachlno State 2

In order to reach state 2, it ¡s necessary to have all seven of the access lnterfaces specified in detail

and for them to be raised to ¡ntroduced status. For the three internal access Interaces we, as the

nominated design authority (see section 5.1), can proceed immediately. For the four external access
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Interfaces we must liaise with other groups, who are developing modules which also use these

access Interfaces, and with the nominated design authority for them.

When the internal details have been agreed, they are recorded as the texts for the access interface

modules and any def¡n¡t¡on modules found to be necessary. These details are then submitted for

checking and entry into the Mascot database via the INTRODUCE command. The sequence of

commands is as follows: REGISTER all new def¡n¡t¡on modules; INTRODUCE def¡n¡tlon modules;

INTRODUCE access Interface modules.

Assuming that these operations are succssful we now have all the access Interfaces for subsys_4

at fully Introduced status. In order to reach state 2 though, we have to bring the Mascot database

up to date by re-lntroduclng thefourslmple templates a_temp_1, a_temp_2, pool_1 and

chan_l and finally re-enrotting subsys_4.

Reachlno State 3

The action necessary to reach state 3 is to provide the implementation details for each of the simple

templates used for the components of suösys_4. This is a programming task and each module

can be assigned to a different individual within the team who will then add the details and submit the

assigned module for enrolment. When al l  the implementation detai ls have been provided and

checked to be consistent with the fully lntroduced Interfaces by the ENROL command, we have

almost reached state 3. lt only remains to re-enrol subsys_4 so that it can be related, in the Mascot

database, to the fully enrolled slmple templates. Then suäsys_4 can achieve fully enrolled

status and our task is completed.

This state formally constitutes the end of the implementation phase for suösys_4 and signals the start

of the testing phase for that module. Depending upon the testing strategy adopted, there might well be

other subsystems developed specifically to provide test harnesses for subsys_4. The development

of these subsystems, and indeed the test system required to execute them, willfollow similar lines to

that described and use the same commands.

More Sophist icated Status Prooression Commands

The status progression commands as described here are very simple and operate purely on one

module at a t¡me, although they do require checks on the status of other modules. lt is envisaged

that more sophisticated versions of the INTRODUCE and ENROL commands could be provided. These

would be especially usefulfor large systems part¡cularly during the later stages of integration and during

maintenance.
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ln the above example, the requirement to re-apply the INTRODUCE and ENROL commands, as more

details of the des¡gn are added, has been identified. Doing this manually is possible but tedious and error

prone. lf one of the commands was omitted in error, this could resutt in a system being buitt which failed

to incorporate some recent module amendments. The possibility of this happening increases as the

size of the system being developed increases. Therefore, more sophisticated forms of the ENROL and

INTRODUCE commands are defined whiCh autOmatically seek out any later versions of modules and

re-apply the appropriate command. Hence the extended form of the ENROL command, possibly invoked

as: ENROL subsys_4 FULLY, wOuld be interpreted to mean re-enrol subsys-4 and any modules

which it direcily or indirectly depends upon. Thus this leads to a recursive application of the ENROL

command.

Simitarly the extended form of the INTRODUCE command, possibly invoked as INTRODUCE FULLY'

would result in recursive application of the INTRODUCE command.

A more far-reaching extension of the ENROL operat¡on would allow re-lntroductlons as well as

re-enrolment. This interpretation may be of value when an Interface change is made either late in the

development of a system or during the maintenance stage. lt provides a simple way of bringing allthe

components of a system to consistency with the latest issue of the design.
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Status Condit ions

Operat ion status to be Modu le
Class Precond l t l onsa c h i e v e d

Register Registered Ail Name part defined and legal

No other module with same name

Introduce Partially
Introduced

Atl Registered preconditions satisfied

Specification dependencies Registered

Specificatiopn part defined and legal

Fully
lntroduced

Atl Partially I ntroduced preconditions
satisf¡ed

Specification dependencies
Fully Introduced

Enrol Partially
Enrol led

Composite
Templates

Partially lntroduced preconditions
satisfied

lmplementation dependencies Introduced

lmplementat¡on part defined and legal

Fully
Enrolled

Simple
Template

Fully lntroduced preconditions satisfied
lmplementation dependencies Fully Introduced

lmplementation part defined and legal

Composite
Templates

Partially Enro lled preconditions
satisfied

lmplementation dependencies Fully
Enrolled
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3.2 SYSTEM BUILDING

In t roduct ion

Bulldtng is the term used in the Mascot definition to describe the stage of development which, starting

from a fully enrolled system template, produces a representation of the network in an executable

form. The process which achieves this must take into consideration the target configuration for which the

application is to be built: the number and type of processors to be employed, the accessibility of memory

from each processor and any special requirements for interÍacing with devices. ln view of this strong

target dependence and the wide variation in the rangehfilding facilities required for different kinds of

application, the Mascot definition does not legislate on the precise form which the facilities should take or

on the linguistic support which a Mascot development environment should provide in this area. Rather, in

this section, an attempt is made to discuss allthe factors which need to be considered and to recommend

and justify some preferred modes of working practice'

Bui ld ing St rateg ies

The ultimate objeitive of bullding is the construct¡on of a complete operational system. However to

facilitate development, particularly during the phase when individual modules are be¡ng tested, it is

desirabte to be able to bulld test systems which incorporate only part of the final system. This can be

achieved by means of a system template, specially created for the purpose, which encapsulates the

components to be tested. By associating such test systems w¡th the test procedures and results, the

development process can be documented reliably and specific test exercises can be repeated should

the need arise.

In general, the object of a test will be a subsidiary network extracted from the complete system design

and possessing, Ín consequence, components with unconnected ports and windows. A test

system must therefore contain additional components to supply these missing connections. Thus,

the test network may be completed by means of a dedicated test harness capable of supplying any

required input and of recording and possibly checking any generated output. Alternatively, input and

output could be achieved by direct connect¡on to external devices such as a set of files on a host

computer. In this latter case the additiorodmponents would consist of servers.

While it may be acceptable for a smalltest system to be re-built from scratch each time amendments are

made to the modules from which it is derived, this is likely to be a rather laborious and time consuming

procedure for the large systems typical of Mascot applications and even for the bigger test systems

employed during the integration phase of development. The time taken to build a system image may

be reduced if a number of the component subsystems have previously been separately built. The

context software for a particular computer is an obvious candidate for being made available as a partially
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bullt image. However, this approach is more suited to some target architectures than others. lt ¡s, for

example, particularly useful when bulldlng for a mutti-processor target where the constraints are

uniform. But where a memory mapping scheme is employed in the target, the buitder requires an overall

view of the system in order to achieve optirnal results and so building speed, in this case, rnight have

to be paid for in reduced efficiency.

During module and integration testing, the same system may be built and re-bullt many times. A

sophisticated bullder might detect that, between one bulld operation and the next, only a few

components had changed and so could save time by re-building as little of the system as possible. A

more limited bullder might achieve the same result with a little assistance from the user.

Linguist ic Support for Bui lding

A simple constructional task would be that of building a system for a target consisting of a single

processor, of a pre-determined type, which has access to sufficient menþry, all of a uniform type, and

making use of a predefined contelt. This could be performed by a dedicated builder supplied with no

rnore data than the identity of the system template and the values of any template constants. This

information couH readily be accommodated as a set of parameters to a BUILD operation:

BUILD total_sys, I 00, 50

It would be preferable however, even in so simple a case, for the data to be presented in a BUILD

module to which reference could be made in initiating a BUILD operation:

BUILD build mod

This approach allows the image to be brought under configuration control so that its regeneration can be
guaranteed. The range of information held in the BUILD module can be extended for use by more

powerful bullders. Where a choice of contexts and processor types exist, for example, the selections

could be specified ¡n the module.

To cater for more complex targets more bulld-t¡me information must be supplied and a decision must be

made on whether to hold it all in the one data module or to introduce others. Suppose, for example, that

the bullder supports target configurations with d¡sjo¡nt memory blocks or non-homogeneous memory

with differing speeds or modes of access. The size of each memory block, its address range and its

properties must be made available to the builder together with instructions as to where the system

components are to be located among the various memory blocks. Placing allthis informat¡on in a single

BUILD module would necessitate i ts replication for each system buil t  for the same target

configuration and so it might be preferable lo use a separate (TARGET) module to hold details of the

target.
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Separation of the build-time data in this particular way would still prove inflexible where there was a

requirement to bulld images of the same system for several target conf¡gurat¡ons. A possible solution

would be to define the target in software terms, such as computers and memory regions, and to define

the location constraints in terms of these regions. The target could then be defined in hardware terms,

such as processors and memory blocks, and a correspondence given between the two views. For

maximum flexibility, this information could be divided between four separate modules each belonging to

a distinct class:

BUILD

TARGET

HARDWARE

SOFTWARE

The location contraints could then be spread among any number of LOCATOR modules.

It may be that devices in the target configuration are mernory mapped. tn such a situation, communication

with the devices may be through pre-determined normal or special memory locations. lf the necessary

device access information is not embedded in the applications software then ¡t must be supplied via the

builder, perhaps by the use of template constants.

Further build-time data is required to support target configurations consisting of multiple processors with

shared memory. The bullder needs to know which memory blocks are private to a processor and which

can be or which are to be shared by nore than one processor. lt may also need an indication of which

components are to be allocated to each processor. Where the target processors are memory mapped,

the builder may require guidance as to how each logical memory region is mapped ¡nto a physical

memory block.

In its full generality then, the BUILD module might supply information to the bullder as indicated in the

diagram below:

3.2 System Building 3 -  1 1 Mascot Version 3.1



:software to "be,br.¡ilt

s¡lstem templates
constant values

location constraints -

,SY'.STEM ',mo'fuþ

l

rcmprarc :

LOCATOR module

CONTEX'T ,.module

I|-OCATOR ,'module

SOFTWARE module

context for.each
target computer

context
location constraints

target configuration

TARGET :module

HARDWARE module
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3.3  DEVELOPMENT CONFIGURATIONS

Introduction

ln discussing, in this section, a range of hardware configurations appropriate to the development of

Mascot software, a distinction is made between a host system, on which the software development takes

place, and the target system, on which the operational software is to be executed. The different

host-target combinations which are encountered in practice vary in the degree of similarity which exists

between the two systems.

At one extreme, the host and target may be the same system or the host may combine a processor which

is identical to that of the target with a subset of the target's peripherals. Alternatively, because

development involves requirements not relevant to operation and because the target peripherals are

frequently of an exotic nature, the host peripherals may be different to those of the target while the

processors are the same.

In other arrangements, the processor in the host system may possess a similar instruction set and number

representation to those of the target but may differ in other respects such as the manner in which

¡npuuoutput is performed. Sometimes the host and target have a common number representation while

their instruct¡on sets differ. Finally, development may take place on a host system whose processor has

rothing in common with that of the target at all.

Commiss ion ing Conf igurat ions

The hardware configurations mentioned above may be employed to support formal or informal execution

of the software for the purpose of quality assurance and for the diagnosis and correction of errors. Where

the host and target processors are identical, the validity of testing depends only on considerations,

including those discussed below, which relate to the run-time environment. The four most commonly

encountered configurations in which host and target systems differ are examined here in order to

highlight their relative advantages and disadvantages.

Native Code Execution on the Host

In the fírst configuration, tests may be executed on the host in its own native code. Results may be

obtained rapidly in advance of the target system becoming available for use. Since, in general, the host

can handle much larger programs than the target, it is possible to test the complete system in the

presence of dedicated test software such as simulators and scenario generators. Good diagnostic

facilities can be provided and allthe host peripherals can be made accessible to the tests. In many host

systems the passage of system time can be controlled though usually in a relatively crude manner.
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Where the host processor differs from that of the target, especially in respect of wordlength, the range

and accuracy of the arithmetic results obtained ¡n tests may not represent a true ¡nd¡cation of the

performance to be expected on the target. Other aspects of the system may not be sat¡sfactorily

exercised. For example if , as is common, only co-operative scheduling is available on the host the testing

of mutual exclus¡on and cross-stimulation within lDAs is not wholly adequate. Some parts of the code,

such as that involved in handling interrupts, usually have to be omitted from testing altogether.

It is important that host and target should be compatible in respect of high level program statements which

must, of course, be recompiled for execut¡on on the target when testing on the host has been

completed.

Emulation on the Host

ln this second approach, source code compiled for the target is interpretively executed on the host.

Since there is only one compiler, ie that for the target, there is no question of incompatibility between

host and target. The results willbe accurate and reliable provided the emulation is accurate. This method

possesses even better diagnostic capabilities and access to all host peripherals than that discussed

above. ln particular it provides an opportunity to increase the level of run-time checking and validation.

Checks can be performed, for example, for arilhmetic overflow, for the use of uninitialised memory

locations and for the corruption of code.

The princípaldisadvantage ¡s that execut¡on time, from 10 to 1000 times longer than on the target, limits

the size of system that can be tested in this way and frequently excludes all real-time aspects from the

tests. In order to achieve as high an execution speed as possible, it may be useful to exclude the Mascot

kernel from the emulation. The simulation of interrupts is difficult. Control of the passage of system time is

difficutt but to expend effort in achieving it will usually be cost effective.

Execution under Host Control

A third, commonly employed, configuration involves the execution of tests on the target under the

control of, and monitored by, the host via a direct link. The validity of the results may be adversely affected

by timing distortion arising from the need to handle communications with the host. A real Mascot kernel

can be used although this may contaín facilities, such as monitoring, which are not to be included in the

final operational software. Provided that the target system is equipped with a full set of operational

peripherals, all of the software can be tested. Only a target compiler is required and there is no need for

source code compatibility with the host. Potentially the diagnostic capabilities are as good as in the

previously discussed arrangements

The disadvantages are first that, while access to all the host peripherals can be provided, it is frequently of

limited bandwidth. Second, it is not normally possible to control the passage of system time so as to

compensate for the additional overheads attributable to the presence of test components and to the link

to the host.
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Stand-alone Execution on the Target

ln the fourth, and final, configuration discussed here tests are carried out on a free standing target

utilising only the peripherals connected to that system. such an approach has none of the advantages of

the host-linked arrangement described above but ¡nterference from the link is el¡minated. lt is unlikely that

the target system provides a suitable environment for testing purposes and so tests will be laborious and

time consuming to set up and carry out. The diagnostic capabilities are likely to be very limited and the

available peripherals may consist of no more than a contro¡ panel or a keyboard terminal'

Both methods in which testing is performed on the target encounter further complications when the

target consists of multi-processors which have some shared memory. In this case, the target system may

not, during some phases of testing, be fully equipped with processors.

It is normally desirable, in most development environments, to perform at least some of the testing on a

host system. Among the many reasons for this is lack of availability of the target system during the testing

phase of a project. This may simply arise from the problem of inaccessibility which is due to the target's

location at a remote site and is likely to be exacerbated during the maintenance phase after the system

has been installed. Frequently however, the software development team obtains access to'the target

system only at a very late stage of production and the system may even then not include all the

specialised peripherals. Thus testing on a host perm¡ts hardware and software development to proceed

in parallel.

As was made clear above, in the discussion of test configurations, the target system is likely to contain

few of the diagnostic tools which are commonly available on a host. Furthermore, the target may not have

the peripherals necessary to support diagnostic output. Shortage of memory may also be a problem. lt will

rarely be possible to find storage space for test software since all the memory which can physically be

accommodated will in practice be needed for the application. lf it were not, the space would be used for

other equipment.

A further disadvantage of testing on the target arises from the length of time taken to transfer code from

the host. Transfer may be via a relatively slow link or, indeed, may be perlormed through the use of a

magnetic medium such as a cassette. A PROM-based target represents an extreme manifestation of this

problem involving as it does the transfer of executable code into PROMS. Difficulty may also be

encountered in transferring test data and results to and from the target. Even a direct link may be

inconveniently slow for this purpose and may result ¡n excessive distortion of the real-time aspects of

system performance.

The degree of compatibility between host and target machines ¡s the most significant factor affecting the

usefulness of testing on the host. Unless the two processors are identical, the degree of compatibility is
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determined principally by the choice of language and compilers and by the level of support for
compatibility provided by the development environment. Where the code of at least the majority of the
application templates can be executed on e¡ther the host or the target, with similar results, then host
testing is Iikely to be useful. lt is quite feasible in this case to test almost all the software, up to and
including the full system, on the host. Those smallsect¡ons of program which cannot be dealt with in this
way can be tested after transfer to the target and before proceeding to the integration tests. Some
iteration involving a return to unit test¡ng on the host may be implied by the detection of errors during
integration.

Where host and target are incompatible for atl, or the majority, of the application templates the
advantages of host testing are lost since the source code must be edited before being transferred to the
target. This presents a serious maintenance problem and, in addition, necessitates the tests being
repeated on the target system.
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In any software system it is normally possible to distinguish between functions which are part of a

particular application and those which are more properly to be regarded as part of the environment in

which the software operates. In Mascot, this division is reflected by the distinction between application

and context software. A Mascot development environment may be expected to offer a collection of

supporting services from which software designers can select the set of services needed for a particular

application. These may include, for example, the conventional Mascot primitive operations described in

Section 4.2. The context may aiso include application specific items such as procedures for controlling

peripheral devices. The general principle is that a set of procedures, constants and data{ypes provided

¡n the context for a particular application is implicitly available. The set may be subdivided so as to restdct

the use of defined subsets of the context facilities to specific classes of design entity such as

servers, lDAs or actlvlt¡es.

The interfaces which the context offers to the application are described in a form which is consistent

with the Mascot modularity scheme, The term context interface is used to embrace al l  those

Interfaces which are implicitly available to the application software. The precise form in which it is

expressed is implementation dependent but should be generally compatible with the style of the

application software modules. lts components, however expressed, are a mixture of those associated

with the llbrary Interfaces, access Interfaces and definitions described elsewhere.

In a simple case, the context Interface might be expressed as a combinat¡on of a library interface

and a deflnltlon which together specify procedures to be called and define data{ypes for use as

parameters. The procedure specif ications might include control queue primit ives together with a

peripheral library:

DEFINITION cq_def ;

T V P E

cOntro lq = . . . . . . . .  I

E N D .

CONTEXT INTERFACE con_Procs;
WITH cq_def ;

{ Controlqueue Primitives }
PROCEDURE join( VAR q :controlq );
PROCEDURE leave( VAR q :controlq );

{ Peripherallibrary }
PROCEDU R E switch_on_device;
PROCEDURE switch off device:

E N D .

Alternatively, the context interface can be expressed in a composlte form, comprising a number of

¡nterfaces. The above example could thus be expressed:
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LIBRARY INTERFACE cq_prims;
WITH cc|-def;
PROCEDURE join( VAR q : controlq );
PROCEDURE leave( VAR q : controlq );

ENb.
The peripheral library specification could then be placed in a conventionalform of llbrary Interface:

LIBRARY INTERFACE ,periph lib;
PROCEDU R E switch_on_device ;
PROCEDU R E switch_off_.ldevice ;

E N D .

and the context ¡nterface itself expressed in the composlte forrn:

CONTEXT INTERFACE context;
COMPR¡SES cqJ¡rims, periph-lib;

E N D .

An access ¡nterface might feature as a component of a context Interface in order to give access

to an IDA or seruer in the support software. Special, irnplernentation dependent calling mechanisms

rnay also be provided by the context through additional ln¡erface types and,qualifiers.

The Mascot definition lays down no firm rules for the.exBress¡on of contex,t Interfaces. The above are

merely examples of some acceptable fonnswithin the gener:alspirit of the:def¡nition. However, procedure

,names in the context must be unique and any implementation rnust define the context facilities

provided and the means for context extension.
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The Use of lmplementat ion Language Concurfçncy Faci l i t ies

lmplementations of Mascot development environments prior to the advent of Mascot 3 have invariably

supported programming languages, such as Coral 66, which make no provision for concurrency. With the

planned extensive use of languages such as Ada, which include concurrency as a feature, this situation

may be expected to change. Consequently the Mascot facilities described in this section, which cater for

the necessary synchronisation of separate parallel lhreads of execution, are to be regarded as

constituting a model. This model may be implemented directly in a conventionalprogramming language,

as in the past, or mapped onto equivalent features in a concurrent language.

In any implementation of a Mascot development environment for which the application language provides

direct support for concurrency, the implementor should consider mapping act¡v¡tles onto the

appropriate language feature. Since the Mascot definition demands that the total network of actlvlt¡es,

lDAs and servers should be invariant at run-time and, in particular, forbids the dynamic creation of

acilvit¡es, language features which allow the creat¡an of additional threads of execution should be made

unavailable to the application programmer. The implementor must document how the language facilities

have been used to support the Mascot model of concurrency and which facilities have been suppressed.

Any language which directly supports concurrency will probably also provide suitable mechanisms to

allow safe and sustained communication between the separate threads of execution. The implementor

should consider the language facilities in this area, in the light of the Mascot model, to determine whether

or not they are adequate to support inter-actlvlty Communication through an IDA or server âs

prescribed by the Mascot definition.

lf the implementor of a development env¡ronment elects to utilise the language features for concurrency

and inter-activity communication, the mapping of the Mascot act¡v¡t¡es, lDAs and servers onto these

language faci l i t ies must be described. The mechanisms whereby the IDA or server designer may

ensure the necessary mutual exclusion and cross-stimulation between separate processing threads must

also be documented. Furthermore the use of these mechanisms should be restricted to the access

procedures of lDAs and servers.

The Mascot Synchronisat ion Model

Synchronisation in Mascot covers the mutual exclusion of competing processes and the

cross-stimulation of co-operating processes. Explicit synchronisation is achieved by four primitives which

operate on special objects called control queues. Since synchronisation takes place only in respect of

access to lDAs and servers, each contrgl queue is conceptually part of the structure of an IDA or a
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server. Synchronisation primitive operations are only available within an access procedure. The

control queue is defined as an object on which the primitives have the effects defined below, and

which may be given a priority specification lo influence the scheduling algoñthms.

Mutual Exclus¡on - JOIN ahd LEAVE

Mutual exclusion of competing actlvlties is effected by the cafls of the paired primitives JOIN and

LEAVE, each of which takes a control queue as its single parameter. Between the times when it

performs a JOIN operation and the subsequent LEAVE operation, an actlvlty is said to be in the queue .

A control queue is said lo be empty if there is no activity in that queue.

JOIN and LEAVE form brackets around critical sections of code in which only one of the competíng

actlv¡tles ¡n the queue is allowed to proceed. This activity is said to be at the head of the oueue and

is therefore its owner. The use of the primitive operation LEAVE by an activity which is not the owner of

the specified queue constitutes a run-t¡me error as does the performance of a JOIN operation by an

actlvlty which is already the owner of the nominated queue. An implementation of a Mascot

development environment defines the action that results. lt is recommended that the occurrence of an

error be recorded and that the actlvlty be prevented from further execution.

The atgorithm that determines how an actlvlty reaches the head of the queue is not defined by the

Definition but first-in{irst€ut is normalpractice. ïhe algorithm must be documented.

Cross-stimulation - STIM. WAIT and WAITFOR

A stimulus/response mechanism between activ¡t¡es is provided by the primitives STIM and WAIT, each

of which takes a control queue as its single parameter. An alternative form of WAIT providing a time-out

facility is WAITFOR which takes two parameters, a control queue and a time delay. The STIM operation

may be performed at any time by an act¡v¡ty, but the WAIT and WAITFOR operations may only be

performed by the activity which is the owner of the named queue.

An actlvity which performs a WAIT operat¡on on a control queue is prevented from continuing its

processing unless, or until, a corresponding STIM has been applied to the same control queue.

A WAIT operation has one of two possible effects:

(a)

continue.

(b)

applied.

lf a STIM is being held (see below), that STIM is consumed and the activity is allowed to

lf no STIM is being held, the actlv¡ty is prevented from continuing until the next STIM is
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A STIM operation has one of three effects:

(a) lf there is an actlvlty WAlTing, the STIM is used immediately to make the WAlTing

actlv¡ty eligible for scheduling.

(b) lf there is no actlvlty WAlTing, and no unused STIM for the queue is being held, then

the $TlM is held for use by the next WAIT operation on the queue.

(c) ¡f there is no actlvlty WAlTing and an unused STIM for the queue is being held, then the

further STIM has no effect.

The use of the WAIT primitive by an actlvlty which is not the owner of the specified queue constitutes a

run-time error. An implementation of a Mascot development environment defines the action that results. lt

is recommended that the occurrence of the error be recorded and that the act¡vlty be prevented from

further execution.

The WAITFOR operation is similar to WAIT except that the activ¡ty which performs it becomes eligible for

scheduling on expiry of the t¡me delay, given as a parameter, if no STIM has been applied to the queue

in the mean time. The reason for the actlvity being released from WAlTing may be indicated through a

function value return mechanism or output parameter.

ContrplOueue Ownershio - CHECK

An access procedure normally contains paired JOIN and LEAVE instructions. This is known as a

closed access protocol and it forces correct usage. Alternatively an open protocol may be used in which

the JOIN and LEAVE instructiops are contained in different access procedures. Such an approach

allows more discretion to the application program. This can lead to greater simplicity and an improvement

in efficiency.

The purpose of the CHECK primitive is to allow an access procedure which does not contain a

JOIN-LEAVE pair to check that the calling act¡v¡ty is the owner of the nominated queue. The primitive

takes a control queue as its single parameter. lf the actlv¡ty which issues the CHECK instruction is the

owner of the specified control queue, the CHECK primitive returns control to the act¡v¡ty with no

lurther action. The use of the CHECK primitive by an activity which is not the owner of the specified

queue constitutes a run-time error. An implementation of a Mascot development environment defines

the action that results. lt is recommended that the occurrence of the error be recorded and that the

act¡vlty be prevented from further execution.
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ln t roduct ion

The mechanisms by which peripheral devices are controlled vary significantly from computer to computer.

On some machines the contents of device registers are manipulated through normal operations on

specific memory locations. Other machines provide special instructions for device control. These

instructions may be part of the normal set ava¡lable to all programs or may be privileged instructions

requiring a special mode of compilation for their generation from a high level language. Thus, modules

which interact with peripherals may require special privileges or facilities not appropriate to other

modu les .

In Mascot, as we have seen in an earlier section, the handling of peripherals is the domain of the server.

This is the only class of template allowed to contain code which directly manipulates peripheral control

registers or which utilises special facilities provided by the context for that purpose. All the necessary

facilities may therefore be made available automatically, to the modules which require them, during the

construction of a network.

One of the most important considerations, in connect¡on w¡th the interaction of a real-time syste'ms with a

device, is whether the device must be polled in order to detect the completion of an operation, or

whether completion is signalled by an interrupt. lt is the latter of these two options which is the more

common and which requires the specialised facilities described in this section.

In ter rupts

An interrupt is a signal, generated by a device, to inform the processor to which the device is attached

that a peripheraloperation has been completed. lts effect, subjec't to consideration of relative priorities, is

to cause the processor, on completing lhe execution of its current instruction, to abandon temporarily the

current process and to commence execution of instructions stored at a predef¡ned address. This new set

of instructíons is called an interrupt handler. Depending on the computer architecture, a handter may

be unique to a particular interrupt, unique to the priority level of the interrupt, comrnon to all interrupts or

common to a defined sub-set of interrupts.

When control is transferred to a handler, the contents of at least some of the registers being used by

the interrupted process are saved. This is known as context switching and the amount of information

automatical ly saved, for subsequent restoration when the the process is resumed, also varies

considerably with the architecture of the machine. lt may be as little as the value of the program counter or

the context switch may be so complete as to provide the handler with its own register set and, where

appropriate, virtual memory map.
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The precise nature of an interrupt handler is thus determined by the number of devices with which it is

concerned and the degree of automatic context switching which takes place when one of these

interrupts occurs. In order to minimise the ¡mpact of interrupt handling on the normal operation of the

system, it is customary to confine the operations performed in the handler to a minimum. Thus for a

simpte device the next operation might be initiated from within the handler, while a device which

requires a large amount of data to be transferred to or from it, between operations, might be restarted

from elsewhere.

Interrupt Handling in lvlascot

Given the range of computer architectures to be catered for and the need for efficiency in real-time

systems, it is not possible to define a single mechanism for interrupt handling which is completely

transportable. Mascot therefore provides a set of facilities which allow suitable solutions to be developed

to meet a range of circumstances. These facilities are:

(a)

(b)

(c)

(d)

(e)

(HANDLER)

(coNNECï

the ability to declare handlers in server tempates,

the abi l i ty  to  associate a handler  wi th  a par t icu lar

interrupt,

(DISCONNECT) the ability to disassociate a handler from an interrupt,

(ENDHANDLER) the abil i ty to signal completion of processing of the current

interrupt and

(sTrMrNr) the ability to STIM a control queue from a handler.

Here (a) is a keyword in the design representation language, used in place of PROCEDURE, and the

other four facilities are kernel primitives. CONNECT takes two parameters:

CONN ECT(handle r, ¡nterrupt_no)

to identify the interrupt handler and the interrupt with which it is to be associated, respectively.

DISCONNECT is applied to the interrupt identification:

DISCONN ECT(i nterrupt_no)

STIMINT, which is applied to a controlqueue, differs from STIM (see Section 4.2) only in guaranteeing

that it will not result in an immedíate reschedule. The documentation of the run-time system in a Mascot
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development environment must describe the means by which the above facilities are made available.

tdeally it should be possible to desígn an ¡nterrupt handler for minimum execution time and store

useage without needing to take any account of the actlvlty which has been interrupted. However, this

can only be achieved where the hardware provides automatic vector¡ng to a handler, uniquely

associated with the interrupt being serviced, and full automatic context switching. Most hardware used for

real-time systems is not as sophisticated as this.

In practice, ¡t may be necessary to provide some support in the Mascot context even for interrupts which

are CONNECTed to handlers located in the servers of the application software. The following table,

which d¡fferent¡ates between different degrees of hardware vectoring to a partÍcular handler and

different degrees of completeness in automatic register saving and restoring, indicates the range of

options.

Data Transfer

Handler in Server

Access Mechanism in Server

Handler in Server

Access Mechanism in Server

Handler in Context

Handler in Server

Access Mechanism in Server

Handler in Server

Access Mechanism in Server

Handler in Server

Access Mechanism in Server

Handler in Context

In the above table 'Server' is used to denote a server in the application software. The term 'Context'

should be taken to include the possibility of a server in the context.

Design Considerat ions

There are a number of considerations, some of them imposed by the computer architecture, which

influence the design of interrupt handlers and their execution. Three of the most significant issues are

discussed below.

Nest¡ng of Interrupts

Devices may be classified on a scale of priorities such that a handler, in course of execution, may itself

be interrupted by a device possessing a higher priority. When the higher priority interrupt has been

Vector ino
Hardruare

Haróruare

Harduare

Hardware

Hardurare

Hardware

Harô,vare

Context

Context

Context

Context

Context

Register Save
Hardware

Hardware

Server

Server

Context

Context

Context

Context

Context

Server

Server

Context
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handled, control returns to the handler of the lower priority interrupt before eventually being returned to

the originally interrupted actlv¡ty. Several levels of priority may be catered for in this way. In such

circumstances it is acceptable for the individual handlers to be somewhat more complex since their

execution does not lock out higher priority interrupts. Control is st¡ll taken away from the software

scheduler, however, and more stack space is required to provide local storage for the handlers than in

the non-nested case.

Stack Management

Local working space for a handler may be provided from the stack of the interrupted act¡vity. This

avoids the necessity of switching stacks when control passes to or from a handler. However, it also

means that every actlvlty stack must be large enough to accommodate the maximum possible depth of

interrupt nesting if this is employed. Alternatively, a separate stack may be allocated either to each

handler or to each level of ¡nterrupt, again allowing for interrupts to be nested, or a single stack can be

shared by all handlers if there is no nesting.

Pre-empt lon

After an interrupt has been handled (ENDHANDLER), control may be returned to the interrupted

ac¡vlty or, alternatively, the interrupted actlv¡ty may be transferred to the current lists and control

passed to the Mascot scheduler (see Section 4.4).The latter strategy results in the better system

response at the possible cost of a slight reduction in throughput. lf it is adopted, a further question arises

as to whether the interrupted actlvity should be added to the head or the tail of the current list. lf it is

placed at the tail, this results in a 'round-rgbin' scheduling operation within a priority level (there will

normally be a current list for each level). Placing it at the head of the list may be regarded as more'fair'

since then each actlvlty is allowed to complete its slice of execution before any other act¡v¡ty of the

same priority is scheduled. Notice that this is not the same as the co-operative mode of scheduling as

higher priority actlv¡tles are allowed to run at any point.
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lntroduction

In any concurrent system where the number of parattel processes exceeds the number'of prooessors, a

scheduling function is required to allocate processing time amongst the eompet¡ng processes. Each

processor, periodically, must cease the execution of one process and commence execution of another.

Associated with these re-schedule points there are two decisions which have to be made. The first is to

determine when the current slice of execution on a given processor is to end and the secgnd is to select

which process is to be allocated the next slice. lt is normal practice to assign q priority level to each

process to assist in determining, for the purposes of the second of these decisions, which of a number of

waiting processes is the most urgent. The choice of scheduling strategy is usually governed by the

desire to optimise the response to external events for a given amount of processing po$rer.

ln these respects Mascot systems are the same as any other concurrent system. The Mascot definition

does not prescribe the use of any particular scheduling strategy though it does require that the selected

strategy be documented for the ¡nformation of users of the development environment. The choice of

scheduling algorithm is deliberately lett to the implementor in order to allow the optimum algorithm for the

application to be adopted. The more important of the possible scheduling and priority schemes are

discussed below in Mascot terms.

Co-Ooerat ive and Pre-Emptive Schedul ing

One of the major factors affecting the responsiveness of a concurrent system is the basic mode of

scheduling adopted: co-operative or pre-emptive. Under a co-operative regime reponsibility for the first of

the two scheduling decisions, slice termination, is vested ¡n the application rather than in the Mascot

kernel. An activity continues its slice of execution until it volunteers to give up the processor by

invoking one of the kernel primitives. This may be one of the scheduling primitives such as JOIN (on a

JOlNed control queue) or WAIT/\I/AITFOR (on an unSTlMmed control queue) or a re-schedule may

be invited more directly by means of the SUSPEND primitive.

Provision of SUSPEND is mandatory in a development environment which supports co-operative

scheduling. lts use guarantees re-scheduling provided that there is at least one act¡vity, of at least equal

priority, waiting to run. lf there are no such schedulable act¡v¡t¡es, the activity issuing the SUSPEND is

re-entered for another slice of execution.

Development environments which support the timing group (see Appendix E) of primitives provide

another means of directly surrendering the use of a processor. This is the DELAY primitive which takes a

time period, in implementation defined units, as its argument. An ac!lvlty invoking DELAY is not
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considered for re-scheduling until the nominated period has elapsed irrespective of whether there are

other schedulable act¡v¡t¡es or not. The other primitive in the timing group is TIMENOW which is a

function returning current system time The units and range of system time are implementation defined..

There are two other synchronising primitives whose use InAy, even under co-operative scheduling, result

in a re-schedule. These arc arc LEAVE and STIM when they have the effect of releasing an act¡v¡ty

which has previously been held up. The decision on whether to re-schedule in these circumstances is

implementation def ined.

Under a co-operative regime it is guaranteed that, immediately after an interrupt has been handled, a

reschedule will not take place. Control is always returned to the interrupted actlv¡ty. This mode of

working tends to minimise the time spent in performing context switches; an important consideration on

hardware in which the context switch is inefficient. lt also leads to simplification of the kernel code and, in

the application, exclusive use of a resource can be guaranteed without recourse to special synchronising

primitives such as JOIN and LEAVE. There are, however, complicating effects. Contrary to the normal

Mascot philosophy, the activity programmer must take account of the execution time of any long

sequences of code and add calls on SUSPEND at strategic points in order to avoid taking excessively

long slices. This is generally unsatisfactory and, indeed, the overheads imposed by frequent calls on

SUSPEND may cancel the original gains. In the limit, a faulty act¡v¡ty containing a closed loop would

bring the remainder of the system to a halt unless the kernel clock handler checks for processor hogging

and takes action to TERMINATE the offending act¡v¡ty.

Co-operative working effectively limits the ability of the scheduler to optimise the system's response. The

alternative is pre-emptive scheduling under which the kernel is free to re-schedule following an interrupt.

The arrival of an interrupt ¡s an event which is likely to alter the state of the system. An act¡v¡ty which has

been awaiting this interrupt may well have become the most urgent. Under pre-emptive scheduling, it can

be entered for execution without delay. An activity which is hogging a processor is less damaging than

under a co-operative regime though it may still be detected and TERMINATEd. The opportunity of

re-scheduling after a clock interrupt makes time slicing possible by setting a maximum slice time.

Priori ty Schemes

The simplest priority scheme, if it can properly be so called, is one in which all act¡v¡t¡es are given the

same priority. A single current list, containing allthe currently schedulable act¡v¡t¡es, is maintained on a

first-in first-out basis. The scheduler always selects the actlv¡ty which has been waiting longest, that is,

the act¡v¡ty at the head of the list. This scheme is the fastest possible in execution but provides little

scope for improving the response of the system to enernal events. Indeed this can only be achieved by

the crude mechanism of adding calls on SUSPEND in order to ¡ncrease the number of re-schedule

points. As the length of the current list cannot be determined by an actlv¡ty, such a strategy is not very

etfective and may, in addition, prove wasteful of processor resources if carried to excess.
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ln the next priority scheme to be considered, several priodty levels are employed to which all act¡v¡t¡es

are allocated, once for all, on lirst being executed. A first-in first-out list is maintained for each priority level

and these are scanned by the scheduler in pdority order to select the act¡v¡ty at lhe head of the first

occupied list. The choice thus falls on the most urgent task which has been waiting the longest.

Compared with the single priority approach, th¡s strategy results in greater flexibilly at the expense of

greater complexity and, in general, a heavier drain on processor time. lt possesses the advqntage that the

response to external events can be tailored by changing the relative priority levels of activities without

altering the coding of any templates. The response problem is not, however, tolally solved since no

matter how high its priority level an actlv¡ty may be held up in the pending list of a coRtrol queue

behind one of lower priority.

Finally, in an attempt to overcome this problem of the collision of two act¡v¡t¡es, of different priorities,

competing for ownership of a control queue, multi-level priority schemes may be extended to

encompass dynamically varing pr¡orities. Cross-stimulation between co'operating activ¡ties is not

affected. Although, at first sight, variable priorities may seem to present an added complexity, they can be

easier to use in practice than fixed priorities. This is because a priority level can be associated with a

resource in such a way as to reflect its scarcity and this is often easier to assess than the average urgency

of executing a particular act¡v¡ty. Two of the many possible algorithms which may be used to determine

priorities in this type of scheme are discussed below.

A static priority may be associated with a control queue. Any activity which JOINs such a queue

assumes this priority if it is higher than its own cunent priority. The actlvity's priority reverts to its previous

value when the control queue is released. This scheme is relatively easy to implement although the

restoration of priority on LËAVE can present some difficultíes if multiple JOINs and LEAVEs are not

nested. lt does, however, complicate the coding of the primitives and extend the execution time required

by JOIN and LEAVE. Also the lower priority act¡v¡t¡es execute at h¡gher priority than is desirable when

there is no collision.

As a further refinement, control queue priority may itself be made variable. Initially minimum priority is

allocated and the priority of an actlvity JOlNing the queue is not affected. However when an act¡v¡ty is

placed on the pending list, the priority of the control queue is set to the higher of its own and that of

the act¡v¡ty. Thus the priority of the queue owner is maintained as that of the highest priority act¡v¡ty in

the queue. The queue reverls to minimum priority when the pending list becomes empty. The result is

that actlvltles are executed at the¡r assigned priorities except when in collis¡on with a higher priority

actlvlty. This improvement is achieved at the cost of further cornplication,of the code and ,increased

execution time for JOIN and LEAVE.
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4.5 MULT¡.PROCESSOR CONFIGURATIONS

In t roduct ion

Multi-processor target configurations for Mascot applications can be classified in a variety of ways on the

basis of their distinguishing characteristics. They may differ, for example, in respect of any of the

following:

( 1 ) I nter-Processor RelationshiPs. There are three principal types of configuration.

One processor may be designated as master with all others acting as slaves. A symmetrical arrangement

of identical processing elements is possible in which the storage and input/output resources of the

system are all shared. Finally the processors may operate autonomously each with its own private set of

resources.

(2) Memory Visibility. The possibilities here are that the system's memory

resources may all be accessible to all processors, may be divided into units each of which is available for

use by one processor only or a combination of these arrangements may be employed with a mixture of

common and private storage.

(g) Number of Mascot Kernels. Multi-processor configurations may contain a single

copy of the Mascot kernel or many copies, for example one per processor.

(4) Allocation of Activlt ies. The selection of a processor for the task of

executing a Mascot act¡vlty may be performed on e¡ther a static or a dynamic basis.

It is also possible to envisage complex configurations employing, within the same system, more than one

of the possibilities listed under (1) and (4) above. Two classes of configuration using at least some shared

memory are discussed below; those configurations employing a single Mascot kernel being considered

first and then those with multiple kernels. Finally configurations with no shared memory are discussed

very briefly.

The following discussion is in terms of a control

apply to any alternative run-time implementation

arguments should be interpreted accordingly.

Single Kernel  Conf igurat ions

ln a master/slave arrangement, the single kernel has one

execution and so need not be re-entrant. The diagram below,

queue based implementation. Similar considerations

strategy and, when considering such alternatives, the

processor, the master, dedicated to its

which illustrates this configuration, shows
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two slave processors although there might be any number. The simplest example of this arrangement,

wfere there is just one slave processor, comes nearest to the familiar single processor case and, in

general, the software configuration is simple.

As the kernel data are accessible to only one processor no protection is required. Equally, an actlv¡ty

being executed on a slave processor has no direct access to kernel facilities and some software

mechanism must be provided to permit such actlvlt¡es to invoke primitive operations. Some common

memory is therefore essential.

In a symmetrical arrangement, the processing elements are identical and almost all memory and
input/output facilities must be common. A three processor, symmetrical configuration is illustrated in the

diagram below. The common store contains the system's single, multi-thread kernel. Separate copies of
read-only components may be held in local memory for efficient access while there is potential lockout on
shared kernel data and the application's control queues must be protected for concurrent access. Control
of the kernel passes from one processor to another, but only one can be 'master' at any one time. An

act¡vity could be executed on different processors for different slices.

A major advantage of this type of configuration is that the workload of the processors is balanced. lf one
processorfails, the system is able to continue with reduced performance or with support for some of ils
functions withdrawn. Extra processors can be added with minimal rebuilding. This is an attractive

arrangement provided sufficient common memory can be made available without significant access ¡me
penalty.

Shared
Memory

Private
Memory

Private
Memory

,ff Processor

Private
Memory
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Mu,l t iple Kernel Configurat ions

Providing each processor with its own copy of the Mascot kernel, in private memory, leads to the

autonomous arrangement (illustrated below) in which the processors act independently and the kernels

perform almost as in a single processor configuration. Each processor has private inpuUoutput devices

but some shared mernory is desirable. Act¡v¡t¡es are assigned, permanently, to a particular processor at

bu¡ld.time. Kerneldata, such as for example pending lists, may need to be shared between kernels.

The key consideration which further distinguishes configurations of this type is the means by which

application or context software running on one processor can commun¡cate with software running on

another processor. At the most fundamental level, communication between processors can be by polling

or can be interrupt driven. At a level more relevant to the present discusson the choice is between

communication effected directly by the application software or by the kernel acting on its behalf. The

extent of the common memory available is one important factor in determining the method.
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Communicat¡on between Mascot actlvltles involves access procedures, control queues and

IDA data. With total support from the kernel, and given an adequate amount of shared memory,

communication among actlvlt¡es assigned to different processors may take place in a wholly transparent

way. The sharing of IDA data presents no problem. The sharing of access procedures avoids

duplication of code at the cost of the additional access time associated with common memory. lt is the

sharing of control queues which requires special support from the kernel.

When all primitives are available for application to shared control queues, the pending list of such a

queue may contain act¡v¡t¡es whose execution is administered by different kernels. Ownership of the

queue passes from one kernel to another. A kernel needs to be aware, therefore, when one of the

act¡v¡t¡es under its control has been ST|Mmed remotely (that is, by an act¡v¡ty running on another

processor). This information can be supplied by polling or by interrupt.

The main advantage of such an arrangement is that a component of the application software can be

relocated for execution by a different processor without any changes being necessary to its source

template. On the other hand, the need to hold pending lists in shared memory and the continual

change of processor owníng a shared control queue is not very desirable for effícient and fault{olerant

operation.

An afternative approach ís one in which ¡nter-processor communication is restricted to the ability of an

access procedure, running on one processor, to apply a STIM to a control queue controlled by the
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kernel of another processor. The pending list for such a queue only contains act¡v¡t¡es which belong

to the local kernel so that ownership of the queue remains with a single kernel. Thus while IDA data are

shared, pending lists can be held in local mernory. The operation of a remote STIM involves drawing the

attention of the local kernel to the fact that a WAlTing activ¡ty, under its control, is now available for

scheduling or, if there is no aclivlty WAlTing on the queue and no previous STIM being held on that

queue, that there is now a STIM to be held for future use. All that need be communicated, in order to

convey this informat¡on, ¡s the identity of the control queue involved. This can be done through

shared memory, allowing all the control queues to be held in local memory.

This method reduces the overheads of a multi-processor target to a minimum. However, communications

restrictions between processors preverìt the'processor boundaries'from being transparent to the design

and/or imptementation of the application. Thus, changes in the distribution of components may require

changes to the network.

Communicat ion L inked Conf igurat ions

Finally it should be mentioned that multi-processor working may take a form in which there is no common

memory. Communication, in this case, is effected by a'communications bearer', such as a local area

network (LAN), independently of the kernel. Some support may, however, be offered by the context.

Private
Memory

Private
Memory

Private
Memory
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Introduction

In this section the execution controlfacilities which are mandatory in a Mascot development environment

are presented first. There follows a discussion of the additional facilities which it is desirable should be

provided to support software commissioning. A set of commands is then described for the application of

control functíons to individual actlvltles, lDAs and servers. Finally further additional facilities are

described which support the hierarchic controlof networks.

Mandatorv Faci l i t ies

When a Mascot system has been built, each of its components is said to be in an unestabllshed

state. Before any constituent activity can be executed ¡t is necessary that it, and the lDAs and servers

to which it is connected, be initialised. Part of the process of establ¡shing an IDA or server is the

execution of any initialisation procedure contained. When a component has been successfully initialised,

it achieves the state value of established. An establlshed actlv¡ty may be started once ail the lDAs

and servers to which it is connected have been establlshed. Thus, the minimum necessary set of

execution control facilities consists of INITIALISE which establishes a component and START which sets

an established act¡v¡ty running. All Mascot development environments must, therefore, support these

two functions. The corresponding state change diagram is given below.

INITIALISE

START

FATAL

ERROR

An actlvlty enters the crashed state after a fatal run-time error has been detected.

Established
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The two mandatory functions may be provided either as part of the bulld-time facilities or as on-line,

run-time commands. The mechanism of the former approach is ímplementation defined. In the latter case,

unless the mechanism is automatic, the functions should be made available through an appropriately

named interface which may be defined either as part of the context or as an application module. Any

parameters will be expressed in a form which is consistent with the other language facilities. A

development environment may also provide a command interpreter which uses the interface.

Addit ional Non-Mandatory Faci l i t ies

While the mandatory facilities described above fulfilthe minimum requirements for an operational Mascot

system, additional facilities are desirable during the software commissioning phase of a project. A

Mascot development environment may therefore provide four further functions, HALT, RESUME,

RESET and TERMINATE which should be made available as on-line, run-time facilities. Associated with

these functions is a further state: halted. The full state change diagram is shown below.

The halted state ¡s entered as a consequence of the application of the HALT function. While in the

halted state, an act¡v¡ty is not eligible for scheduling although a t¡meout may exþire or the act¡vlty may

become the owner of a control queue.

Unestabl ished

RESUME

TERMINATE

Running

TERMINATE

FATAL ERROR
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The full Mascot definition allows actlvltles, as well as lDAs and servers, to contain initialisation

procedures (see Appendix E). Termination procedures may also be included in all three of these

module classes and reset procedures may be included in lDAs and servers. Where such

procedures are catered for in a Mascot development system, their execution is initiated as part of the

lN¡TlALlSE, RESET and TERMINATE functions. Note that once INITIALISE has been applied ¡t cannot be

re-applied without first returning to the unestablished state by means of TERMINATE. The reset

procedures of lDAs and servers may, however, be executed in the establlshed state by means of

the RESET function.

The functions HALT, RESUME and TERMINATE are not normally considered to be suitable for use in an

operational system because of their drastic side effects. ln the case of HALT, an act¡v¡ty is prevented

from further execution until RESUMEd. lf the act¡v¡ty is executing an access mechanism of an IDA or

server, this may prevent other actlvlties completing execution of access mechanisms ¡n the same

IDA or server, and hence will potentially stop the remainder of the system. The operation of

TERMINATE also has drastic side effects ¡n that an actlvlty may be aborted while executing an access

maechanism. This, in general, can result in the contents of lDAs or servers becoming inconsistent.

While these side effects are tolerable during software commissioning, they are not normally tolerable

during system operation. lf there is no alternative to the use of HALTÆERMINATE, it may be necessary to

introduce special facilities to prevent the side effects.

Command Descript ion

The INITIALISE Function

lf we assume all its components to be ¡n the unestabl¡shed state, a complete system may be

initialised in the following manner. First the INITIALISE function is applied to each IDA and server. tf the

operations are successful, all these components will become established. lt is then possible to

establ¡sh the act¡v¡t¡es by applying the INITIALISE function to each of them in turn. This ordering may

be relaxed where it is guaranteed that the initialisation code within an act¡v¡ty does not interact w¡th any

of the lDAs or servers to which it is connected.

The effect of applying the INITIALISATION function is to cause the initialisation procedure to be

executed. After successful application of the INITIALISATION function an act¡v¡ty, IDA or server is in

the establ¡shed state.

A run-time system may place restrictions on the facilities available to an initialisation procedure provided

that these restrictions are documented. ln part¡cular, since the initialisation procedure may be invoked by

the run-time system, rather than by an activ¡ty, it may be inappropriate to use the control queue

primitives otherthan STIM or STIMINT.
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element identi ty

system_name

subsystem_name

comp_ida_name

comp_server_name

activity_name

In a development environment which supports the INITIALISE function on-line there must be at least one

parameter, namely the actlvlty, IDA or server identity whose preferred form is defined by the syntax

diagram below:

The system name may be omitted in circumstances where only one system is allowed so that there is

no possible ambiguity.

lf the passing of a parameter to IDA or server initialisation procedures is supported, then means of

specifiying the value to be passed will be defined. Where a command interpreter is provided the

command willtake the form shown below.

The START Function

The START function can only be applied to an act¡vlty which is in the establ¡shed state, and for which

all the connected lDAs and servers are also establ¡shed. The effect of its successful application is to

put the act¡v¡ty into the runnlng state and to inform the scheduler that the activity is el igible for

element_identityINITIALISE
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scheduling from its in¡t¡al entry point.

In a development environment which supports the START function on-line, the function accepts either

one or two parameters. These are the element identity and, if the development environment supports

priority change at start, a priority value. Where a command interpreter is provided, the command willtake

the form shown below.

Where a priority value is accepted it overrides the the priority specified during bulldlng. lf dynamic

priority adjustment is supported, this value may itself subsequently be overridden. lf the START function

cannot be applied to the act¡vity then an error or warning message will be generated to specify the

identity of the activity and the reason for the failure. For example:

START: Error: Activ¡ty STABILISE.FILTER is crashed

START: Warning: Activity MMl. COMMANDINT already running

The criterion which determines the nature of the message is whether the desired etfect has been

achieved or not. Thus attempting to START a runnlng actlvlty should generate a warning while

aüempting to START a crashed actlvlty should result in an error message.

The HALT Function

The HALT function may only be applied to an actlv¡ty which is ¡n the runnlng state. lts effect is to pul

the act¡v¡ty into a halted state and to inform the scheduler that the act¡v¡ty is not el igible for

scheduling. Where a command interpreter is provided the command takes the form:

The function accepts a single parameter which is the identity of the actlvity to be halted. lf the function

cannot be applied to an act¡vity then a warning is generated to specify the act¡v¡ty identity and the

reason for the failure. For example:

HALT: Warning: Activity STABILISE.FILTER already halted

The RESUME Function

The RESUME function may only be applied to an act¡v¡ty which is in the halted state. lts effect is to put

the actlv¡ty into the runnlng state and to inform the scheduler that the activ¡ty is now eligible for
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scheduling. Where a command interpreter is provided the command takes the form:

The function accepts a single parameter which is the identity of the actlvity to be resumed. lf the

RESUME function cannot be applied to the act¡vity then an error or warning message will be generated

to specify the activity identity and the reason for the failure. For example:

RESUME: Enor: Activity STABILISE.FILTER is crashed

RESUME: Warning: Activity MMI.COMMANDINT already running

The TERMINATE Function

The TERMINATE function can be applied to an activlty which is in any state but unestabl¡shed. lf IDA

or server termination procedures are supported then TERMINATE may be applied to an establlshed

IDA or seruer provided that all connected actlvltles are either unestabllshed or establlshed.

The effect of the TERMINATE function applied to an actlv¡ty is to put it into the unestablished state

and inform the scheduler that the act¡v¡ty is not eligible for scheduling. The act¡vlty is removed from all

internal queues and lists within the run-time executive and is removed from all control queues it has

joined.

The function accepts a single parameter which is the identity of the activlty, IDA or server to be

te rm¡na ted .

The effect of the TERMINATE function applied to an IDA or server is to execute the termination

procedure if such is supported by the development environment.

lf the TERMINATE function cannot be applied to an actlvlty, IDA or server then an error or warning

message will be generated to specify the ident¡ty and the reason for the failure. For example:

TERMINATE: Error :  Channel  STABILISE.MESSCHAN is  connected to  running

activities

TERMINATE: Warning: Activity STABILISE.SHIP is unestablished

Where a command interpreter is provided the command takes the form:
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The RESET Function

The RESET function may only be applied to lDAs and servers which are in the establ¡shed state. lts

effect is to cause the execution of the reset procedure and it leaves the element estabtlshed. Where a

command interpreter is provided the command takes the form:

The second parameter, if provided, is passed to the reset procedure. lf the RESET function cannot be

applied to an IDA or server then an error message will be generated to specify the identity and the

reason for the failure. For exampte:

RESET: Error: IDA STABILISE.MESSCHAN is unestablished

The RESET function provides a means of re-initialising an IDA or server w¡thout needing to

TERMINATE the associated actlv¡tles.

Hierarchic Control Faci l i t ies

The control faci i l tes described above operate on individual elements. Mascot development

environments may be extended to support hierarchic control of systems, subsystems and

compos¡te lDAs and servers. These facilities operate by applying the functions already described,

recursively, to the elements and lower level networks within a specified network entity. Provision of

these features necessitates some extensions to the function descriptions and these are discussed

below.

A development environment is required to define the effect of an hierarchical control command failing to

operate. A much wider range of exceptional situations can occur such as, for example, the application of

the RESUME function to a network which contains a crashed act¡v¡ty. lt is worth noting that individual

components of a network can be in different states making the concept of an overall network state

meaningless.

Hierarchic ldentity

The preferred form of identity described above for act¡v¡t¡es, lDAs and servers, must be altered to

allow the omission of trailing fields. The function is then applied to the named structure. In order to limit

the possibilities for error, actions applying to the system as a whole should require the system name to

be specified. lt could however still be omitted for subsystems and compos¡te lDAs and servers.

element_identity
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INITIALISE Applied Hierarchically

The hierarchic form of the INITIALISE function should first initialise all the lDAs and seruers and then the

actlvltles of the network being initialised. lf the development environment is not capable of

determining the necessary order of initialisation according to the dependencies then it must provide a

mechanism for specifying this.

The development environment must define the method of handling parameters of initialisation

procedures.

START Applied Hierarchically

The development environment must define how the start priority value is to be interpreted in connection

with a system or subsystem.

HALT, RESUME and TERMINATE Applied Hierarchically

The order of application must be defined for the development environment. lf these functions are

provided by means of an interface which is accessible to the application then the development

environment must ensure correct operation when a command is issued by an activity which is itself

within the scope of that command.

RESET Applied Herarchically

The hierarchic form of RESET is similar to the hierarchic lorm of INITIALISE except that it only affects lDAs

and servers. Again, the development environment must define the method of handling parameters.
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In t roduct ion

As stated in the lntroduction to this Handbook, Mascot is aimed primarily at the development of real-time,

embedded software. Such applications usually demand a high degree of fault tolerance. In the face of a

wide range of run-time errors, systems are expected to continue operation, albeit in a degraded mode in

which some functions are no longer available or are available at reduced efficíency. Error detection and

handling are therefore of considerable importance in the operational software. During the development

stage, it is essentialto have good facilities for error reporting and for some applications this facility must be

retained, possibly in a modified form, when the system becomes operational.

The three functions: detection, handling and reporting involve act¡ons at three levels of the system: the

hardware, the executive software (the Mascot kemel) and the application software.

Mascot Error Handl ing Requirements

Errors may be detected at all three levels and handled by either of the software levels. At the hardware

level, such events as arithmetic overflow or underflow and memory protect¡on violation are detected and

normally signalled by means of an interrupt mechanism. Response to these signals may be provided by

either the executive or the application software. In the case of the application level, the coding which

checks the hardware status for errors may be programmed explicitly or may be included implicitly by the

compilation system.

Other errors are detected directly by the software. The executive detects such faults as the illegal use of
pr¡mit¡ves and, under a co-operative scheduling regime, an excessive time slice. In the application

software, checks may be made explicitly for errors related to the logical significance of the program. An

example might be a mutually inconsistent set of data values. For a wide range of errors, the division

between those which must be catered for explicitly and those which are aulomatically trapped by code

embedded by the compiler, depends heavily on which implementation language is being used and its
provisions for data typing. Languages such as Pascal and Ada provide the programmer with a great deal

more assistance in these matters than, for example, Coral 66. Range checks on individual values fall into

this category.

Turning now to the question of handling the error once it has been detected, this, in fault tolerant

systems, is largely the responsibility of the application software. Consequently, error handling in the

execut¡ve, whether of error signals originating from the hardware or of directly detected errors, normally

consists of passing the information on to the application. In a few instances, however, the executive may

take the necessary action itself in a manner which is transparent to the application. In a paging
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implementation, a page fault could be dealt with in this way. In other cases, where the error is too serious

for recovery, the execution thread contain¡ng the error may be aborted and a message transmitted to the

error reporting system. where an error has been detected by or communicated to the application

software, the mechanism whereby control is passed to the appropriate handling code is again very

language dependent with Ada, PU1 and RTUZ providing built-in facilities of varying degrees of

sophistication.

The Mascot definit ion calls, under various circumstances (see for example Section 4.2), for the

generation of error or warning messages. Concern with the foregoing is otherwise limited to the

possibility that analysis of the message may be used to trigger recovery action. A Mascot development

environment is required to provide error reporting facilities which may be used by both the executive and

application parts of the software in a uniform manner. These facilities are defined in terms of three

elements: an error not¡f¡cat¡on ¡nterface, an error channel and a standard error report¡ng

network. Support for these elements is mandatory only during development and not in an operational

Mascot system.

Example Error Handl ing Faci l i ty

In this section error reporting facilities are described, for convenience, in the form of a particular

implementation. This implementation is not part of the standard. The documentation of a Mascot

development environment must specify the precise mechanisms which are supported and suitable

means of amending these facilities should be provided.

The diagram below illustrates how the standard facil¡t¡es could be provided.

error_chan

error_report_network

mascot_
e r ro r  chan

text_
formatter

mess_pool

text out
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The purpose of the network is to take messages, convert them to a suitable textual form and transmit

them to an appropriate device. Messages passed to the network are stored initially in a channelof type

mascot_error_chan. Input is via a wlndow which provides the standard error notif¡cat¡on

fnterface which, in our example, has been named report_error.

ACCESS ¡NTERFACE report_error;
PROCEDURE error(message : text_str ing; .. . . . . . .);
PROCEDURE fatal_error(message : text_string; ..........);

E N D .

Thus there are to be two access procedures error and fatal_error each of which place in the

channel a message which contains, in addition to the text itself (possibly represented by an error

number), an indication of the severity of the fault and the identity of the act¡vity which originated the

message (or on whose behalf it was originated by the executive). Other, user generated, components

may also be included in the message. The procedures may take other parameters as defined in the

documentation of the development environment.

Procedure tatal_error has the additional effect of setting the state of the act¡v¡ty, in which the fault

has occurred, to crashed and informing the scheduler that the act¡v¡ty is no longer eligible for

scheduling. In the above example network these actions are represented by a port which propagates

information out of the error channel. lf the act¡v¡ty is selected for monitoring, calling either access
procedure will result in the generation of an appropriate monitor record (see Section 4.8).

The error channel provides an output window of type mascot_error lo give access to the

messages which have been generated by the system. The access ¡nterface takes the form:

ACCESS INTERFACE mascot_error;
WITH error_message;
PROCEDURE get_error(VAR message : error_message; .. . . . . . .);

E N D .

where

DEFINITION error_message ;
T Y P E

severity = (error, fatal);
êfrof-flìêSSâQê = RECORD

text : text_string;
fault_type : severity;
act :act_id;

ENb
E N D .

Any addit ional parameters of access procedure get_error are defined for the Mascot

implementation.
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The development environment documentation will also define other characteristics of the error

channel including its behaviour when full, the queuing algorithms (eg priority levels of messages) and

the behaviour where no consumer actlv¡ty is connected to the channel'

The standard error report¡ng network is required to conta¡n facilities for taking messages from the

error channel, via lhe mascot_error window, convert¡ng them to textual form and transmitting them

to the output device via a window of type mascot_text_out .In our sample system these facilities are

illustrated as an activlty text_tormaffer w¡th access to a message pool and connected to a server

wlndow of the appropriate type. Access Interface mascot-text-out is of the form:

ACCESS INTERFACE mascot-text-out;
PROCEDURE text-put(mess : text-string);

E N D :

The format of the message displayed by the device is as follows:

activity identity: errortype error message parameter(s)

where the prefened form of an activity identity is

subsystem name . activitY name

The 'error type' takes its value from the sever¡ty component of the message (errolfatal) and any

additional parameters must be defined for the implementation'

It should be possible for the user to adapt the standard error reporting facilities by replacing the server

and/or replacing the processing element. In the latter case the application error handling might analyse

the error message and determine some network level recovery action. For example, receipt of a warning

message that a channel has reached 95/o oÍ capacity m¡ght trigger an action to filter incoming data more

heavily in the hardware and so reduce the number of events being processed.
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In t roduct ion

The poblems of testing and diagnosis in a reaþt¡me, multi-threaded system differ considerably from those

encountered during the corresponding phase in the development of a sequential program. ln particular,

the standard interactive tools will usually be inappropriate in that it is neither possible nor desirable to

suspend execution of the system or to execute it in single step nnde. The Mascot approach encourages

the planning of testing and diagnosis during the design phase of a project and a Mascot run-time system

should provide a range of facilities to assist in this aspect of the design.

The use of the set of facilities provided for this purpose is known as monitoring and the primary purpose is

to collect and display an ordered list of significant interactions within a system being commissioned.

These interactions may be between the elements of the system or between these elements and the

context. lt is obviously desirable that the collection of this data should, as far as possible, be a function

of the run-time system rather than of the application software. The monitoring facility should provide,

therefore, a means of recording the interactions without the need to incorporate special code in the

application templates.

The basic concept employed ¡n Mascot ¡s that the collection of monitoring information should be

decoupled from the processing and display of that information. The recommended collection system

maintains the t¡me ordering of the information gathered and is designed to have a minimal impact on the

normal execution of the components under investigation. The remaining facilities include provision for

selecting subsets of the possible information and the means of processing the gathered data and

displaying it in a readable form.

Monitoring is presented, in this section, in the form recommended for a run-t¡me system which supports

the Mascot primitives (see Section 4.2). For a run-time system which does not support these primitives,

some form of monitoring facility should still be provided. ln this latter case, the range of events to be

monitored is more difficult to define but ¡s likely to be broadly similar.

Events to be Monitored

In a run-time system which supports the Mascot primitives, the events which would be candidates for

monitoring include the following:
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Control Queue Primitives: Timing Primitives:

JOIN  DELAY

WAIT  T IMENOW

WAITFOR Interrupt Related Primitives:

L E A V E  C O N N E C T

S T I M  D I S C O N N E C T

S T I M I N T  E N D H A N D L E R

CHECK InterruPt occurrence

Occurrence of Errors:

E R R O R

FATAL-ERROR

Scheduling Ooerations:

Selection of an actlvlty for scheduling (START-SLICE)

Ending of period of actlvlty execution (END-SLICE)

Tracing of Control Flow:

Automatic recording (where provided for by the compiler) of such events as

procedure entry and return (TRACE)

Miscellaneous Primitives :

S U S P E N D

E N D R O O T

The monitoring facility also provides a mechanism for recording, in addition to the events listed above,

application specific events (record points). This mechanism is known as the RECORD facility and is

normally provided in the form of one or rnore primitives which have implementation defined parameters.

Se lec t i on

In even the smallest application, the volume of data gathered and displayed by the monitoring facility is

potentially ovenruhelming. lt is therefore necessary to be able to select sub-sets from the totality of

monitorable events. The control mechanisms, recommended for this purpose, provide a set of filters

which select the desired sub-set dynamically. Experience has shown that the rnost useful criteria are:

Which act¡v¡t¡es are to be monitored?

Which primitives are to be monitored?

Which control queues (where relevant) are to be monitored?

Which record points are to be active?

ls the automatic trace data (if any) to be recorded?
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For an event to be recorded, allof the relevant selections must be in force. Thus, for a control queue

primitive, the control queue, the primitive and the ac{lvlty must all be selected.

The recommended control facilities are provided by the operations SELECT and EXCLUDE which

respectively extend and reduce the set of events to be recorded. These operations require two

parameters. The first of these ¡s the ident¡ty of the group to which it applies:

ACTIVITY

PRIMITIVE

CONTROL_Q

RECORD

TRACE

and the second is the identity of the member of that group. The recommended form of reference to

act¡v¡t¡es, contro¡ queues and record po¡nts is by the element identity as defined in Section 4.6 of

the Handbook extended by the addition of the structure:

.controlq_name

to the identity of the IDA or server containing the control queue, and by the addition of the structure:

.recordSoint_name

to the identity of the element containing the record point.

The hierarchic form of element identity, described in the Section 4.6, may be used as a shorthand means

of SELECT|ng or EXCLUDing a collection of act¡v¡t¡es, control queues or record points in a single

operation. Thus, by the omission of trailing fields, reference can be made, for example, to all the

act¡vitles in a subsystem, allthe control queues in an IDA or all the record points in an act¡v¡ty.

ldentification of the TRACE records to be monitored is entirely dependent on the identification

informatíon which the development system associates with each trace point.

Primitives should be selected by the names used under the heading of 'Events to be Monitored'. The

term SLICES should be used to represent the START_SLICE, END SLICE pair, and ERRORS to

represent ERROR and FATAL_ERROR.
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Group references may be supported in a Mascot monitoring facilty through the keywords:

ALLPRIM - AllPrimitives

ALLACT - Allactlvlt¡es

ALLCQ - Al¡ control queues

ALL RECORD - Allrecord Points

All selections remain in force until explicitly excluded by means of the EXCLUDE function.

It will be appreciated that there are some elements of any system which must not be selected for

monitoring. The operations of the mon¡toring facility itself are an example. The system builder should

therefore provide facilities to inhibit monitoring of nom¡nated actlv¡t¡es and control queues. These

inhibitions should be transm¡tted to the run-time monitoring system and should be used to override the

effects of individual selection of the specified items or the effects of ALLCQ and ALLACT.

tn summary, the parameters of the SELECT and EXCLUDE functions are:

PRIMITIVE primitivename

ACTIVITY activity name

RECORD record Point name

TRACE (additionalparametersimplementationdependent)

ALLACT

ALLCQ

ALLPRIM

ALLRECORD

SLICES

ERRORS

Record ing

It is recommended that the events selected for recording by a Mascot monitoring system are written into

the monitor buffer, in strict order of occulTence, in one of the following modes:

REAL_TIME

IN_LINE

ln the defauft mode of lN-LlNE, all the selected events are captured. lf necessary execution of the

ac¡vltles being monitored is held up in order to ensure that no monitoring information is lost. In this

mode of operation it is permissible to disallow selection of interrupt and scheduling events.
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In REAL_TIME mode snapshots of the monitored events are taken while the system is allowed to run with

the minimum of interference. Data are written to the monitor buffer until it becomes full. When this has

happened, all further monitor data are discarded until the contents of the buffer have been processed for

display. The number of monitored events lost in this way should be reported to the processing function.

Three further options are recommended for the controlof recording:

HOLD

EMPTY

OFF

HOLD prevents further entries being written to the monitor buffer while preserving the current contents.

Further data are discarded until REAL TIME or lN LINE mode is selected.

EMPTY clears the buffer and causes further data to be discarded until REAL TIME or lN LINE mode is

selected.

OFF disables all monitoring (both recording and processing) until REAL_TIME or lN_LtNE mode is

setected.

These five options may be selected using the SELECT operation with the appropriate parameter.

Process ing

The function of processing is to convert the coded information in the monitor buffer into a readable form

and display it by means of a suitable peripheral. Facilities must be provided to perform this either on-tine or
off -line.

The on-line facility allows processing to be turned either on or off. lt is controlled by the SELECT and
EXCLUDE operations, in the normalway, using the keyword PROCESS. While processing is disabled, it
is recommended that the contents of the monitor buffer be circularly overwritten in either REAL_TIME or
IN-LINE mode of operation. This ensures that the buffer always contains a record of the most recent

events ready for processing and display as an aid to problem diagnosis.

The off-line facility should permit the contents of the monitor buffer to be examined following a system

crash.

s l
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Int roduct ion

This section describes the method whereby a design may be derived through the use of the Mascot

design representation language and graphical notation set out in earlier sections of the Handbook. The

domain of applicability of Mascot includes the development and subsequent maintenance of software for

large, distributed, embedded, real-time data processing systems. Wthout excluding the possibility of

applying sub-sets of the notation and the method to smaller systems, Mascot places part¡cular emphasis

on the word 'large'. Large, that ¡s, in the sense of large numbers of people involved in the development, a

targe amount of program text to be written, a large number of requirements to be serviced simultaneously,

a great variety and quantity of hardware resources, and a project whose development extends over a long

t¡me scale. The adoption of this emphasis on large systems has resulted in the evolution, in Mascot, of

the techniques necessary for handling the scale and complexity which seem to be inescapable features

of modern software developments.

The Mascot design method provides a basis for managing both the concurrency in development which

arises when many people are deployed simultaneously on a task, and the iteration which arises when

lower level design causes preúiously taken higher level design decisions to be changed. The method

can be viewed as a process where there are multiple sites of execution and where earlier stages may

need to be revisited.

Dçvelopment  Management

The Mascot method is based on the progressive and repeated application of a simple but powerful

technique: that of alternating the requirement and design viewpoints in the course of establishing an

hierarchic structure. At each levelof decomposition, a design is postulated to meet a set of requirements.

lmplementability is thus kept firmly in mind when elaborating the design structure. This encourages a

closed loop approach to the development process whereby the functions provided and the performance

achieved by a design at any level can be related, directly and easily, to a corresponding set of

requirements.

Great emphasis is placed on design visibility throughout software development. This is achieved by using

the various compos¡te structures to give an hierarchic form of design definition. In this way large

problems can be partitioned to contain the complexity at any point in the design, and to allow work to be

shared amongst members of a team. Skill, experience and good management are required during this

process which is essent¡ally creative, but is highly visible and amenable to control.
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Mascot is not prescriptive; thus it does not provide any recipes for establishing or filling out the framework

for a given design problem. However, it does permit integration with a wide range of complementary

software system analysis and design methods. ln this way the benefits of Masc¡t structural description

and development control can be combined with the advantages provided by other well proven or

emerging software engineering techniques.

Design Decomposi t ion

Each software component of a Mascot system is derived from a template and for every temptate there
is a uniquely defined design task. The Mascot method, therefore, includes stages which relate to specific
classes of templates: the operational system, networks, etements or subelements, slmple

templates and test systems. Each of these stages is further elaborated ¡n terms of substages. The

diagram below, in which each box represents a substage, summarises the common approach used in all
stages.

Functional
Requirements

External
Interactions

l a a t a t t

* . 1

Decomposition
Test *.5

Requirements
Test *.6

Interactions

Software 
*'3

Template
Requirements

' , 4

lnteractions

Hardrnrare 
* '2

Element
Requirements

tnternal 
* '7

lnteraction
Elaboration

At any point in the decomposition process a design is postulated which will satisfy the external
interactions and functional requirements derived from earlier stages. Each external interaction is an
identifiable set of operations ancl/or data flow constraints and each functional requirement specifies a
transformation which relates to operational and/or data flow effects on one or more interactions. Design
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decomposition at any stage identifies a set of components, each with its own functional requirements

and interactions, For each software component, the requirements for Ìhe corresponding template are

then derived (substage 3) together with its interactions (substage 4). These, in turn, lead to the funct¡onal

requirements and external interactions for further decomposition. Note that the Mascot graphical

conventions give explicit identification of interactions: a dashed line indicates interaction between a

component and a device, a path ¡ndicates an interact¡on within a network and a link indicates an

interaction within an element.

A template has to be designed to meet functional requirements and to service or generate external

interactions which are determined by previous slages of the design. Thus, for example, the design of the

operational system may place requirements and interaction constraints on a component subsystem

whose template in turn places requirements and interact¡on constraints on a component element.

The element temptate may be further decomposed and, in the process, places requirements and

interaction constraints on component subelements.

In the decomposition of a temptate (substage 1) the following are identified: any hardware elements to

be employed, the software components and the intemal ¡nteractions. The characteristics of the hardware

etements are described in substage 2. The template specif¡cation and functional requirements for each

component are defined in substage 3. The semantic and dynamic properties of the internal interactions

are defined in substage 4 while the syntax of the interfaces is defined in substage 7. Finally, the

funçtional requirements and interactions associated with testing the template are defined in substages

5 and 6.

The results, with the exception of those produced by substage 2, flow fonruard as data for lower levels of

decomposition. The complete design process is bounded, at the beginning, by the given framework in

which development is to take place and, at the end, by programming the indivisible elements and

subelements which form the atoms of the design, and by designing test systems for each of the

templates.

Technical Authori tY

From a development management point of view, the responsibilites relating to each design task (each

template) may be expressed in the roles played by a designer and a technical authority. The designer of

a template is responsible for carrying out all the substages relevant to the template design task'

These include the integration of the components identified in the template in order to be satisfied that

the temptate requirements and interact¡on constraints have been met. The technical authority for a

template is responsible for design task definition and for the verification and acceptance of the work

carried out by the designer of that template'
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Normally the technical authority for a template will be the designer of the enclosing template (in which

it is identified). This ensures that the technical authority is responsible for all the requirements and

interaction constraints relevant to the design task to be undertaken by the designer; these include:

lnteraction Descriptions. These are the definitions of the data flows and operations

on the paths, l lnks and device interactions which components, to be created

from the template,  must  generate or  respond to ( that  ¡s  the output  f rom

substage 4 of a previous design task).

Interface Specifications. These are the formal specifications of the procedures in

the Mascot Interface modules (that is the output of a previous substage 7).

Template Functional Requirements. These define the transformations, expressed

in terms of the interactions described above, to be carried out by any component

created from the template.

Some formality must be attached to the transfer of work between a technical authority and a designer.

Before a design task is placed by a technical authority on a designer, a Requirements Review must be

carried out. The formality of this review will be dependent on the extent of the definition detail at the time

the design task is initiated. Mascot allows work to proceed against incomplete design definitions (for

example, with speclflcatlon modules at reg¡stered status only) and this partial statement of
requirements must be subject to some sort of review. Later, when full speclflcatlons are available, a
rrþre thorough review can be undertaken.

When the design task has been completed a Verification and Acceptance Review must be carried out.
This will involve, at the least, a review of all the substages of the design task. Additionally, special

Verification Analyses and Acceptance tests may be undertaken at this point.

Desiqn Def in i t ion

The principal structural features of Mascot are summarised in the diagram below. This shows

decomposit ion from systems, through networks and elements, down to subelements, w¡th
paths and llnks being identified on the way.

At the top of the structure are the operational systems which identify collections of components to

meet primary operational requirements, and test systems which identify a mixture of operational and test

components for some intermediate test purpose. The diagram shows the closely coupled relationship

between templates and components. During development, the structure of the application software

is evolved in terms of a set of interconnected components to be created in the execution environment.

Each component is designed in terms of a template. Each connection is designed ín terms of an
Interface speclf¡cat¡on. This approach encourages design abstraction and supports the creation of

(a)

(b)

(c)
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multiple components derived from the same teinplate, or the creation of the same type of

component in different execution environments for prototyp¡ng, testing or re-use.

Design Structure

The principle of 'containment of complexity' should ruthlessly be applied during design structure

elaboration. At each stage of decomposition a significant measure of partitioning should be achieved but

without generating overly complex internal component structures. The f inal hierarchical design

structure should contain the minimum number of levels cons¡stent with the ability to see easily how each

component, at any level, plays its part in satisfying the requirements generated by the next levelup.

Application of the Mascot method is likely to result in a large number of names. These names must be

chosen with care and, in the case of very large systems, it may be necessary to introduce special naming

conventions and/or measures to limit the potentially global scope of template names. The value of

Subroot
lnterface
Specification

ST Simple Template
CT Composite Template

SlSimple Interface
ClComposite Interface
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clear, meaningful names cannot be over emphasised. Template names should reflect the general

functional capability of a module, whereas component names should be chosen to indicate the

particular role of the component ¡n the composite module.

Not shown in the diagram are various addltional modules which are not involved in the primary

decomposition in terms of networks, elements and subelements. The set of additional modules

and the purpose for which they are required is as follows:

(a)

(b)

Context Interface. This defines the operating environment of the Mascot

software.

Llbrary Interlace. This defines a set of facilities to be provided by a llbrary

component within the application software. lt may, on occasions, represent the

existence of a piece of (possibly custom designed) hardware.

Llbrary Template. This defines a set of llbrary algorithms.

Def¡n¡t¡on. This defines one or more data types and associated constants.

Build Modules. These define the mapping of software design c,omponents onto

target hardware.

(c)

(d)

(e)

During development, the definition of the design structure will evolve in parallel and be subject to iterative

change. This process will be recorded in the Mascot database using the status progression facilities.

The Mascot database is similar to a Data Dictionary but has far more emphasis placed on the

relationship between entries. The structure at any t¡me captures the current state of the design and

allows assessment of the degree of completion.

The quality of the documentation at the end of development will significantly affect the maintainab¡lity of

the system and the potential of any of ¡ts templates for re-use. When the development task is 'finished',

the documentation set must include the rationale for the 'final' structure. Those parts of the design which

have been discarded during the iterative development process need not be retained in full, although the

history of the development and any major lessons leamt should be summarised in a design record.

Potential  for Re-use.

Mascot is essentially a form of software template technology. The output from the decomposition

process (substage 1) expresses the design in terms of the functionality of, and interactions between, the

components. When the ¡nteractions are defined (substage 4) their descriptions are generalised so as

to maximise the potentialfor re-use. In the same way, in the definition of the template (substage 3), the

transformations to be performed by any component derived from the template are expressed in terms

of the generalised interactions derived above. lt is possible to identify a number of circumstances

frequently encountered when designing a template for a particular component:
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Unique Template. This is where a template must be designed from scratch.

Nothing exists (or there is no knowledge of it) which can be used as a starting

point for the template design.

Adapted Template. This is where a template can be designed using an existing

temptate as the base line for the development.

Common Template. This is where a common requirement exists at several

different places ¡n the overall design structure and where it is possible to satisfy

this requirement with a common design. Control of the common design should be

exercised from at least the lowest common po¡nt above the places where it is used

in the design hierarchy. A common template may be parameterised in various

ways, or may be produced in variant forms using automatic program generation

techniques, to give some flexibility in use.

S tandard  Temp la te .  Th i s  i s  s im i l a r  t o  a  common temp la te ,  bu t  w i th

applicability across a range of proiects.

Exist¡ng Template. A exist ing unique or adapted template may be adopted for

use elsewhere. ln being so used it  ¡s made into a common or standard

temptate and control of its design should be exercised accordingly. Whenever it

is decided to make use of an already exist ing template i t  is l ikely that this wil l  to

some extent affect the inieractions and component requirements in the enclosing

design structure;these must now be tailored to accomodate the existing item.

Design Stages

As already indicated, the design process can be broken down into a number of stages and substages.

This must not be construed as a linearisation of the essentially iterative and concurrent design actions

which take place in a large software development. However some means of identifying different aspects

of the design process is needed and it is for this reason that the stages and substages are defined, each

being given a number for ease of reference. Thus, although the work of a development will not proceed

stric¡y in accordance with the stage numbering, the sequence indicates the order in which the des¡gn of

individual items is elaborated.

The rationale for the 'final' design, or any design which is thought to be good at any part¡cular point of

development, may well give the impression that it has been arrived at by orderly sequential application of

the des¡gn stages. Indeed ¡t is important that it is possible to describe the design in this way. The Mascot

method is specifically geared to the problems of controlling the evolution of a design, during which

mistakes may be made and requirements changed. The method maximises the formality with which an

evolving design.structure can be expressed, whilst maintaining flexibility by allowing changes to be made

in welldefined localised regions.

(a)

(b)

(c)

(d)

(e)
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Before embarking on the first stage of the design it is necessary to begin by establishing the framework in

which the development will take place. Atthough work on this is started dght at the beginning of the

pro¡ect it is likely that the bulk of the deta¡lwill need to be deferred untilthe first stage of decomposition

has been completed. Subsequent stages may well result in addition, deletion or amendment to the

results of this preliminary work. The following aspects need to be considered:

Hardware Environment. This includes establishing the number and type of

processors to be used, the size and type of each main storage unit, the means by

which hardware modules are to communicate and the number and nature of the

peripheral devices whiqh are to be handled by the system. lt is necessary to

complete this to a degree which is adequate to support any hardware interactions

in subsequent stages of the design, and to identify any processing or

communication constraints which may affect the design structure.

Development System. This includes the faci l i t ies provided by the programming

and project support environments together with such items as the means of

prototyping and the provision of test harnesses. All these facilities are central to

the software development and must be well defined early on.

Context(s). This involves establishing the primit ives and standard support

facilities which are to be made available through one or more Mascot context

In ter f  aces.

Llbrarles. These are standard support facilities which are to be created outside

the context and made available through l ibrary Interfaces. Both l lbraries

and contexts are directly supported by the Mascot design representation

facilities; their definition must be completed in time to support the programming

stage of the work.

The method includes six main stages as follows:

(a)

(b)

(c)

(d)

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

External Requirements and Constraints

Design Proposal

Network Decomposition

Element Decomposition

Program Definition

Test System Definition

Each of these will be illustrated by means of an individual diagram derivedfrom the general one already

presenled. The seven substages, introduced earlier in connection wiifr the general decomposition

model, represent specific design act¡ons related to the decomposition process in each o{ the six main

stages. Work on the various substages of any particular stage will proceed in parallel and need not be

complete before work is started on further stages of decomposition. Some substages are not present in

allthe six stages, as will be illustrated by means of the individual diagrams, and some may optionally be
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omitted if they are not required in the elaboration of a part¡cular design item. An arrow leaving a box in any

of the d¡agrams represents a flow of information to a further stage of decomposition (in some cases within

the same stage of the method such as where a network is decomposed into lower level networks).

Stage 1 External Requirements and Constraints

This stage establishes the general requirements and external constraints. The substages of which it is

comprised are illustrated on the diagram below and are now described individually.

overall 
1'5

System
Test
Requirements

1 . 1

Requirements
Analysis

Overall 1.6
System
Test
Interac'tions

Software 1'3

System
Requirements

Software 1'4

System
Interactions

Hardware 1'2

System
Flequirements

2 . 1  2 . 1

Stage 1

Stage 1.1 (Requlrements Analysls) involves analysis of the complete system (hardware and

software) w¡th particular emphasis on identification of the software system requirements and

interactions. Analysis techniques compatible with the data flow and network principles of Mascot (such

as CORE, SSADM, JSD etc.) are particularly relevant during this stage.

Stage 1.2 (Hardware System Requirements) describes those parts of the system whose

functions are to be performed by hardware units. They are not, in the Mascot method, to be subjected

to further decomposition (box 1.2 possesses no output arrow) but such hardware units are not of

course precluded from containing independent items of software.

Stage 1.3 (Software System Requlrements) descr¡bes what the software has to do in terms of

transformations of data and responses to events originating outside the software system.
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Stage 1.4 (Software System lnteract¡ons) describes the nature and purpose of each implicit

interaction between the software system and the external hardware or software (including

communication with an operator).

Stage 1.5 (Overall System Test Requlrements)describes the way in which the complete

system (hardware and software) is to be tested.

Stage 1.6 (Overall System Test Interactlons) identifies particular test data, expected results

and the operator control sequences required to carry out the tests on the complete system. No data is

carried forward to later stages as such tests are applied to the total system operating in its natural

environment.

Stage 1 must be well advanced before any further stages of the development work are started. Although

this stage does not produce any formal Mascot design definitions (apart from the name of the system

template) it is likely to involve the application of formal techniques for requirements analysis. Notice that

this stage produces the requirements and device interactions for a Mascot software system which may

itself contain embedded hardware components (where these are deemed to be supportive of the

software design rather than placing consiraints upon it as does the 'non negotiable hardware' discussed

before embarking on this stage). There could also be several software systems, rather than just one,

interacting through intermediate hardware. The overall system test requirements (stage 1.5) and

interactions (stage 1.6) are not, in principle, needed until the end of the development when hardware

and software have to be integrated; however stages 1.5 and 1.6 should be carried out as early as
possible since they provide a useful measure of requirements analysis verification. Indeed in all stages

which generate test definitions, lhe fact that the corresponding tests are not to be performed until later

should not be allowed to delay work on their definitions.

Stage 2 Design Proposal

This stage results in a top level design proposal based on the software system requirements and

interactions identified in the stage 1 Requirements Analysis. lt is the first point at which a Mascot design

structure emerges. The corresponding diagram is shown below.

Stage 2.1 (Software System Decompos¡t¡on)describes the top level application software

design in terms of a Mascot system.

Stage 2.2 (Hardware Element Requ¡rements) describes what each of the items of supportive

hardware appearing as top level components of the Mascot system has to do.

Stage 2.3 (Software Template Requlrements) describes the template requirements for

each software component in the top level software system design.
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1 . 3  1 . 4

Mascot 2'5

System
Test
Requirements

2 . 1
Software
System
Decomposition H

Mascot 2.6
System
Test
Interactions

Software 2'3

Template
Requirements

2.4
Interactions

2 .7 .1
DefinitionsHardrryare 

2'2

Element
Requirements 2.7.2

Access
lnterfaces

composite2'7'3
Access
lnterfaces

3 . 1  3 . 1  5 . 1  3 . 1  4 . 1
4 . 1  4 . 1
5 . 1  5 . 1

Stage 2

Stage 2.4 (lnteractions) describes the nature and purpose of the internal interactions (paths)

þetween system components.

Stage 2.5 (Mascot System Test Requlrements) describes the way in which the Mascot

system is to be tested. No data is carried forward to later stages as such tests are applied to the total

software system.

Stage 2.6 (Mascot System Test Interact¡ons) describes the particular test data, expected

results and the operator control sequences required to carry out the Mascot system test.

Stage 2.7 ( lnternal Interactlon Elaborat¡on) identif ies the defin¡t ions (2.7.1), access

Interfaces (2.7.2) and compos¡te access interfaces (2.7.3) required to describe the paths

þetween system components and the types of the data which flow along them.
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No further stages of decomposition can be started until at least the system template has achieved

enrolled status, the components have achieved Introduced status, and the access

lnterfaces have achieved reglstered status. In addition, the internal paths must be described in

terms of semantic and dynamic properties and any serial ordering constraints which apply to data flow

along the paths. When the template requirements have also been defined then this is sufficient to

allow further stage 3 or stage 4 decomposition. The stage 5 program design of an element or

subelement connected by an ¡nterface identif ied in stage 2 cannot be started unti l  lhe

deflnltlons (2.7.1) and access Interfaces (2.7.21 have been established. Likewise the detail of

the composlte access Interfaces (2.7.3) must be complete before a compos¡te path can be

expanded in a subsequent stage 3 subsystem decomposition.

The result of the initial attempt, at this stage, to identify a component as a subsystem (to 3.1), or an

element (to 5.1) is necessarily provisional. The ultimate decision as to whether a template should

be further decomposed can only be made in the light of its designe/s rnore detailed examination. ln

the case of an element this examination may indicate that further decomposition is desirable. ln

these circumstances stage 5 is abandonned and stage 3 or stage 4 invoked, as appropriate. lt is also

possible that subsequent decomposítion fails because design constraints cannot be met. In this case

stage 2 must be repeated.

Stage 2 ¡s the point at which the Mascot method starts to exert its inf luence in relating software design

structure to external requirements and constraints identified during stage 1. ldeally, the top level of

software design expression would be expected to contain the following components:

A subsystem (or actlvlty) for each major system function.

A subsystem (or IDA) for every major system data requirement.

A subsystem (or server) for every major interaction with external devices or

software outside the system.

A subsystem for every systemwide internal communication requirement.

For a large application such an ideal would be impractical, resulting in an unmanageable number of top

level components. However, these components would be expected to appear during the first

few applications of Stage 3 (Network Decomposition), being grouped into convenient and meaningful

subsystems at higher levels. As a rule of thumb, the number of components at any one level of

decompos¡tion should be not more than lwelve.

Stage 3 Network Decomposit ion

This stage is concerned with the progressive decomposition of a network in terms of lower level

networks and elements and is illustrated diagramatically below. lt is applied initially to each

network template which has resulted from the application of stage 2 (inputs from 2.3, 2.4 and 2.7)

and to any network templates identified as necessary for test¡ng purposes (input from 6.3 in stage

(a)

(b)

(c)

(d)
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6 described later). Subsequently, it is re-applied to every lower level network which results from the

decomposition of a higher level one (inputs from 3.3, 3.4 and 3.7). This process is continued until the

design is expressed purely ¡n terms of elements. The whole stage may be omitted if stage 2 has not

produced any components which are networks.

Stage 3.1 (Network Decomposit¡on)describes a network in terms of ¡ts components.

Stage 3.2 (Hardware Element Requlrements)describes the characterist¡cs of each hardware

element identified at this stage of the design. Hardware components at this and lower levels can be

regarded as embedded in the software design.

Stage 3.3 (Software Template Requlrements) describes the template requirements for

each component of the network design which is to be implemented by a Mascot component.

2 .3
3 .3  2 .4 ,2 .7
6 .3  3 '4 ,3 .7

3.5
Network
Test
Requirements

3 . 1

Network
Decomposition H

3 .6
Network
Test
lnteractions

Software 3'3

Template
Requirements

3 .4
Interactions

I

3 . 7 . 1

DefinitionsHardware 3'2

Element
Requirements 3.7 .2

Access
lnterfaces

3 .7 .3
Composite
Access
Interfaces

3 . 1  3 . 1  5 . 1  3 . 1  4 . 1  6 . 1
4 . 1  4 . 1
5 . 1  5 . 1

Stage 3

6 . 1
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Stage 3.4 (tnteract¡ons) describes the nature and purpose of the lnternal interactions (paths)

between network components.

Stage 3.5 (Network Test Requlrements)describes the way in which the network ¡s to be

tested and identifies a test system..

Stage 3.6 (Network Test lnteract¡ons) describes the particular test data, expected results and

the operator control sequences required to test the network.

Stage 3.7 ( lnternal Interact¡on Elaboration) identif ies the deflnit ions (3.7.1), access

interfaces (3.7.2) and compos¡te access ¡nterfaces (3.7.3) required to describe the internal

paths and the types of the data which flow along them.

Stage 3 carries on the network decomposition process started in stage 2. lt differs from stage 2 only in

that it is totally concerned with internal design decomposition and does not address the problem of

matching the software design to the external environment. This results in two significant differences.

First, the driving input for stage 3 emerges from previous Mascot design work (stage 2, stage 3 and stage

6 (where the decomposition process is being used for test network design)). Second, a formally

defined test system is required to test a stage 3 network; hence the output to stage 6 (note that stage

3.5 will identify the name of the test system for subsequent elaboration in stage 6).

As for stage 2, the result of the initial attempt, at this stage, to identify a component as a subsystem

(to 3.1), or an element (to 5.1) is necessari ly provisional. l t  is also possible that subsequent

decomposition fails because design constraints cannot be met, and in that case lhe current stage must

be repeated.

Stage 4 Element Decomposit ion

Stage 4 is concerned with the decomposition of an actlvity in terms of subelements and, if

necessary, of subelements in terms of lower level subelements. lDAs and servers are precluded

from single thread decomposition in terms of subelements. This form of activ¡ty decomposition is an

alternative to conventional program structuring techniques (for example, local procedures, blocks etc.). lt

has the advantage of producing a software struclure visible in terms of Mascot diagrams and of increasing

the potential for re-usable modules by the linking of separately compiled units. lt allows selective

servicing of the paths which are connected to the enclosing element or subelement and generally

improves testab¡lity.

Stage 4 is illustrated diagramatically below. Stage 4 is applied initially to each element, chosen for

decomposition, which has resulted from the application of stage 2 or stage 3 (inputs from 2.3, 2.4 ,2.7,
3.3, 3.4 and 3.7) and to any similar element identified as necessary for testing purposes (input from 6.3
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¡n stage 6 described later). Subsequently, it may be re-applied to lower levelsubelements which result

from the decomposition of a higher level element or subelement (¡nputs from 4.3, 4.4 and 4.7). This

process is continued untilthe design is expressed purely in terms of slmple subelements. The whole

stage may be omitted if stages 2, 3 and 6 do not produce anyact¡vitles which need to be decomposed.

Stage 4.1 (EIement/Subelement Decomposit ion) describes an element or subelement

¡n terms of subelements.

Stage 4.3 (Template Requi rements)  descr¡bes the template requi rements for  each

componen t .

Stage 4.4 (lnteract¡ons) describes the nature and purpose of the internal interactions, (that is

l inks) between components.
2.3
3.3
4.3
6.3

2 .4 ,2 .7
3 .4 ,3 .7
4 .4 ,4 .7

ElemenU 4.5
Subelement
Test
RequirementsH

4 .1

ElemenV
Subelement
Decomposition

Element/ 4'6

Subelement
Test
lnteractions

4.3
Template
Requirements

4.4
Interactions

4 . 7 . 1

Definitions

4.7.2
Subroot
Interfaces

6 . 1 4 . 1
5 . 1

6 . 14 . 14 . 1  5 . 1
5 . 1

Stage 4

5 - 1 55.1 Method and Use Mascot Version 3.1



Stage 4.5 (Element/Subelement Test Requlrements) describes the way in which the

element or subelement is to be tested.

Stage 4.6 (Element/Subelement Test Interact¡ons)describes the particular test dala, expected

results and the operator control sequences required to test the element or subelement.

Stage 4.7 ( lnteractlon Elaboratlon)identif ies the def¡n¡t¡ons (4.7.1) and subroot Interfaces

(4.7.2) required to describe the internal links and the types of the data which flow along them.

Stage 5 Program Defini t ion

Stage 5 is the programming stage during which the source text for each simple module is produced.

Its diagrammatic representation is:

2 .3
3 .3
4.3
6.3

2 . 4 , 2 . 7
3 . 4 , 3 . 7
4 . 4 , 4 . 7

Stage 5

Slmple templates, produced in any of the previous 3 stages, form the ¡nput to stage 5 (trom 2.8,2.4,

2.7,3.3,3.4,3.7, 4.3,4.4 and 4.7). Further slmple templates, needed for testing purposes, may be
derived from stage 6 (6.3) which is described later.

Stage 5.1 (Program Decompos¡t lon) describes the design of slmple templates in terms of

algorithms and data structures.

Stage 5.5 (Simple Template Test Requirements)descr¡bes the way in which the simpte

template is to be tested.

Stage 5.6 (Slmple Template Test Interactlons) describes the particular test data, expected

results and the operator control sequences required to'test ths¡mple template.

Simple 5.5
Template
Test
Requirements

5 . 1

Program
Decomposition

Simple 5.6
Template
Test
Interactions
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lf du¡ng the program decompostion it is found that further structural decomposition would be desirable

then stage 5 may be abandonned and stage 3 or stage 4 invoked, as appropriate. Thus stage 5

terminates the primary design process as far as Mascot is concerned, although it may result in a

requirement for supporting work on test system design. Any conventional technique for program

design may be used within this stage provided ¡t is used consistently. However, its use should be

confined to the expression of algorithms and data structures within a single module; decomposition in

terms of separately compiled modules is regarded as a stage 4 design action and should use the

appropriate Mascot design feature. lf the functional requirements cannot be met within the constraints

then the previous stage must be re-invoked.

Stage 6 Test System Definition

Stage 6 is concerned with the integration and testing of application software. lts diagrammatic

representation is:

3 .5
4.5
5 .5

3 .6
4.6
5 .6

3 . 1
4 . 1
5 . 1 Staoe 6

Input  to  s tage 6 consis ts  of  the test  requi rements and in teract ions for  networks,

elements/subelements and simple templates, respectively, identif ied in stage 3, stage 4 and

stage 5 (from 3.5, 3.6, 4.5, 4.6, 5.5, and 5.6).

Stage 6.1 (Test System Decomposition) describes the structure of the test system.

Stage 6.3 (Test Template Requirement) describes what each test template, required to

create acomponent specifically identified for test purposes, has to do.

6 .1

Test
System
Decomposition
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Stage 6 is concerned with the first level of test system decomposition. The requirements for

networks, element/subelements and slmple templates identified ¡n stage 6.3 are fed back to

stages 3, 4 and 5, respectively for further decomposition as necessary. Notice that if a standard harness

can be used for testing, and if no special test components are required, then stage 6.3 may be omitted.

Stage 6 designs witlwork entirely in terms of the substage 6 test interac{ions and substage 4/substage 7

operational interactions derived from the previous stages.

Status Prooression

Throughout all six stages of the development the Mascot des¡gn notation is used to record the product of

the design process, and the status progression facilities are used to record progress and to controlthe

use to which the various parts of the design definition may be put. Mascot formality is limited to these

aspects but any other formal techniques for function or data flow definition may be used in conjunction

with Mascot with direct reference to templates, components, Interfaces, paths or llnks in the

design structure.
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5.2  DOCUMENTATION

Introduction

The use of the Mascot method should be supported by a suitably structured approach to the

documentation requirement at each stage in development. Well-structured documentation will support

the system throughout its life-cycle by relating system design to requirements and external constraints,

allowing descriptions to be created and maintained in a recognisable framework and facilitating access to

this information by the wide variety of personnel who need it.

It is not intended in this Handbook to provide prescriptive techniques or standards for documentation,

because there is a wide range of diverse documentation standards to which Mascot systems will be

required to conform. However, it should be recognised that software documentation does not exist in a

vacuum and must be part of the overall documentation strategy. The documentation structure for a

medium-to-large project is inevitably large and complex and involves many inter-dependencies. lt is

essential that this structure is planned at the outset of a project and used by the development team as the

project progresses. Used correctly, a recognised structure will reduce duplication/overlap in

documentation, facilitate access to information, allow consistency checking and localise the effects of

software amendments on documentation.

The followlng points should be taken ¡nto account when planning the documentation structure:

The Mascot method assists in re-usability of software, and the re-usability of

associated documentation is an important consideration. As far as possible,

information which is project-specific should be isolated, in documentation terms,

from re-usable information.

A single template can be used to create several components in a typical Mascot

application, and so information concerning the creation of components should be

separated from the formal software descript ions and documentation of the

template.

The development and target environments for embedded software, for example

tools and hardware configurations, are liable to change in the potentially long life

(say, 20 years) of a typical Mascot application. The documentation should lend

itself to such amendment by separating information describing the environment

from formal software description.

The pdmary aim of documentation is to aid comprehension. Wthout compromising this aim, it is possible
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to use the Mascot module classes as a framework for re-usable documentation. Wherever feasable,

description should be restricted to the scope of the obiect being documented. For example, the

documentation of a template module should avoid reference to the functionality of elements beyond

the lnterfaces which it provides and requires.

The resutt of this approach is documentation which is both abstract and localised in nalure. Although this

achieves the goa! of re-usability, there ¡s a danggr that over-zealous abstraction may lead to

documentation which is disjoint, making it difficult to comprehend overall functionality without reference

to numerous items of documentation. lt can be seen that the goals of comprehensibility and re-usability

are not atways compatible.

As a general rute, the characteristics of a descdption should be similar to those of the object be¡ng

described. lf a module is created for widespread general use then re-usability of documentation is of

paramount ¡mportance. lf a modute has many dependencies on the characteristics of external objects

(say, for efficiency reasons), then the requirements of comprehensibility must take precedence. Most

software is a compromise between the desire for re-usability and the needs of a specific application, and

so engineering judgement is required when determining what form of documentation should be used for

individual modules and module classes.

Template Documentat ion

By way of itlustration of the above, consider the requirements for the documentation of an individual

template. The documentation must describe the functionality of the template and the ¡nterfaces

which it provides and requires (the specification documentation). lf the template is compos¡te, the

documentation must identify the ¡nternal structure of the template in terms of components and their

inter-connectivity (the implementation documentation).

In all cases, the descriptive content of the specification documentation must be detailed, complete and

unambiguous. This is the lowest level in the hierarchy at which this documentation will be presented.

The more difficult aspect of template documentation concerns the level of detail of the implementation

documentation. Clearly, the rat¡onale behind the decomposition within the template must be presented

in full. The level of description given for the components and their ¡nter-connectivity must be carefully

bonsidered.

It would be possible to identify the components and internal interfaces by name only, and refer the

reader to lower level modules whose specification documentation will provide the information on the

functionality of individual items. Whilst this would meet the goal of re-usability, such an approach would

tend to be abstract to the point of obscurity. Alternatively, if detailed descriptions of the means by which

internal components achieve the¡r functions are provided, then this leads to undesirable duplication
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with¡n the documentation hierarchy.

Experience indicates that the preferred approach in most circumstances is to describe in ful! how the

template achieves its required function, and to provide brief descriptions of the components and

their inter-connectivity, referring the reader to lower levels of the documentation hierarchy if more detail

on a particular component is required. This approach allows a reader to assimilate sufficient concise

information to understand how the internal elements of a template achieve the necessary functionality

of that template, without unnecessarily duplicating the specification documentation of the lower level

modu les .

The Mascot method encourages isolation of information by recognising the independent nature of active

and passive elements, Interfaces, def¡nltlons, llbrarles, etc. As far as possible, without losing sight

of the need for comprehensibility, the documentation strategy should follow the same approach.

Control of Documentat ion

ln a project of any reasonable size, a large quantity of documentation must be administered and

controlled. The documentation is the primary method of communicating information about the structure

and status of the system under development to all interested part¡es in the project. As the systêm is

developed and amended, so, too, is its associated documentation. lt is clearly necessary for the

documentation to be in step with the system it describes at all stages. Generally, this can be achieved for

documentation in the form of in-line comment, because this is retained within the module it describes

and is subject to the configuration management and quality control procedures applied to individual

modu les .

Some project documentation is not directly related to a specific class of Mascot module (for example,

requirements, quality reports, design rationale documents). Nonetheless, it is strongly recommended

that all project documentation is held in a machine-readable form under the same configuration

management database as that used to administer software development. Wherever possible,

documentation relating to a specific modute should be held as part of that module. Although this does

not guarantee that documentation will be updated in line with the software, its proximity will encourage

good practice and ease consistency checking.

The configuration management database can be used to create and maintaín a knowledge of the

dependencies between documents and modutes. When a module or document ¡s updated, the

dependency relationships can be used to identify other modules or documents which may be affected

by the change. Status progression is the minimum facility provided by the Mascot database, and will

generally dealwith identifiable Mascot module classes. ln some cases, it may be possible to provide

similar mechanisms fór documents.
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If, for some reason, documentation is not held in a machine-readable form and related in a controlled

fashion to the system being described, procedures must be adapted to provide confidence that

documentation and software will proceed through development in a consistent manner. Configuration

management and quality assurance procedures must be applied to the documentation, even if only by

manualmeans.

Access to Documentat ion

The exisistence of documentation does not in itself guarantee ¡ts accessibility. The sheer extent of

documentation can make it difficult to identify and retdeve precisely that part of the documentation which

is necessary to understand a particular facet of the system and carry out an item of work. The problem of

collating and constraining relevant information is not new, however, and it is important to provide such a

facility if work is to be carñed out efficiently.

The publication of, and adherence to, the overall project documentation structure will assist in the

identification of relevant information. However, in many cases the information needed to build a clear

picture of the context in which a piece of work is to be carried out will be distributed through many

modules. These modules will also contain materialwhich is extraneous to the individual's requirement.

There is a strong case, when employing Mascot, to consider the use of a documentat¡on tool which will

assimilate the specification documentation and implementation documentation of a number of modules

into a single document. This will allow a reader more easily to comprehend the role of a template in the

overall system. The existence of such a tool may reduce the temptation to duplicate documentation at

different levels of the document hierarchy.

The tool would be achievable by identifying (say, by a keyword mechanism) the specification

documentation and the implementation documentation within each module. In order to see more clearly

the role of, say, a subsystem, a user potentially could gather together into a single document:

(a) the implementation documentation of the enclosing subsystem,

the specif icat¡on and implementat¡on documentation of the subsystem under

scrutiny and

(c) the specif ication documentation of the components and lnterfaces which

comprise the subsystem

using the relationships between the modules and the documents established by means of the

configuration management database.

(b)
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Puroose of Documentat ion

There are two major categories of documentation according to its prime purpose: documentation of the

project and documentation of the resultant system. These are now discussed in turn.

Documentation of the Project

Documentation is created and amended throughout the system life-cycle in order to capture and express

the current status as development proceeds. However, it is not sufficient merely to maintain current

status information. The development of documentation through the system life-cycle reflects the design

decisions and rationale which invariably affect and shape the path to the final system. lt is important,

therefore, to capture and maintain the documentation as it existed at various major points in the system's

evolution. lf an 'audit trail'of this form can be created, it will allow analysis of the design process which led

to the complete system. Further, if this information can be allied to quality records, modification records,

etc., then analysis can prove extremely valuable to future projects and can be exceptionally usefulduring

maintenance and support of the system.

In many cases, collation of the information required for this analysis is difficult as it exists in different forms

(some as part of modules in the host system, paper records held by the quality assurance department,

etc.), and resuJts in an incomplete and disjoint record. The use of a suitable configuration management

tool (possibly allied to the Mascot database) incorporating design change control and quality assurance

recording mechanisms will assist in collating information in a manner which is coherent and provides a

convenient form of reference.

Documentation of the System

The descriptive information required to support the resultant system incorporates not only the

documentation of the templates and associated modules used to create the network

components, but also the documentation of the testing mechanisms used to verify functionality. The

relationship between documentation of these areas requires careful organisation. There is not

necessarily a one-to-one correspondence between test systems and templates. However, there

must be a mechanism for relating the template documents to the test system documentation,

preferably one which does not adversely affect the re-useability of the documents.

The documentation of a template may refer to a test system created to test that template. lt should

not refer to test systems which test sub-networks in which the template is used. Test system

documentation should refer to all componentsltemplates ¡n the sub-network under test. The result

is that the test documentation structure reflects the network structure and the documentation of the

sub-networks should refer to the test systems used to verify functionality.
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General Documentat ion Requirements for Module Classes

There are generalised requirements for the documentation of all modules in a Mascot system, as

outlined below.

The following categories should be considered in the documentation of all modules, although some

categories may not be applicable directly to a particular module class:

Language dependencies

Environment dependencies

Machine dependencies

Code characteristics (eg conditional compilation, assembler inserts)

Test status

Quality assurarìce status

Test mechanism

For each module under development, the fol lowing nnust be available, either embedded in

documentation or controlled by tools:

Version number

Modification audit trail

Mascot database status

All modules must refer to, or include in-line, the requirement which they are designed to meet.
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5.3 SYSTEM TESTING

Introduct ion

During the design and development stages of a project there are several techniques which have

traditionally been used to establish confidence in the software being created and to demonstrate that it

meets its requirements. These include formal techniques for proving correctness, design reviews, in

which, among other activities (see Section 5.1), program source text is subjected to the collective

scrutiny of the project team, and testing, in which the behaviour of the corresponding executable code is

systematically exercised through the use of test data. Testing is, and is likely to remain, the most widely

used of these techniques. This is partly because of its wider scope including , as it does, the effects of

production tools, operating system, hardware and external environment, and partly on account of the

greater psychological assurance whích it engenders ('seeing is believing'). lt is also, at the present time,

the only practical method.

Mascot, in common with other software development methods, contains a graphical form of design

representation which can be exploited to advantage in carrying out a design review. lt is in the sphere of

testing, however, that Mascot provides significantly greater assistance than most other methods. In
particular the modularity scheme of Mascot, together with the unique template-component model,

cÆnst¡tutes a powerful support mechanism for testing. In addition, the ability to supply a separate system

template for each test network provides a sound basis for the configuration management of testing.

The template/component model makes it possible to create test systems which can co-exist with

the application systems. This greatly simplifies the handling of regression testing during maintenance.

Provided that suitable run-time environments are available, and that the application templates contain
no hardware specific features, the test networks may be executed on either host or target systems ( see

Section 3.3).

ln this sect¡on the general considerations for the testing of Mascot systems are discussed and a specific
testing strategy is proposed.

Genera l  Considerat ions

The testing of any substantial piece of software, from a large sequent¡al program to a full blown system
involving concurrency on a large scale, needs to be carried out in a modular fashion. There are two widely
recognised approaches to this known respectively as top-down and bottom-up.

In the top-down approach the highest level unit is produced first and 'stubs' are created to repface the
units at the next lower level. These stubs are sections of program which normally perform some simple
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act¡ons such as signalling the fact that they have been evoked and reporting the values of any input data

with which they have been supplied. ln some cases, however, a stub may partially emulate the actions of

the un¡t in whose place it stands. Testing involves examining the pattern of invocation of the lower level

entities. Stubs are then progressively replaced by the corresponding application units accompanied,

where necessary, by a further level of stubs. The great merit of this approach is that testing and

integration proceeds in a series oI roughly equal steps. The last step is no more significant in itself than

any of the others and no more likely to reveal any fundamental defect. Also application units can be

constructed using their stubs as a starting point.

ln the bottom-up approach it is the lowest level units which are produced first. Specially written drivers are

then used to test them, first individually, and then in larger and larger groups until the entire application

has been built. New drivers are needed at each stage and discarded after use. The final step in this

process is highly significant as it may show that the overall structure is incorrect. Desp¡te these

disadvantages the bottom-up approach is widely used in practice and is considered by many

programmers to be the natural way to test software.

While a strong case can be made out, at least in theory, for application of the top-down approach to

test¡ng sequential programs, it is more difficult to see how to apply it to the networks of concurrent

processes required to solve real-time problems. ln Mascot, therefore, its application is likely to be limited

to the testing of the implementation details of simple act¡v¡t¡es, roots, subroots and libraries. The

testing of Mascot networks is likely to be carried out bottom-up.

In devising a general strategy for test¡ng Mascot modules it is necessary to cater for three groups:

speclf¡catlons, slmple templates and composlte templates. Since speclf lcatlons have no

direct realisation in the executable software there is no direct testing associated with them.

Simple templates const¡tute the algorithmic building blocks of the system, and the testing of these

templates is primarily aimed at detecting algorithmic and programming errors. For this purpose a m¡xture

of 'black box'test data, based on the design specification, and 'white box'test data based on the actual

design is appropriate. At the very least these latter data should exercise every sub-condition of each

conditional expression so as to ensure that every statement in the program is executed at least once.

Composite templates are groupings of components derived from slmple and compos¡te

templates. The primary aim in testing them is to detect errors of communication between the

components and to verify the real-time behaviour.

An Example Testing Strategy

This section describes a specific testing strategy developed from one that has been used successfully in

several proiects which employed an earlier version of Mascot. lt supports testing of both slmple and
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composlte templates and serves here as an example of recommended practíce. lt was designed to

meet the following major requirements :

1. The test strategy and supporting tools should support both formal (that is Quality Assurance) and

informal (that is development) testing in a consistent and reproducible manner.

2. The production and maintenance of the test data should require a minimum of specialtools.

3. The tools should support interactlve diagnosis with data entered from the terminal and results

displayed at the terminal.

4. To facilitate regression test¡ng, the performance of tests and the interpretation of resutts should

require a minimum of manual intervention.

5. Since in many cases the target hardware does not become available until late in the software
production cycle, it should be possible to perform the majority of the testing on the host computer.

The strategy is based on the concept of a test script containing, in a machine-readable form, the

directives necessary to initialise a test system, data which are to be presented to the unit under test and
results which are to be expected if the unit is correct. A test script is prepared in a textualform which may

be manipulated by means of standard text editors. lf used directly in this form, execution time is taken up,
during the test, in performing the necessary type conversions. An alternative is to employ special tools to
convert the script, separately, to a binary form but this was not adopted in view of general requirement 3
above.

A test script may be interpreted by a standard network of test-administering components, supported

by application specific type conversion components. These two sets of components, together with
the unít under test, form a test system.

The precise nature of the conversion components is dictated by the communication requirements of

the unit under test. For testing lDAs, servers and tibraries an act¡v¡ty is the natural choice since such

components need to be driven. A root can most readily be used to convert data for a subroot which

is under test, wh¡le for testing roots and activlt les an IDA may be chosen as the conversion

component .

The role of the standard test components ¡s to prov¡de textual information, from a test script, to the

conversion components. The latter convert this information to a suitable form and transm¡t it to the unit

under test. This process is reversed in handling the responses. These are taken from the un¡t under test
by the conversion components, transformed into text and passed to the standard test components
which generate the results.
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Thus, each conversion component refers, in general, to three Interfaces describing, respectively,

text input, text output and communication with the unit under test. The textual ¡nterfaces are usually

ports which may be connected to wlndows of the standard test components. One or other of the

text Interfaces may be omitted in some cases. The Interface to the unit under test may be an access

Interface, a subroot Interface or a llbrary Interface. The Mascot monitoring facilities may be used,

during testing, to provide evidence of completness.

An example of a test network, in which the conversion components are act¡v¡tles, is shown on the

following page. Subsystems have been shaded in this diagram in order to improve readability.

Operation of the Example Test Network

Existing operating facilities are used to assign the input and output (files) to the servers input_seruer

and output_server. When the system is STARTed, each of the conversion actlvlties declares its

identity to the IDA fexf and receives in return a unique key. The relevant arrowheads on the network

connections through whích this initialising transaction takes place are omitted from the diagram so as to

avoid unnecessary complication. Subsequently, messages directed to a particular conversion act¡v¡ty

can be obtained by the actlvlty, from the lDA, by quoting the appropriate identifying key.

The command interpreter act¡v¡ty, cl, reads a command line from input_server and copies it direcily

lo output_seruer. The purpose of logging the input text together with the results of the test in this way

is to allow the sequence of events during the test to be deduced from inspection of the output file. This

has been found lo work well in practice even when qu¡te large portions of the final network are being

tested.

The input line is then examined by the command interpreter to see if it contains a command which can
immediately be executed and, if so, the required action is performed. Commands whose execution may

be initiated by the command interpreter include Execution Control commands, Monitoring Control

commmands and special commands to, for example, control the timing of events in the network. lf the

command line cannot be dealt with in this way, it is passed to IDA fexf where it becomes available to the

conversion actlv¡ty whose ident¡ty it contains. An error message is generated if the line contains no

recognisable iOeniity.

The unit under test in this example may be any passive network fragment, that is one possessing only

wlndows on its boundary. Messages received by conversion act¡v¡t¡es from text are converted to a

suitable form and passed to the appropriate access mechanism of the unit under test. Any response is

made available at another wlndow for use by a converter which processes it for output.

Thus, to handle output, the converters call the appropriate access mechanism, translate the response

into textual form and pass the result to output_seruer. Under some circumstances it is necessary for

output conversion to be controlled from the test script. Hence the connection of all converters in the
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diagram to the IDA fexf . The need for this most @mmonly occurs when testing a pool where the input

line may contain a command to read the pool contents. However, another possibility is that the input line

contains a copy of the expected results which the converter handling output can compare with the actual

resulls and so signalwhether the test has been passed or failed.
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unit under test

text_chan
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DESIGN REPRESENTATION LANGUAGE SYNTAX

The syntax of the Mascot design representation language is included here for'reference purposes. lt is

presented in two equivalent forms. A set of syntax diagrams, as used for description lhioughout the body

of the Handbook, appears f irst together w¡th an index. These diagrams fol low the conventions

established by Wirth in connection with the Pascal programming language. All valid construcls may be

generated by tracing all possible paths through each diagram, as indicated by the arrow heads, from the

top left untilthe path terminates on the right. Loops may be repeated as often as required. At each box a

basic symbol of the language is generated. Where the box has rounded corners or is circular, the symbol

is literally that contained in the box. This has been further emphasised in the former case by the addition

of background shading. A rectangular box is a reference to another syntax diagram.

The diagrams are complete, in Mascot terms, in that they include all the non mandatory features. They are

incomplete in the sense that they c¡ntain a number of undefined symbols whose definition is dependent

on the choice of implementation language. Such undefined symbols are indicated by means of a'*' near

the top righthand corner of the syntax box. A second group of symbols, for which no defining diagram is

included, are marked with a '$'. These are all identifiers; they appear under a variety of names so as to

incorporate some semantic information. Where a syntax box is marked with 'An', the corresponding

definition diagram appears on page'n' of the appendix. Where a box is unmarked it represents a symbol

which is defined on the same page on which it is used.

The design language syntax is then presented ¡n a metalanguage based on Bachus-Naur notation. In this

form it is made specific to the use of Pascal as the implementation language. All terminal construct names

are explicitly connected to the Pascal syntax definition. The order and organisation of presentation is

such as to facilitate reference to the subsection, in the body of the Handbook, where each construct is

discussed. lt ís followed by an alphabetically ordered list of terms which also contains appropriate

subsection references. lt should be noted that for B-N notation, as compared with the equivalent syntax

diagrams, it has been necessary to introduce additional syntactic categories. Also, category names which

in the diagrams have been shortened so as to save space, are given in full in B-N form (for example
'acc_int_specjart' becomes'access-interf ace-specif icationiart').
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Index to Syntax Diagrams

Syntax Diagrams

Bachus - Naur Form of Syntax

Syntax Index to Handbook

A-3

A-7

A-28

A-37
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DTAGRAMMATIC FORM OF qYNTAX

lndex

svntax element

access_equ ivale nce_li st

access ínterface

acc_i nt_array_descri p

acc_int_detail_part

acc_int_namejart

acc_int_ref_list

acc_int_spec_part

act_component_class

act_component_part

act_connection_spec

act_impJart

activity

act name_pan

act_specjart

co m p_acc_i n t_s pec_pa rt

comp_act_imp_part

component_class

component_part

connection_spec

const_spec_list

page number

A-22

A-7

A-9

A-7

A-7

A-9

A-7

A-16

A-16

A-17

A-14

A-14

A-14

A-14

A-27

A-16

A - 1 1

A - 1 1

A - 1 1

A-24
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def_detailjart

definition

def_name_part

defSpecjart

equivalence_list

ida

ida_imp_part

ida_name_part

ida_specjart

lib_int_namejart

lib_int_spec_part

library

library_imp_pan

library interface

library_name_part

library_spec

library_specaart

network_impjart

portJcort_connect

port_spec

port_window_connect

root

root_namejart

root_spec_part

server

server_imp_part

A-8

A-8

A-8

A-8

A-12

A-21

A-21

A-21

A-21

A-25

A-25

A-26

A-26

A-25

A-26

A-27

A-26

A-10

A-12

A-9

412

A - 1 8

A - 1 8

A - 1 8

A-23

A-23
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server_nameJcart

si m p I e_acc_i nt_s pecaart

simple_actjmp_part

simple_ida_imp_part

si m ple_se rve 1i m p_part

si m ple_su broot_i mp_part

sub-element_l ink

sub_int_name_part

subroot

subroot_imp_part

subroot_interface

subroot_namejart

subroot_specjart

subsys_namejart

subsys_spec_part

subsystem

system

system_imp_part

system_name_part

system_specjad

temp_const_ident

temp_const_spec

window_spec

with_section

A-23

A-7

A - 1 5

A-22

A-23

A-20

A-17

A - 1 8

A - 1 9

A - 1 9

A - 1 8

A - 1 9

A - 1 9

A - 1 0

A - 1 0

4 , 1 0

A - 1 3

A - 1 3

A - 1 3

A - 1 3

A-24

A-24

A-9

A-8
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acc_¡nt_name_part

access_interface

acc_int_name part

ffi

acc_int-spec part

acc int_detaiþart

s i m p I e_acc_¡ nt_s p ec_pa rt

co m p_acc_i nt_s pe c_pa rt

si mple_acc_int_spec part

acc_int_detailjart

read_o n ly_co nst_specs

proc_headings
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with_section

definition

def name oart

def soec oart

def detailJ¡art

with_section

def_detail_part
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port spec

window spec

acc_int_ref-list

acc-int array-descrip

Mascot Version 3.1

acc_int_ref

acc_i nt_array_d e scri p

simple_type

acc int ref
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subsvstem

subsys_name_part

subsys_nameJcart

subsys specJart

network_impJart

Neither a composite IDA nor a composite server may refer to a composite
access interface in its USES list.

Appendix A Syntax

temp_const_spec

comp_acc_int_ref

equivalence_list
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component_class identifier

component_paft

connection sDec

component_class

SUBSYSTEM

CHANNEL

port_window_connect

portjort_connect
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port window connect

equivalence_list

component_ident window_ref

portJcort_connect

boundary_port_ref

boundary_window_ref component_ident

window ref

boundaryjort_ref
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svstem

system_nameJart

system specJsart

system_imp part

temp_const_spec

template_ref

componentjart
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activitv

act_impjart

act name oart

act_specJcart

temp_const_spec

act_impJart

simple_act_imp_part

comp_act_imp_part
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simple actjmp_part
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comp_act_¡mp_part

act_component-part

act_component_class identi f ier

act_connection_spec

act component_class
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temp_const ident

sub_element_link

act_çonnection spec

sub_element-link

out_link_identifier
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root_name_part

simple_act_imp_part

root name oart

root spec part

identi f ierNEEDS ] subroot int ref

subroot_interface

sub_int_namejart

i m p le_acc_i nt_specjart

sub int_nameJcart
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subroot

subroot_name_part

subroot_spec_part

subroot_imp_part

subroot name part

subroot soec oart

subroot_imp part

A composite subroot may not contain a component derived from a root template
but must contain a root component derived from a subroot temptate. This latter
component gives the interface to the composite template.

subroot int ref

si m p I e_s u b ro ot_i m p_part

comp_act_imp_part
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declaration_part
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ida_name_part

ida_imp_part

ida name_part

temp_const_spec

ida_specJcart

ida impJcart

A composite IDA may contain only

Appendix A Syntax

lDA,  channe l ,  poo l

A -  2 1

and l ibrary components.

simple_ida_imp_part

network_imp_part
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simple_idajmp_part

- - - - - - l  r r r r r  r_evv l rv r  I  
I-

427

declarationjart

\ ¡ l ^ ^ ^ ^ ^ ô  ^ ^ r , i . , ^ t ^ - ^ ^  l ¡ : ;  l  )

acce ss_equiva le n ceJist

internal_identifier
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server

server_name_part

server_imp_part

server_name part

A composite server must contain at least one server component and may also
contain lDA, channel,  pool and l ibrary components.

simple server imp part

A8

427
-l
I  l i h r a n r  ô ^ ^ ^  I

server_dec_part

-
\ L l  an ¡oeê  ô ¡ . r r ¡ i r r a l anaa  l i e l

422-1

serveLimp_part

si m p le_se rve r_i mp_part
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temp const spec

const_spec_list$"cqr\'e $l t

const_spec_list

implicit_ typeidenti f ier

oFiintegerJype

const_identifier

const_identifier
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lib_int_name_part

lib_int_spec_part

librarv interface

lib_int_specJcart

lib_int_nameJcart

proc_headings
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l ibrarv

library_name_part

library_imp_part

líbrary name part

library_spec part

library impJcart

Variables may not be declared in a library implementation part.

temp_const_spec

library_int_ref

library_spec

declaration_part
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library int_ref

library_spec

comp_acc_int specJcart

COMPRISES
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BACHUS . NAUR FORM OF SYNTAX

The form of Bachus Naur syntax used is as follows :-

a) Normal font lower case words, some containing embedded underlines, are used to

denote syntactic categories.

b) Bold font words and symbols are used to denote Mascot reserved words and symbols.

c) Underlined words are used to reference Pascal constructs. For further expansion of

these constructs referto a Pascalsyntax definition.

d) ltalicised prefix words are used to convey semantic qualification of the following

non-italic root. For example, if an identifier is required which must be the name of a

template, the following compound name is used:

template_ßløIliil

e) Square brackets enciose optional items. (NB. Bold square brackets occur in the syntax

definition. These refer to symbols in the Mascot design language.)

0 Braces enclose a repeated item. The ¡tem may appear zero or more times.

g) A vertical bar separates alternatives. They are always used to separate alternatives

for the construct being defined, never as alternatives for part of a construct.

Section 2.3

access_i nte rf ace : := acce ss_i nte dace_n ame_pa rt ;

access_i nte rf ace_specif icationjart end .

access_i nterf ace_nameSart r := access ¡ nte rf ace ide ntif i er

simple_accessj nteface_specificationjart : :=

[with_section] access_interface_deta¡lJrart

Appendix A Syntax A -  2 8 Mascot Version 3.1



with_section ::=

wlth d ef i nittbnjdenllller l, def i n ition_ßLilìú:sù i

procedure_orJu nctio n_h eadi ng r := plegg.dufg-hgíldillg I f u nction h e adinq

definition_unit ::=

definition_namelcart ; definition_specificationpart end .

definition_namepart ::= deflnltlon identifier

def inition_specif ication_pârt : :=

[with_section] definition_detaiþart

definition_detail3art ::=

constant definilion part

| [constant definition part]type definition oart

port_specification ::= requ¡res access interface_declaration

{ access_i nterf ace_d eclarati on}

access_i nterf ace_declaration : :=

identifier list : access interface_definition ;

window_specification : := provldes access i nterf ace_declaration

{access_i nterface_declaration}

Par t ia l ly  in  Sect ion 2.3.  fu l ly  in  Sect ion 2.13

acce ss_i nt e rf ace_d ef i n itio n : : = acc e s s_i n t erfaceiC!fllflel

I access_inte rf ace_array . description

Part ial ly in Section 2.3. ful ly in Section 2.14

access_interface specification_part ::=

simple_access i nte¡f ace_specif ication__¡oart

I composite_access_i nterface_specif icationpart
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Partially in Section 2.3. fully in Section 2.15

access_interf ace_detaiþart : :=

I read_o nly_constant_specif ications]

| [read_only_constant_specifications] variable_specifications

| [read_only_constant_specifications] [variable_specifications]
procedure_orjunction_heading {procedure_orJunction_heading}

Section 2.4

subsystem : := subsystem_namejart ; subsystem_specificationpart

network_implementationJart end .

subsystem_namejart ::= subsystem identifier

network_implementat¡o npart : :=

uses template_definition {, template_definition} ;

component {component} [equivalence {; equivalence}]

component : := Gorrporìênt_class identifier = te mplate_rc[4ffi¡

[connection_specif ication] ;

component_class ::= actlvlty lsubsystem lserver I

I  lda lchannel I pool l l lbrary

connect¡on_specification ;;= ( connection {, connection} )

po rt-wi ndow-co n n ect : : = porfjdg11liflel = c o m p o n êr,fjd e nlifiel

. window_ßJ¡ffit

system : := system_name__.part ; system specification_¡rart

system_implementation3art end .

system_namejart ::= systêm identifier

syst e m_i mp le me ntat io njâ d : : = u se s f ernpla f e_jd-e nlifigl

{, femplafejglgllfied ; component {component}
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Partially in Section 2.4. fully in Section 2.8

subsystem_specificationlcart ::= [template_constant_definition]

[window_specif ication] lpo rt_specif icatio n]

connection ::= template_constantjdentíty

I port_wi ndow_co nnect' I portJrort_connect

Part ial ly in Section 2.4. ful ly in Section 2.14

template_defi nition ::= co mpositê_acce ss_i nte rf ace_jdgßillgl

I template_Nløli!:gt

po rtJco rt_co n n ect : : = porfjde$ifiet = po rt_d ef i niti o n

po rt_def i niti o rì i r= bo u n d a ryjorfjde.nliflef

I co mpo s ite_porfjdediliel . comprsesjçlgl!![9¡

equ ivale nce : := wi ndow_wi ndow_equivalence I wi ndowlcort_equivalence

window_window_equivalence ::= window_declaration = cotrrpofienf_jdg.nliflgf

. window_ß)ÐItie!

windowSo rt_equ ivale nce : := w¡ ndow_declarati 9¡ = po rt_def i nitio n

wi ndow_d ec la rat io n ;:= b o u n d a ry_w i n d o w_ßlgÃfilnl

I co mposite_w i ndow_ßlçntrjlsu. comprses ide¡tifier

Section 2.5

activity : := activity_namejart ; activity_specif icationlrart

activity_implementationpart end .

activity_nameJcart ::= act¡v¡ty identifier

Partially in Section 2.5. fully in Section 2.8

activity_specificationSârt I t= [template_constant_specif ication]

Iport_specification]
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Partially in Section 2.5. fully in Sectíon 2.9

simple_activity_implementation_part : := [with_section]

flibrary_specification] [declaration partl

compound statement

Partially in Section 2.5. fully in Section 2.12

activity_implementation_pârt I := simple_activity_implementation_part

I composite_activity_implementation¡cart

Section 2.6

ida_namepart ::= ida_class identifier

ida_class ::= channel llda I pool

access_equivalence : := renaming_equivalence I simple_equivalence

renaming_equivalence : :=

w i ndow_ßlg¡ültg¡ . acc ess_i nte rf ace_d ect arati o n_ß)îúilltet
= rêrìâffiêC_declaration

renamed_declaration ::=

i nte r n al_d ecl a rati o n_klgttlÍtgÍ

I porljclentjfier . po rt_d ec laratio n_k)ilüiller

s i mp le_eq u ivale nce ::= w i n do w_jdilIlJpÍ = porfjde¡lllle¡

Paftially in Section 2.6. fully in Section 2.8

ida_specif ication__.¡rart ; ;= [template_constant_specif ication]

window_specif icatio n [port_specif icatio n]

Partially in Section 2.6. fully in Section 2.9

ida ::= ida_namelcart ; ida_specificationpart

ida_implementationlrart end .
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si mple_ida_i mpleme ntation__.¡cart : := [with section]

flibrary_specificationl declaration part

[access_equivalence {; access_equivalence}]

Partially in Section 2.6. fully in Section 2.10

ida_implementationpart : := simple_ida_implementation_part

I netwo rk_i mpleme ntationJcart

Section 2.7

server_namejart r i= sêt'vêt identif ier

Partially in Section 2.7. fully in Section 2.9

server i i= sêrvêf_fìamejart ; ida_specif icationja rt

server_implementationjart end .

si mple_server_i mplementatio njart : := lwith section]

[¡brary_specification] declaration parl

[access_equivalence { ; access_equivalence}]

servelimplementationjart ::= simple_server_implementationjart

I netwo rk_i mpleme ntation-.¡cart

Section 2.8

system_specif icatio nSart : := [te mplate_co nstant_specif icatio n]

template_constant_specif ication : :=

constant template_constant_group {template_constant_group}

template_constant group ::= identifier list :

larray I Integer {, Integer } ] of I standard scatar tvpe

template_constant_identity : :=

te mpl ate_consfanfjçlentilie[ = template_constant_def i nition
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template_constant_def inition : :=

( constant {, constant} )

I constant

lconsfanf identifier

Section 2.9

library_interfâcê i i= library_interf ace_namejart ;

library_interface_specif icationjart end .

lib rary_interf ace_namejart : := | lbrary Interface ide ntif ie r

library_interf ace_specif icationlrart : := lwith sectionl

procedure_orjunction_heading {procedure_orjunction_heading}

library : := library_namejart ; library_specif icationpart

library_implementat¡onjart end .

library_name_part : := l¡brary identifier

library_specif icationlcart : := ltemplate_constant_specif ication]

g f ves I i b r a ry_i nt e rf acejdenlffjel

l, I ib rary_i nterfacejClenlifjet) ;

library_implementation__.¡rart : := [with_section] [ibrary_specif ication]

I ibrary_decl arat ive3art

library_declarativepart : := @

[type definítion part] procedure and function declaration part

I ib rary_spec if icat io n : := ¡ ¡b ra ry I i b r a ry_i nt e rt acejdedÍie¡

l, I ib rary_i nt erfacejs!øtjfied ;

Sect ion 2.12

composite_activity_impleme nt¡on--¡rart ::=

u ses te mplate_def in it io n l, te mp I atejdettjlief) ;

actívity_compo nentjart {activity_componentjart}
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activity_compo nentiart : := activity-compo nent-class identif ie r

: te mplate-ßlgIlfrH Iactivity-connection-specification] ;

activity_component_class li= loot I subroot lllbrary

activity_co nnection_specif icatio n : := ( activity-co nnection

{, activity-connection} )

activity_co nnectio n : := template-co nstant-identity

I sub_element_link I portiort_connect

sub_e le ment_li nk : := o ut_li nk-yþ¡¡¡i!þ¡ = subroof idenlifier

root ::= root_name_part ; root_specificationjart

simple_activity_implementation-1cart end .

root_namelcart ::= root identifier

root_specif icationlcart ; ;= [activity_specification¡art]

Ineeds_list]

needs_list ::= needs needed intedace {needed-interface}

needed interface ::=

identif i e r li st : su b root_i nte rf ace_ß)ilii!:9t i

subroot_i nterf ace : := subrootj nte rf ace_name_¡cart ;

si mple_access_i nte rf ace_specif icat¡o nJart end .

subrootjnterface_namejart ::= subroot lnterface identifier

subroot : := subroot_name_part ; subroot_specificationlrart

subroot_implementationlcart end .

subroot_name_part ::= subroot idenlifier

subrool_specif ication3art : := activity_specif icationlra rt

g ives s u b ro o t_i n terface*içløli[el ; I n e ed s_li st]

subrootjmplementationjart : := simple_subroot_implementationlrart

I composite_activity_implementation__.¡cart
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simple_subroot_implementationpa¡¡ ;;= [with_section]

[ibrary_specification] declaration part

Section 2.13

access_interf ace_array_description : :=

array I simple type {, simple type} ] of

a c c e s s _i n t e rt ac e _ßJe,ntiltpl

Section 2.14

compos¡te_access_interf ace_specif icationlrart : :=

comprlses comprise_declaration {comprise_declaration}

comprise_declaration ::=

identifier list : access_inte rface_y)gffigy ;

Sect ion 2.15

read_only_constant_specif ications : :=

pararneter çr:oup {parameter group}

variable_specif ications : :=

var parameter group {parameter group}

Appendix B

mascot_3_u nit : := def ¡ nition_u nit | ¡ nterf ace_unit I template_u nít

i nte rf ace_u nit : := access_i nterf ace I subroot_interf ace

I library_interface

template_unit ::= system I subsystem I activity I server I ida I root

I subroot llibrary
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SYNTAX INDEX

In the list given betow, each syntactic category is followed by the section where it is defined. In addition,

each syntactic category is followed by the names of other categories in whose definition it appears. An

ellipsis (...) ¡s used when the syntactic category is or can be a reserved word or symbol. All uses of

parentheses are combined in the form "0". The italicised prefixes used with some terms are deleted here.

access

acce ss_¡ nte lace_nameSart

access_equivalence

simple ida_implementationlrart

si mple_serve r_i mple mentationlcart

access_interface

interface

access_i nterf ace_array_descri ptio n

access_i nte rf ace_d ef i nitio n

acce ss_¡ nterf ace_declaratio n

port_specifcation

wi rdo'v_specification

access_¡nterf ace_def i nition

access_i nterf ace_declaratio n

access_i nterf ace_detai þart
si mple_access_i nte rf ace_specif icatio nlrart

access i ntelace_nameJoart

access_intelace

access_interf ace_specif icat¡o njart

access_inte¡face

unit

Z,.S

2 .6

2 .6 ,2 -9

2 . 7 , 2 . 9

2 .3

Appendix

2 . 1 3

2 .3 ,  2 .13

2 .3

2 .3

2 .3

2 . 3 , 2 . 1 3

2 .3

2 .3 ,  2 .15

2 . 3

2 .3

2 .3

2 . 3 , 2 . 1 4

2 .3
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activity

activíty_nameJart

component_class

template_unit

2 . 5 , . . .

2 .5

2.4

Appendíx B

2 . 1 2

2 . 1 2

2 . 1 2

2 . 1 2

2 . 1 2

2 . 1 2

2 . 1 2

2 . 1 2

2 . 5 , 2 . 1 2

2.5

2.5

2.5

2 . 5 , 2 . 9

2.5

2 . 1 2

2 . 1 2

2 . 1 3

2 .8

2 .6

2.4

2 .4

2 .4

2.4

, fl í)ír

{
acti vity_compo n e nt_class

activity_compo ne ntJart

activity_co mpo ne ntlrart

composite_act¡v¡ty_imple mentation_¡cart

activity_connection

activity_con nection_specif ication

act¡vity_co nnection_specif icatio n

act ivity_compo ne ntJca rt

activity_i mp le me ntatio nlcart

activity

activity_nameJcart

activity

activity_specif i catio n__.¡cart

act¡vity

root_spec¡f icatio nJcart

su broot_specif icationlcart

afiay

access_i nte rf ace_array_descriptio n
te mplate_co nstant_g roup

channel

ida_class

component_class

component

n etwo rk_i mpl e me nt atio nJart

system_¡rnplementationpart
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component_class

component

co m po s ¡te_acce ss_¡nterf ace_specif icatio n3a rt

access_inte rf ace_specif ication_.¡rart

composite activity_implementationjart

act ivity_implementat io njart

subroot_i mple me ntation_part

compound_statement

s imple_activity_i mple mentation_part

comprises

composite_access_interf ace_specif icationlcart

comprise_declaration

co mpos ite_acces s_i nte rf ace_specif icatio n_¡oart

connection

connect b n_specif icat io n

con nection_specif iætion

component

constant

te mplate_constant_def i n itio n

template_co nstant_specif ication

co nstant_def i n itio nlcart

def i n ition_detailJ¡art

I ibrary_declarat ivejart

2 .4

2.4

2 . 1 4

2 . 3 , 2 . 1 4

2 . 1 2

2 . 5 , 2 . 1 2

2 . 1 2

Pascal

2 .5 ,2 .9

2 . 1 4

2 . 1 4

2 . 1 4

2 .4 ,2 .8 ,  , . .

2 .4

2.4

2.4

Pascal, ...

2 .8

2 .8

Pascal

2 .3

2.9
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declaration-1rart

simple_activity_i rnple mentation1rart

si mp le_i da_i mple mentation_part

simple_serve limplementat¡onJcart
si mple_su broo!_implementationJart

definition

defirûtion_name¡rad

definition_detaiþart

def i nition_specif icatio nlcart

definttion_urit

mascot_3_unit

definition_narne¡art

definition_unit

def i n¡tio n_specif icatio nlcart

definition_urüt

end

access_interface

activity

definitbn_urit

ida

library

library_interface

root

server

subroot

subroot_interface

subsystem

system

equivalence

netwo rk_¡ mple me ntatio nJrart

function_heading

p rocedu re_o rJu nctio n_h eadi ng

Appendix A Syntax

Pascal

2 . 5 , 2 . 9

2 . 6 , 2 . 9

2 . 7 , 2 . 9

2 . 1 2

2.3

2 .3

2.3

2 .3

Appendix

2 .3

2.3

2.3

23

2 .3

2.5

2 .3

2 . 6 , 2 . 9

2 .9

2 .9

2 . 1 2

2 . 7 , 2 . 9

2 . 1 2

2 . 1 2

2 .4

2.4

2 . 4 , 2 . 1 4

2 .4

Pascal

2.3
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g¡ves

I ibrary_specif icat io nlrart

su broot_specif icat io n_¡a rt

ida

component_class

ida_class

template_unit

ida_class

ida_namejart

id a_impl eme ntatio nJrart

ida

ida_name__.¡rart

ida

ida_specif icat io nlrart

ida

server

identifier

access_inte rf ace_array_descriptio n

access ir¡terf ace_def inition

access_i nte Íace_namejart

act iv ity_co mpo ne ntJca rt

activity_namejart

component

composite_activity_implementation lrart
comprise_declaration

definition_narneJart

ida_namelrart

I ibrary_inte rf ace_nameja n

library_nameJart

library_specif ication

I ibrary_specif icat ionlcart

needed_interf ace

port_definition

portjort_connect

poft_w¡ndow_conned

Appendix A Syntax

2.9

2 . 1 2

2 .6 ,2 .9 ,  . . .

2 .4

2 .6

Appendix B

2 .6

2 .6

2.6,2. ' | '0

2 . 6 , 2 . 9

2 .6

2 . 6 , 2 . 9

2 . 6 , 2 . 9

2 . 6 , 2 . 9

2 . 7 , 2 . 9

Pascal

2 " 1 3

2 . 3 , 2 . 1 3

2.3

2 . 1 2

2 .5

2 .4

2 . 1 . 1 2

2 . 1 4

2 .3

2 . 6

2 .9

2 .9

2 .9

2 .9

2 . 1 2

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2 .4
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renamed_declarat¡on

renaming_equ¡valence

root_nameJcart

server_namejaft

simple_equivalence

sub_element_link

su broot_i nte rf ace_n ameJcart

subroot_name_part

su broot_spec¡f ¡cat¡onJart

subsystem_nameSart

syste m_inp le nÞ ntat'to njaf t

system_nameJcad

te mplate_co nstant_def i nition

te mplate_co nstant_identity

template_definition

window_declaration

window_window_equ ivalence

with_section

identifier_list

access_interf ace_declaration

comprise_declaration

needed_interf ace

t e mp I ate_co nst a nt_g rou p

integer

t e mp late_co n st ant_g ro u p

interface

access_i nte rf ace_name_pafi

I ibra ry_i nte rf ace_n ame¡rart

su broot_inte rf ace_namejart

interface_unit

mascot 3 unit

2 .6

2 , 6  j

2 . 1 2

2.7

2.6

2 . 1 2

2 . 1 2

2 . 1 2

2 . 1 2

2.4

2.4

2.4

2.8

2 .8

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2.3

Pascal

2.3

2 . 1 4

2 . 1 2

2.8

2 .8

Z:.5

2 .9

2 . 1 2

Appendix B

Appendix B
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library

acti vity_co mponent_clas s

component_class

library_i nterf ace_name_¡oa rt

library_namelrart

library_specif ication

template_unit

li brary_dec larativepart

libra ry_i mpl e me ntatio nlca rt

li b rary_i mpleme ntatio n.1ra rt

library

library_interface

interface_unit

li b rary_i nte rf ace_nameJart

library_interface

li brary_i nte rf ace_specif icatio n1rart

library_interface

library_nameJcart

library

library_specif icat¡on

I i bra ry_i mpl e me ntation_¡ca rt

si mple_activity_i mple mentationlcart

simple ida_implementationSart

simple_serve r_i mple mentation_part

si mple_su broot_i mple me ntationlrart

library_specif icatio nSart

library

mascot_3_unit

needs

needs_list

Appendix A Syntax

2 . 9 , . , .

2 . 1 2

2.4

2.9

2 .9

2.9

Appendix B

2 .9

2.9

2.9

? .9

2.9

Appendíx B

2.9

2.9

2.9

2.9

2 .9

2 .9

2,9

2.9

2 . 5 , 2 . 9

2 . 6 , 2 . 9

2 . 7 , 2 . 9

2 . 1 2

2 .9

?.9

Appendix B
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needs_list

root_specif ¡catio nJart

su broot_specif ¡cat¡o nJcart

needed_¡nterface

needs_list

netwo rk_¡ mplementat¡onjart

ida_i mplementationlrart

server_i mple mentationSart

subsystem

of

access_i nte rf ace_array_descri ptio n

t e mp late_co nst a nt_g rou p

parameter_group

read_on ly_co nstant_specif icatio n

variable_specificatio ns

pool

component_class

ida_class

port_definition

portJcort_connect

wi ndowjo rt_equivale nce

portJort_connect

activity_connection

connection

port_specification

activity_specif icatio n1cart

ida_specif icationlrart

subsyste m_specif ícation-1rart

port_window_connect

connection

2 . 1 2

2 . 1 2

2 . 1 2

2 . 1 2

2 . 1 2

2 .4

2 . 6 , 2 . 1 0

2 . 1 1

2 .4

2 . 1 3

2 .8

Pascal

2 . 1 5

2 . 1 5

2.4

2 .6

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2 . 4 , 2 j 4

2 . 4 , 2 . 1 4

2 . 1 2

2 . 4 , 2 . 8

2 .3

2 . 5 , 2 . 8

2 . 6 , 2 . 8

2 . 4 , 2 . 8

2.4

2 .4 ,2 .8
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procedu re_and_f u nctío n_declarat¡o nJcart

library_declarative_¡cart

procedu re_orJu nctio n_h e adi ng

access_i nte¡,f ace_detaiþart

library_i nterf ace_specif ication¡rart

procedure_heading

p rocedu re_orJu ncti on_headi ng

provides

wi ndo'v_specif ication

read_o nly_co nstant_specif ications

acce ss_i nte rf ace_detai lJcart

renamed_declaration

renaming_equivalence

renaming_equivalence

access_equivalence

requires

port_specification

root

activity_co mponent_class

root_nameJcart

template_unit

root_namejart

root

root_specif icatío nSart

root

server

component_class

server_nameJcart

template_unit

Appendix A Syntax

Pascal

2.9

2.3

2 . 3 , 2 . 1 5

2 .9

Pascal

2 .3

2.3

2 . 1 5

2 . 3 , 2 . 1 5

2 .6

2 .6

2 .6

2 .6

2 .3

2.12,  . . .

2 . 1 2

2 . 1 2

Appendix B

2 . 1 2

2 . 1 2

2 . 1 2

2 . 1 2

2 . 7 , 2 . 9 , . . .

2 .4

2 .7

Appendix B
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serveilmplementatio nJart

server

server_namejart

server

s¡ mple_access_i nte rf ace_specif ication-1cart

access_i nte rf ace_specif icationpart

subroot_interface

si mple_activity_i mple mentationSart

activ¡ty_implementatio nJ]art

root

simple_equivalence

access_equivalence

simple ida_i mplementation_part

i da_i mpl e me ntat¡ o njart

simp le_se rve r_i mple me ntation-1rart

s e rv e r_i mp le m e ntati o njart

si mple_su broot_i mple me ntatio n1rart

su broot_i mple me ntationJcart

simple_type

access_i nte rf ace_array_descriptio n

standard_scalarJype

te mplate_constant_group

sub_element_link

activity_connection

subroot

act¡ vity_co mpo n ent_cl as s

s u broot_i nt e rf ac e_n am eJcart

subroot_name__¡cart

template_unit

Appendix A Syntax

2 .7 ,2 .9

2 . 7 , 2 . 9

2.7

2 .7 ,2 .9

2.3

2 . 3 , 2 . 1 4

2 . 1 2

2 .5 ,2 .9

2 . 5 , 2 . 1 2

2 . 1 2

2.6

2 .6

2 .6 ,2 .9

2 . 6 , 2 . 1 0

2 . 7 , 2 . 9

2 . 7 , 2 . 9

2 . 1 2

2 . 1 2

Pascal

2 . 1 3

Pascal

2 .8

2 . 1 2

2 . 1 2

2.12,  . . .

2 . 1 2

2 . 1 2

2 . 1 2

Appendix B

Mascot Version 3.1A -  4 6



su brooti mp lem entation3art

subroot

subroot_interface

interface_unit

su brootj nt e rf ace_n a mejart

subroot_interf ace

subroot_nameloart

subroot

su broot_specif ication3art

subroot

subsystem

component_class

subsystem_namejart

template_unit

subsystem_namejart

subsystem

su bsystem_specif ication_¡rart

subsystem

system

system_name¡afi

template_unit

system_i mple me ntation¡cañ

system

system_nameJart

system

syste m_specif icationjart

system

2 . 1 2

2 . 1 2

2 . 1 2

Appendix B

2 . 1 2

2 . 1 2

2 . 1 2

2 . 1 2

? , 1 2

2 . 1 2

2.4,  . . .

2 .4

2 .4

Appendix B

2.4

2 .4

2 . 4 , 2 . 8

2 ,4

2 . 4 , . . .

2 .4

Appendix B

2 .4

2.4

2 .4

2.4

2.8

2.4
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te mplate_co nstant_def inition

subsystem_specif icationlcail

te mp¡ate_co nstant_¡dent¡ty

te mplate_co nsta nt_ide nt ity

act¡vity_connection

connection

template_constant group

t emp I ate_constant_specif ication

template_co nstant_specif ication

act ivity_specif icat io npart

ida_specif icat¡onjart

I ibrary_specif icat ¡o nJDart

syste m_specif icatio nlca il

template_definition

co mpos ite_act ivity_imple mentat¡onJrart

n etwo rk_i mple me ntatio npart

template_unit

mascot_3_unit

type-definit¡onjart

def inition_detaillrart

library_declarativelrart

uses

composite_activity_imple mentat¡onJcart

n etwo rk_i mpl e me ntat io nJart

system_imple mentalio n__¡rart

var

variable_specif icatio ns

variable_specif ¡cations

access interf ace_detaiþart

2.8

2 .4 ,2 .9

2.8

2.8

2 . 1 2

2 . 4 , 2 . 9

2 .8

2.8

2 .8

2 .5 ,2 .9

2 . 6 , 2 . 9

2.9

2,8

2 . 4 , 2 . 1 4

2 . 1 2

2.4

Appendix B

Appendix B

Pascal

2.3

2 .9

2 . 1 2

2.4

2.4

2 . 1 5

2 , 1 5

2 . 3 , 2 . 1 5
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w¡ndow_declaration

wi ndow_wi ndow_equ ivale nce

wi ndowJro rt_equ ivale nce

wi ndow_wi ndow_equivale nce

equivalence

wi ndow3ort_equivalence

equivalence

window_specifrcation

i da_specif icati o n_.¡ca rt

subsystem_specif ication_part

with

with_section

with_section

def i niti o n_specif icationlcart

I i bra ry_i mpl e me ntatio n_¡oa rt

library_ì nterf ace_specif icationlcart

si mple_access_i nterf ace_specif icatio n¡rart

simple_activity_i mple mentatíonJcart

simple ida_implementationjart

simple_serve 1i mple mentat¡onJeart

si mple_su broot_i mple me ntation--¡cart

o
activity_con nection_specif i catio n

connection_specif icati on

template_constant_def i nition

access_i nte rf ace_array_descri ptio n

activity_co n n ection_specif icatio n

composite_activity_imp le mentati o n1cart

co nnection_specif ication

library_specification

I i brary_specif icatio n3 a rt

n etwo rk_i mpl e me ntatio njart

system_imple rnentatio npart

AppendixASyntax 'A- 49

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2 .3

2 . 6 , 2 . 8

2 . 4 , 2 . 8

Z,.S

2.3

2.3

2.9

2 .9

2 .3

2 . 5 , 2 . 9

2.6, ?.9

2 . 7 , 2 . 9

2.' , |2

Z : . tZ

2 .4

2 .8

2 . 1 3

2 . 1 2

2 . 1 2

2 .4

2 .9

2 .9

2 .4

2 .4
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template_constant_def inition

te mplate_co nst antj roup

with_section

access_interface

activi$

definitbn_unit

ida

library

library_interface

port_definition

pod_wirdow_oonnect

renamed_declaration

renaming_equivalence

root

server

subroot

subroot_interface

subsystem

system

window_declaration

wi ndow_wi ndow_equ ivale nce

act iv ity_compo ne ntlrart

access intedace_declaration

component

comprise_declaration

needed_interface

te mpl ate_co nstant3roup

access_ir¡terface

access_interf ace declaration

activity

act iv ity_co mpo ne ntjart

component

compos¡te_act ivity_imple mentation_¡art

comprise_declaration

definitbn_unit

Appendix A Syntax

2.8

2.8

2 .3

2 .3

2.5

2 .3

2 .6 ,2 .9

2.9

2.9

2 . 4 , 2 . 1 4

2.4

2 .6

2 .6

2 . 1 2

2 . 7 , 2 . 9

2 . 1 2

2 . 1 2

2.4

2 .4

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2 . 1 2

2.3

2 .4

2 . 1 4

2 . 1 2

2.8

2.3

2.3

2.5

2 . 1 2

2.4

2 . 1 2

2 . 1 4

2.3

Mascot Version 3.1A  -50



ida

library

library_interface

library_specif ication

I ibrary_specif icat io npart

needed_interf ace

netwo rk_imple me ntationlrart

root

server

simple ida_implementationpart

simple server_implementat¡onJcart

subroot

subroot_interf ace

su broot_specif ication_¡rart

subsystem

system

system_imple mentatio nlmrt

with_section

portjort_connect

port_window_ænned

renaming_equivalence

simple_equivalence

sub_element_link

te mplate_co nstant_¡dentity

wi ndowSo rt_equ ivalence

wi ndow_wi ndow_equ ivale nce

access_inte rf ace_array_descriptio n

te mplate_constant_g rou p

t1

2 . 6 , 2 . 9

2 .9

2.9

2.9

2 .9

2 . 1 2

2 .4

2 . 1 2

2 . 6 , 2 . 9

2 .6 ,2 .9

2 .7 ,2 .9

2 . 1 2

2 . 1 2

2 . 1 2

2.4

2 .4

2.4

2 .3

2 . 4 , 2 . 1 4

2.4

2.6

2.6

2 . 1 2

2.8

2 . 4 , 2 . 1 4

2 . 4 , 2 . 1 4

2 . 1 3

2.8
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USE OF KEYWORDS
l u r Ø  E
= úi ú 2
I o É , U r E E-Ø 

= 5 3, ä o. ct f
Z ' - o  

- a  
E  ü  E  Ë  u  E

8 Ë É ã r  8  = 3  =

U,
I
J
It
o
=

c
o
(ú
o
'õ
o
o.
U'

Defini t ion

Simple Access Interface

Subroot Interface

Library Interface

Composite Access Inteface

Speci f  icat ion
Dependenc ies

lmplementat ion
Dependenc ies

.t
o
5
tt
o
E
o
(ú
CL
E
(l)
t -

Simple IDA *

Simple Activity

Simple Root

Simple Subroot

Library

Composite IDA *

Composite Activity

Composite Subroot

Subsystem

System

0 + - 0 +

0 + - 0 +

0 + - 0 +

0 + - 0 +

0 + - 0 +

-  1 +  0 +

-  1 +  0 +

-  1+  0+

- ' l+ 0+

-  1 +  0 +

- = Prohibited

1+ = One or More

1 = One and only one

0+ = Zero or more

* Channel, Pool and Server have identical characteristics
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DEFINITION OF GRAPHICAL CONVENTIONS

The purpose of documentation is to convey information to the reader. One technique for achieving this is

the use of diagrams. The Mascot definition contains equivalent graphical and textual design

representat¡ons. Conventions are defined for annotating the diagrams in the graphical representation so

that they reflect all but the program code of the corresponding modules. However, a diagram containing

too much detail can actually convey less information than a less detailed diagram. The optimum levelof

detail could well depend on the purpose for which the diagram is intended. Design and implementation

documents, for example, form two relatively independent sets. Documents may be explanatory or

definitive in purpose. In the course of design, omission of detail may reflect the postponment of

decisions.

The definition recognises sufficient variability in the use of the standard graphic conventions to allow for

local variance and for the desirability of employing different levels of detail for different purposes provided

that consistency is maintained within sets of related documents.

Symbology

Symbols are introduced, in the appropriate sections of the Handbook, for the various entities employed

in Mascot designs. This appendix presents the complete set of symbols and is to be regarded as the

definitive document for this purpose.

Slmple Forms

The slmple forms of actlvlt les, channels, pools, general ised lDAs, servers and subroots,

together with roots, constitute the elements and subelements of a Mascot design (see

Appendix B). They are symbolised as follows:

Simple Activi ty

Root

S imple  Subroot

In accordance with long established Mascot practice, the circular form should normally be used. The

rounded rectangular form is appropriate where it is desirable to prov¡de additional space for the

presentation of information within the boundary of the symbol. This might be the case, for example, with

an actlvlty, root or subroot which possesses an unusually large number of network and/or

subelement connections.
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Pool

Simple IDA

Channe l

The channel and pool symbols are based on those used in earlier versions of Mascot. These have

been modified so that, like the actlvlty symbols, they allow information to be presented w¡th¡n the

boundary of the symbol. They may be used where an IDA conforms to the accepted definition (see

Section 2.6) of one of these specialforms. The rectangular symbol is a generalised form of lDA. lt may be

used to represent any tDA but must be employed where the IDA in question ¡s not strictly a channel or

a pool.

Simple Server

The symbol which represents a server is a combination of those representing actlvlt¡es and lDAs. lt

thus emphasises the hybrid nature of the server which behaves in the passive manner of an IDA as far

as network interactions are concerned but, by virtue of being permitted to contain interrupt handlers,

also possesses an active aspect. lf the device to which the server is connected is also to be depicted on

the diagram, it should be in the form shown below:

Device

(with connect¡on

to server)

The hatched rectangle may, however, may be replaced by a schematic drawing of the device.

Composlte Forms

The same symbol is used to represent a template and a component. By definition, a component

must be part of a compos¡te template. This may be a system or a subsystem:
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wh6h is symbolised by any smooth closed curve, drawn with a thicker line than that used for the slmple

entities, but should normally take the form of a rounded rectangle.

For the composlte forms of act¡vlty, lDA, server or subroot, the symbols used are the same as for

the simple forms but normally drawn with thicker lines as they are throughout the Handbook.

Composite Activity

Gomposite Subroot

Composite IDA

Poo l

C h a n n e l

System

Su bsystem

Composite Server

Alternatively, for allthe composite forms, double lines, or some other convenient locally defined means

of making the distinction, may be used. The same convention should be employed to denote

composite components where the information is known and is considered relevant.

Paths, Ports and Windows

Symbols, illustrated below, are defined for slmple ports and w¡ndows and the path which joins them.

The lines which denote data paths may, if desired, be drawn as curves. Arrowheads are used to denote

the direction of data flow and should normally be shown.
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Window

There are special rules governing the placement of pons and wlndows in servers:

The wlndows should appear on the straight edge opposite to the semi-circular end of the symbol and
the ports on either of the two adjacent sides.

Where paths pass through the boundades of enclosing composlte design ent¡t¡es, port or wlndow
symbots and data flow arrowheads are repeated at each boundary:

Path through

Constructional

Boundar¡es

Since any number of ports, of the appropriate type, may be c¡nnected to a single wlndow, diagrams
frequently depict paths which merge. Normally, these lines are joined at a wlndow. However, where it is
more conven¡ent, they may be merged at an ¡ntermediate po¡nt prov¡ded that merging is in the direction
from port to wlndow. This is ¡llustrated in the diagram below in which the d¡rect¡on of data flow has

deliberately been omitted as irrelevant to the point at ¡ssue.

Merg ing

Paths

Subelements and Subelement

The subelement llnks, between
graphically as follows:

Llnks

the components of a composlte acilvlty, are represented
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Root

Subelement L ink

Simple Subroot

where the hollow arrowheads indicate the direction of procedure invocation and may be repeated where

the llnk crosses enclosing boundaries:

Subroot  L ink
through

Construct ional
Bou ndaries

Llnks may be merged, in a manner similar to that employed for paths, in the direction of procedure

apptication:

Merging

Subelement L inks

Composlt Paths, Ports and Wlndows

For the template in which a composlte access Interface is decomposed into i ts constituent

Interfaces, special symbols are defined to denote the composlte ports and wlndows. At this level

of .decomposition, the composlte path should be denoted by a thick (or double) line, where this is

considered relevant:

Appendix D Graphical Conventions D - 5 Mascot Version 3.1



composite pathcompos¡te
port

compos¡te
urindow

The port and wlndow at each end of a composlte path may be represented by a proportionately

larger than normal port or wlndow symbol if so desired.

Composite Port

The internal structure of a composlte port is represented by a semi-circle, drawn with a thick line, and
with its component ports illustrated inside the boundary.

Composi te Window

The internal structure of a composlte window is represented by a rectangle, drawn with a.thick line,
and with its component wlndows illustrated inside the boundary.
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Annotat ion

A template is annotated inside the symbol by the temptate name. A component of a network is

annotated inside the symbol by the corresponding template name and on the outside by the

component name. The example given below shows a subsystem template called merge .lts

components are called a1 , a2 and cf and are derived from the templates act_1 , act_2 and

chan , respectively.

A path is annotated by the name of the corresponding access Interface and wlndows and ports by

the¡r local names:

port
ident i f ier

w¡ndow
ident i f ier

A subelement l¡nk is annotated with the

active end of the link by its local name:

name of the corresponding subroot Interface and the

subelement
l i n k
ident i f ie r

Where a component or template possesses a template constant, the name, type and value of the

constant may be shown on the diagram:

access interface

subroot interface
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' va lug ' constant
identif ier

and the value may be depicted as being supplied across one or more enclosing boundaries:

' va lue ' constant
identif ier

Annotat¡on Optlons

ln the sense of their inclusion in a Mascot diagram, template names and path names are essential but

component names and wlndow/port names are less important. This is especially so where no

ambiguity arises as, for example, where the components are all derived from different templates or

the w¡ndows or ports of a template or componeRt are of different (access Interface) types.

Extensions

In addition to the name associated with an access ¡nterface, it may be considered desirable to

annotate a path by the name of the data objects and/or the type of the data objects that flow along the
path. Th¡s could be indicated by the name of the deflnltlon module which defines the type of the

object.

Port, wlndow and Interface qualifiers can also be used to annotate the appropriate features of a

diagram.

Although intended to denote only one level of decomposition at a time, it is sometimes usefulto show

multiple levels of decomposition in one diagram. The consequent increase ¡n the amount of information

to be conveyed would probably necessitate showing only a subset of that available.

The Mascot diagram can give a one-to-one representation of the information contained in the

spec¡f¡catlon part of a simple module. lt is therefore biased towards design expression. However,

during design derivation, it may be highly desirable to use 'Mascot-like'diagrams which use a subset of

the standard convent¡ons. For example, a path may be identified between two components before

the decision is made as to which component possesses the port and which the wlndow (which

possesses the'mot¡ve powe/). This is acceptable.

constant
identif ier
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For information purposes only, it may be desirable to generate Mascot diagrams showing only a subset of

the components (for example omitt ing pools or channels or servers). Again this is acceptable
provided the diagrams are described as such.
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CLASSIFIED SUMMARY OF MASCOT FEATUBES

In t roduct ion

The purpose of this appendix is to provide a summary of all the Mascot features defined elsewhere in the

Handbook and to identify those parts of the definition which are mandatory in any Mascot 3 development

environment. These mandatory features have been selected on the basis of a standardisation

philosophy whose objectives are to enable products to be assessed for conformance with the definition

and to enable designs to be portable between Mascot development environments. This philosophy is

presented below.

Philosophy of Standardisat ion

As the first element ¡n the philosophy of standardisation, every effort has been made to define all the

Mascot features in an unambiguous manner. Secondly, a mandatory subset of the definition has been

identified. This is reflected in the order of presentation of material in the Handbook sections on the

design representation facilities and is summarised for reference at the end of this appendix. All mandatory

features must be provided by any Mascot 3 development environment. Where features not included in

this subset are implemented, they are required to conform to the definition given in the Handbook.

The third element of the philosophy is the requirement that a development environment include

adequate linguistic support for the features which it implements. The design representation language

used in the Handbook provides definitive guidance as to what concepts need to be expressed but need

not necessarily be literally implemented. The linguistic support may take the form of an Additional

Features design language (cf AF Coral 2 for Mascot 2) for the programming language or languages

supported by the development environment. This should be considered the preferred option as it will

reduce the resources required to verify design compliance of Mascot software and will enhance software

portability.

Alternatively, the Mascot 3 module classes could be implemented in a native programming language,

without additional features, by a code of practice. ln this case the mapping of each characteristic of each

module class onto the programming language must be defined as part oÍ tne code of practice. This

should be done in a form which provides a suitable basis for validation testing, for transporting a design

and for design conformance checking or other verification of application software designs.

The fourth element of the philosophy ¡s that module classes do not need to be supported in full. A

mandatory subset of characterist¡cs has been defined for each class. Thus the definition contains

characterist¡cs wh¡ch not all development environments will implement even within the mandatory

classes. This element of the philosophy guarantees a minimum level of portability as it defines the
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min¡mum character¡stics of all Mascot 3 development environr,nents. lt also defines the minimum set of

characteristics which rnust be provided for each non mandatory module class implernented.'Where a non

mandatory characteristic is strpported it.must be supported Ín all appropriate rnoduile classes. lt is

recognised that design aúthorities ;rnay wish to control or,restrict the use of certa¡n facilities, such as direct

data visibility, and therefore warriing ,reports of their .use rnay be generated by a development

environment.

The fifth and final element of the philosophy concerns extensions to Mascot 3. lt ¡s recognised that the

definition cannot be maintained, either in scope or in functionality, in advance of users'requirements and

that therefore certain applications will need facilities added to their development environments that are

not covered in the Mascot 3 definition. lmplementing a superset of the fac¡l¡t¡es, whilst not encouraged, is

therefore permitted. lmplementors must define fully any extens¡ons provided and must declare them to

any test¡ng authority so that they may be doormented in a test report. Such additionalfeatures must not,

of course, interfere with or partially overlap any of the defined facilities.

The Mandatory Subset

The mandatory facilities have been divided into three categories: module classes, commands and

primitives. The mandatory facilities specified below must be provide'd by all Mascot 3 development

environments. However, users arê not obliged to use allthe mandatory features. Thus, for example, all

development environments must support the use of the WITH keyword within access ¡nterfaces.

However, it is possible to have a syntactically correct aocess Interface which does not use the feature.

It ¡s not required that support for unused features be present in target systems.

(a) Module Classes

The diagram of Appendix B shows the complete set of Mascot module classes, the mandatory subset

being highlighted by means of a shadowed font. All Mascot 3 development environments must provide

these classes. The first of the tables below specifies all the defined characteristics of the subset and
identifies, with an M for mandatory, those features which it is obligatory to provide.

The second table specifies allthe features of the non-mandatory module classes. Mascot 3 development

environments which support any of these classes must provide support for use of the character¡stics

identified with an M.

The third table specifies the features of partiorlar rnodule classes which become mandatory when specific

non mandatory features are supported.

(b) Commands

It ¡s mandatory to provide fac¡l¡t¡es for registration, introduction, enrolment, bu¡lding, ¡n¡t¡al¡sation and
starting which accord with the Mascot definition. They may be provided in one of two ways: either
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expl¡cit¡y through a command interpreter in the form shown in the fourth table below, or by use of other

userfacilities such as those provided by most computer operat¡ng systems. When a command interpreter

is not being used the documentation of the Mascot development environment must define explictly how

the functions are provided.

(c) Primitives

There are no mandatory primitives in Mascot 3. However, there are inter-dependencies between the

primitives described in the Handbook. The fifth of the tables below divides these primitives into sets

which are required to be implemented together as a group. lt also ¡ndicates which of the other primitive

groups are also'mandatory for each group supported.
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MODULE CLI\SS:

ACCESS }NTERFACE

DEFI.NITION

IDA

S E R V E R

CHARACTER]STIC

WlTH
Procedure specif ications
Variable specifications
Reado nly data constants
Qualifiers

WITH
Symbolic constants
Type definitions

CONSTANT
P R O V I D E S
R E Q U I R E S
WITH
LIBRARY
Window qualifiers
Port qualifiers
Data areá
Access procedures
Access data
Window-to-local equivalence
Window-to-re mote equivalence
Window-to-po rt equivalence
Arrays of CONSTANTs
Anays of ports
Anays of windows
In¡t¡alisat¡on procedure
Reset procedure
Termination procedure

CONSTANT
P R O V I D E S
R E Q U I R E S
WITH
LIBRARY
Window qualifiers
Port qualifiers
Data area
Handler
Access procedures
Access data
Wi ndow-to-local equivalence
Window-to-re rnote equ ivalence
Window-to-port equ ivalence
Handler-to-interrupt connection
Arrays of CONSTANTs
Anays of ports
Anays of windows
Initialisation procedure
Reset procedure
Termination procedure

M
M

M

M
M

M
M

M

M

M
M

M

M

M
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MODULE CLASS

ACTIVITY

S U B S Y S T E M

SYSTEM

CHARACTERISTIC

CONSTAî. lT
R E Q U I R E S
WITH
LIBRARY
Port qualifiers
Arrays of CONSTANTS
Anays of ports

CONSTANT
P R O V I D E S
R E Q U I R E S
U S E S
Window qualifiers
Port qualifiers
Arrays of CONSTANTS
Anays of ports
Anays of windows
Library instantiation
IDA components
SERVER components
ACTIVITY components
SUBSYSTEM components
Window-to -window equivalence
Window-to-port equivalence

CONSTANT
U S E S
Library ¡nstantiation
IDA components
SERVER components
ACTIVITY components
SUBSYSTEM components
Arrays of CONSTANTS

M
M
M

M
M
M
M
M

M

M
M
M
M
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2,  CHARACTERISTICSO F N O N . M A N D A T O R Y  M O D U L E
C L A S S E S

MODULE TYPE

COMPOSITE ACCESS INTERFACE

SUBROOT INTERFACE

LIBRARY INTERFACE

COMPOSITE IDA

COMPOSITE ACTIVITY

ROOT

CHARACTERISTIC

C O M P R I S E S

WITH
Procedure specif ications
Variable specifications
Readonly data constants

W¡TH
Procedure specif ications
Readonly data constants

CONSTANT
P R O V I D E S
R E Q U I R E S
U S E S
Window qualifiers
Port qualifiers
Arrays of CONSTANTs
Anays of ports
Anays of windows
Library instantiation
IDA components
Window-to-window equivalence
Window-to-port equ ivalence

CONSTANT
R E O U I R E S
U S E S
Port qualifiers
Arrays of CONSTANTs
Anays of ports
Library instantiation
ROOT components
SUBROOT components

CONSTANT
R E O U I R E S
N E E D S
WITH
LIBRARY
Port qualifiers
Arrays of CONSTANTs
Anays of ports

M

M
M

M
M
M

M
M

M
M

M
M

M
M
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MODULE CLASS

S U B R O O T

COMPOSITE SUBROOT

L¡BRARY

COMPOSITE SERVER

cHARA:GTFR]STIÇ ' , i

CONSTANT
R E Q U I R E S
G I V E S
N E E D S .  ,  . .
WITH 1 :

L I B R A R Y
Port qualifiers
Arrays of CONSTANTS
Arrays of ports

M
M
M

M
M
M
M

CONSTANT
R E Q U I R E S
G I V E S
N E E D S
U S E S
Port qualifiers
Arrays of CONSTANTS
Anays of ports
SUBROOT components
Library lnstant¡ation

CONSTANT
G I V E S
WITH
L I B R A R Y
Arrays of CONSTANTS

CONSTANT
P R O V I D E S
R E Q U I R E S
U S E S
Window qualifiers
Port qualifiers
Arrays of CONSTANTS
Anays of ports
Arrays of windows
Library instantiation
IDA components
SERVER components
Window-to-window equivale nce
Window{o-po rt equ ivalence

M
M
M

M
M
M
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Group Narne

COMPOSITE ACTIVITY

COMPOSITE SUBBOOT

LIBRARY

G.rou,o

cofitPosttrE AcTtvtTY
SU'BROOT IÎ$TTERF'ACE
R'O,O,T
slrBRoo,T

COMPOSITE SUB.ROOT

L¡BRARV INTERFACE
LIBRARV ternplate

Requirements

lmplement as a group

lmplement COMPOSITE
ACTIVITY group

Support keyword
L¡BRARY
Support library
instantiation at least in
SYSTEM
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Group N?me

Status progression

Building

Execution Control

Group

REGISTER
INTRODUCE
E N R O L

BUILD

IN IT IAL ISE
START
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5. GROUPS OF MASCOT 3 PRIMITIVES

Group Name

Control Queue

Checking

Basic lnterrupt

Interrupt Connection

lnterrupt Disconnection

Timing

Timeout

Co-operative Scheduling

Activity Termination

Error Handling

Group

JOIN
L E A V E
WAIT
STIM

C H E C K

STIMINT
E N D H A N D L E R

C O N N E C T

DISCONNECT

TIMENOW
DELAY

WAITFOR

S U S P E N D

E N D R O O T

G E T E R R O R
E R R O R
FATAL-ERROR

S E L E C T
E X C L U D E
R E C O R D

HALT
R E S U M E
START
TERMINATE
R E S E T

9thpr Grçqps Feqqired

Control Queue

Control Queue

Basic lnterrupt

Interrupt Connection

Control Queue
Timing

Monitoring

Execution Control

lf any primitive in a group is implemented then allprimitives in that group and in any'groups required'must

be implemented.
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Access Interface A speclflcatlon defining the possible interactions

(egprocedurespeci f icat ions)betweenthecomponentsconnectedbyapath. ln i tscompos| te

form it comprises a set of other access Interfaces.

Access Procedure A procedure, implemented in an IDA or server, and

corresponding to a procedure heading specified in an access Interface to which a wlndow

specification of the IDA or seruer refers. lt provides a network interaction along a connected path of

the appropr¡ate tYPe.

Activity The Mascot design entity representing a single

independent information processing element. An activity module ¡s a template which may be used

to create activ¡ty components each of which is an independently scheduled single sequential

program thread, conceptually executing in parallel with other activities. An activity usually specifies

one or more ports each of which defines a connection to be established from the act¡v¡ty to a

wtndow on a neighbouring component in the execut¡on environment. A composlte form of

act¡vity is provided for sequential program decomposition in terms of subelements known as roots

and subroots.

Bu i ld ing The process by which executable software is created

from its defining temptates, which must have achieved fully enrolled status.

G h a n n e l A special case of an IDA having destructive read

properties. The channel provides facilities for transmission of information.

Class The category of a Mascot design entity. Design

entities are grouped ¡nto speclf¡cat¡ons and templates. Speclficatlons comprise the classes:

access In ter face,  subroot  In ter face,  l lbrary  ln ter face and def ln l t lon.  Templates

compr ise the c lasses:  system, subsystem, act lv l ty ,  Channel ,  pOOl,  lDA,  Server ,  rOOt,

subroot and l ibrary.

Component A constituent of a composite template. The type

of a component is identified by the name of the template which is used in the definition of the

component.
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Composite A composite module is one which is further

decomposed ¡n terms of lower level modules. For speclflcatlons the decomposition is in terms of

the same class of speclflcatlon. Fortemplates the decomposition depends on the class of the

template. The only speclflcatlon with a compos¡te form is the access Interface. The following

templates have composite forms: system, subsystem, lDA, selver, actlvlty, subroot.

Context That part of the executable software which supports

(but is not part of) the application software defined by the system template. lt implements the

facilities specified ¡n the context Interface.

Context lnterface
facilities offered (implicitly)

other spec¡f¡cat¡ons.

Control Queue An object, declared in an lDA, which may be operated

upon by a set of primitives to ensure mutualexclusion and cross-stimulation between actlvltles. The

relevant primitives are CHECK, JOIN, LEAVE, STIM, STIMINT, WAIT, WAITFOR.

Definition A speclflcat¡on defining a set of data types and

named constants for use by slmple Interfaces and slmple templates. lt may refer to other

definition modules.

A special form of speclflcatlon which defines the

by the context to all applications modules. lt is usually a collection of

A fundamental Mascot design entity: slmple

slmple server, composlte actlvlty.

Element

actlv¡ty, slmple lDA,

Enro l The enrol operation checks that the name part,

spec¡f¡cat¡on part and lmplementatlon part of a template module have been defined and

are legal. lt may involve using information in the specificat¡on parts of the modules to which ¡t

refers. lf the checking is successful, then the module will be accorded partlally or fully enrolled

status, depending upon the type of the module itself and on the status of the modules to which

it refers.

Fully Enrol led A status value achieved by a template module as

a result of a successful enrol operation. For a composlte template, the status indicates that all

the templates which define the module's components have also achieved fully enrolled

status.
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Fully Introduced A status value achieved by a module as the result

of a successful lntroduce operation. The status indicates that all specification modules

referred to in the module's speclflcatlon part have also achieved fully lntroduced status.

Hand le r A routine invoked as a direct consequence of a

hardware interrupt. All handlers are located within servers.

I D A The Mascot design entity representing a passive

independent information storage or information transmission element. In the simple form it contains

both shareable data and the access mechanisms which can operate on this data; these access

mechanisms safeguard the integrity of information within or passing through an IDA and sustain

information propagation for intercommunication between actlv¡t¡es. An IDA module ¡s a template

which may be used to create IDA components each of which allows several independently

scheduled single sequent¡al program threads to be simultaneously active or suspended within the

lDA. An IDA specifies one or more wlndows defining the connections which can be established from

ports on neighbouring components in the execution environment. An IDA may also specify ports

each of which defines a connection to be established from the IDA to a window on a neighbouring

component; such ports allow data to be projected from one IDA to another with no intervening

actlvlty. A composlte form of IDA is provided for network decomposition in terms of internal lDAs.

lmplementat¡on part The part of a template module which defines the

internal details of the template. For slmple templates it defines the data and algorithms together

with references to the required def¡nltlons and library interfaces. For compos¡te templates it

defines the components and their interconnections. For simple templates this corresponds to

the information necessary to achieve ful ly enrol led status. For composite templates ¡t

corresponds to the information required to achieve at least part¡ally enrolled status.

lnterface

components. There are three

lnterface. An interface may

specl f  ¡cat ¡ons.

Introduce

A specif ication for a connection between two

types of interface: access Interface, library ¡nterface, subroot

refer to one or more defin¡t¡ons to import supplementary

The introduce operation checks that the name part

and specif¡cat¡on part of a module have been defined and are legal. lf the checking is

successful, then the module will be accorded partla¡ly or fully ¡ntroduced status, depending

upon the status of the modules to which it refers in its specif¡cat¡on part.
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Library The Mascot design entity implementing the set of
procedures specified in one or rþre llbrary Interfaces. This module supports procedural

decomposition of slmple templates and must be capable of multithreaded operation. lt ditfers from
an IDA which is also multi threaded in that there is no interaction between the threads.

Library Interface A slmple spec¡f¡cat¡on defining the operations
which a llbrary makes available to any slmpte temptate.

L ink A control flow connection from one subelement to
another. lts diagrammatic representation is a line which carries a hollow arrowhead to indicate the
direction of invocation. The type of a link is a subroot Interface which defines the nature of the
interactions between these subelements.

Mascot Database The collection of all Mascot modules, the¡r status
and their derived products known to a paûicular support environment.

Mod u  le A textual unit (or possibly a set of such units)
representing a speclflcatlon or a template. lt possesses an explicit class which reflects its
contents. In their completed form, all classes of module have a name part and a specification
part, and in addition the template modules have an ¡mplementat¡on part.

Name part The section of a modute which ctefines the class
and name of the template or spec¡f¡cailon which the module represents.

Network
(elements and other networks) which

composlte lDA, composlte server) of a

A set of  interconnected Mascot components
constitutes the whole (system) or part (subsystem,
Mascot application.

Part ial ly Enrol led A status value given to a compos¡te template
module for which the enro¡ operation was successful, but which failed to achieve fully enrolled
status' lt indicates that at least one of the templates which define the module's components
has not yet ach¡eved futty enrolled status.

Partially Introduced A status value given to a module for which the
Introduce operation was successful, but which failed to achieve fully Introduced status. lt
indicates that at least one of the speclficatlon modules referred to in its specification part has
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not yet achieved fully Introduced status.

Path A data flow connection between a port of one

component and a wlndow of another. lts diagrammatic representation is a line which normally

carries a solid arrowhead to indicate the direction of data flow. The type of a path is an access

Interface which defines the nature of the interactions between these components. A

composlte form of path is available, where the type of the path is a composlte access

Inter face.

Pool A special case of an IDA having destructive write

properties. Data in a pool is ovenrritten on a write operation but may be read repeatedly.

Port A named reference to an access lnterface by

means of which a template expresses its requirement for interactions with other templates.

Externally it expresses a connectivity constraint of lhe template. lnternally, the port name is used as

a means of select¡ng between ports. A port is the active end of a path. lts diagrammatic

representation is a small filled circle on the boundary of a component. A composlte form of pott is

available.

Regis tered
module has been defined and is legal.

A status value indicating that the name part of a

Root The Mascot design entity representing the

subelement which contains the initial entry point of a compos¡te actlvlty. A root usually specifies

one or more subroot Interfaces which define connections to be established to subelement

components in the same actlvlty. A root may also specify one or more ports each of which

def ines a connection to be established from the root component to a port of the enclosing

act¡v¡ty. A root module is a template which may be used to create root components.

Server The Mascot design entity representing a single

independent device handling element; it is the only form of design entity which can be used for this

purpose. lt has allthe features of an IDA and in addition may contain one or more handler routines to

be invoked as a direct consequence of hardware interrupts. A server module ¡s a template which

may be used to create server components each of which allows several independently scheduled

single sequential program threads to be simultaneously act¡ve or suspended within the server. A

çompos¡te form of server is provided for network decomposition in terms of internal servers and

lDAs.
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S i m p l e A simple module is one which is not further

decomposed in terms of lower level modules. Some templates and all spec¡f¡cat¡ons have a

simple form which is described in detail under the appropriate heading.The following templates

have símple forms: act¡v¡ty, lDA, server, root, subroot, library.

Specif icat ion A module defining an interface or definit ion. All

have a simple form but only an access Interface may be compos¡te.

Specification part The part of a module which specifies the external

view of the template or speclflcatlon which it represents. In the case of a specificat¡on, ¡t

completes the module. In the case of a template, i t  contains suff icient information for

components of that type to be included in a compos¡te template. l t  also constrains the

implementat¡on part. lt corresponds to the information required to achieve at least part¡ally

introduced status.

Status An attribute associated with a module indicating the

degree of progress made in the definition and checking of the module and of any other modules to

which it refers, and hence indicating its fitness for use by other modules. Five status values are

defined: registered, part¡al ly introduced, ful ly ¡ntroduced, part ial ly enrol led and ful ly

en ro l l ed .

Su be  leme n t

of an element or subelement (ie

Subroot

A Mascot entity supporting sequential decomposition

a root or subroot).

The Mascot  des ign ent i ty  represent ing a

subelement. A subroot specifies a single subroot ¡nterface defining the connections which may

be established from other subelement components in the same act¡vity. A subroot may specify

one or more subroot interfaces which define connections to be established to other

subelement components in the same act¡v¡ty. A subroot may also specify one or more ports

each of which defines a connection to be established from the subroot component to a port of the

enclosing act¡v¡ty. A subroot module ¡s a template which may be used to create subelement

components. A composite form of subroot is provided for decomposition ¡n terms of internal

subroots.

Subroot lnterface A s imple speci f icat ion def in ing the poss ib le

interactions (eg procedure specifications) between the components connected by a link.
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Subsystem A network representing part of a Mascot application.

Subsystems may possess both ports and wlndows and may therefore communicate directly with

each other. Where a subsystem contains no actlvlty, either directly or indirectly, it is functionally

identicalto a compos¡te IDA or a composlte server.

System A network representing the outermost level of

software description. When supported by all the modules referred to explicitly or impliciily, it

constitutes a complete Mascot application sottware description.

Template A pattern from which components may be created

during building. The creation of these components is controlled by definitions within compos¡te

templates.

Template Constant A constant, named in the specification part of a

template,  for  use wi th in  the lmplementat lon par t .  l ts  va lue is  usual ly  suppl ied when

components to be created from the template are named in a (higher level) compos¡te
template. ln the case of a system template, the value is supplied as part of the building
process.

Window A named reference to an access ¡nterface by

means of which a template expresses the interactions it provides for use by other temptates.
Externally, it expresses a connectivity constraint of the template. Internally, the window name is
used as a means of allocating internalfeatures between windows. A window is the passive end of a
path. lts diagrammatic representation ¡s a smallfilled rectangle on the boundary of a component. A
compos¡te form of window is available.
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