

Optical Interconnects for Backplane and Chip-to-chip Photonics

I H White* and R V Penty

* van Eck Professor of Engineering

University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Avenue, Cambridge CB3 0FA, United Kingdom

Acknowledgements:

J Beals, N Bamiedakis, University of Cambridge Dr D Cunningham, Avago Technologies Dr T Clapp and Dr J De Groot, Dow Corning UK EPSRC

Outline

- **1** Introduction to Datacommunications
- 2 Background the LAN/Server Networks
 - GbE and 10 GbE systems
 - The importance of MultiMode optical Fibre (MMF)
- **3** The Need for Optical Interconnects
 - Cluster Computing, Chip to Chip and on-Chip
 - PCB Optical Circuits
- 4 Conclusions

The Challenge is Bandwidth – Traffic patterns at major Internet exchanges

Source: J. Cain, Cisco Systems, July 2006

Trends in Optics ... and Bandwidth

Figure 9. Technical and Business Intelligence computing will require 100 Gb/s rates in the near future.

A.F. Benner, P. Pepeljugoski, R. Recio, IEEE Apps and Practice (2007)

Relentless increase in bandwidth requirements across computing applications ...

Trends in Optics ...

	MAN/WAN	Cables-long	Cables-short	Card-to-card	Intra-card	Intra-module	Intra-chip
		T					
Length	Multi-km	10-300 m	1–10 m	0.3–1 m	0.1–0.3 m	5–100 mm	0–20 mm
No. of lines per link	One	One to tens	One to tens	One to hundreds	One to hundreds	One to hundreds	One to hundreds
No. of lines per system	Tens	Tens to thousands	Tens to thousands	Tens to thousands	Thousands	Approximately ten thousand	Hundreds of thousands
Standards	Internet Protocol, SONET, ATM	LAN/SAN (Ethernet, InfiniBand, Fibre Channel)	Design- specific, LAN/SAN (Ethernet, InfiniBand)	Design-specific and standards (PCI, backplane InfiniBand and Ethernet)	Design- specific, generally	Design- specific	Design- specific
Use of optics	Since the 1980s	Since the 1990s	Present time, or very soon	2005–2010 with effort	2010-2015	Probably after 2015	Later

Optical links becoming

- shorter
- denser
- higher bandwidth
- application specific
- cheaper!

A.F. Benner et al. IBM J. Res. & Dev. 49 (2005)

Building Backbone "Gbps between Floors and in the Building Data Center"

2 Datacommunication Scenarios

Hierarchies of Datacommunication Links

- 1 Horizontal cabling from telecommunications closest to workstations (100 m)
- 2 Intra-building (inside) backbone from telecom closet to equipment room (500 m)
- 3 Combined campus and building backbone (2000 m)

Recent developments in 10 Gigabit Ethernet

Phase 1: 1999-2002 Fibre port types required for the early market

Name	Description	Fibre Type	Reach
10GBASE-LR	1310 nm serial LAN PHY	SMF	10 km
10GBASE-ER	1550 nm serial LAN PHY	SMF	30 or 40 km
10GBASE-SR	850 nm serial LAN PHY	MMF (OM3)	300 m
10GBASE-LX4	1310 nm WDM LAN PHY	OM1, OM2 & OM3 MMF	300 m

Phase 2: 2002-2006 Copper port types required for the mature market

Name	Description	Media Type	Reach
10GBASE-CX4	Copper Serial LAN PHY	Cable	15 m
10GBASE-T	Twisted Pair Serial LAN	Cat 6 or better cable	100 m

Phase 3: 2003-2006 Fibre port type required for the mature market

Name	Description	Media Type	Reach	
10GBASE-LRM	1310 Serial LAN PHY Multimode Fiber	OM1, OM2 & OM3 MMF	220 m	

Transceivers for Datacommunications

Components:

- Smaller Size (Discretes/Optics/ICs)
- Higher Speed (100 Mb/s to 1+ Gb/s)
- 3.3 V Operation
- Surface Mount Packages
- Shielded for EMI Compliance

Systems:

- Higher Density Component Loading
- High Bandwidth Capability (Terabit)
- Lower Power Requirement
- Lower per port solution cost \$
- Larger Chassis Designs

10 Gb/s optical transceiver market

300 pin

10Gbps Transceivers Shipped Per Year: Source RHK

Installed link length distribution

2007 Distribution

Graph based on: In-Premises Optical Fibre Installed Base Analysis to 2007, Alan Flatman, http://grouper.ieee.org/groups/802/3/10GMMFSG/public/mar04/flatman_1_0304.pdf

Why is Graded Index MMF Challenging?

MMF Bandwidth Specifications

	62.5 µm MMF	50 µm MMF
850 nm	160 MHz.km	400 MHz.km
1300 nm	500 MHz.km	500 MHz.km

Techniques for enhancing the bandwidth of MMF links

MULTIMODE FIBRE RESPONSE (1 km; 1300 nm)

Offset Launch for Ethernet Links

Offset launch has been standardised within IEEE 802.3 Gigabit Ethernet

Used with 1000BASE-LX GbE transceivers

Offset launch patchcord implementation - Example

2.5 Gb/s over 3 km of standard MMF

Back-to-back

Standard

Jaunch

Link contains 7 connectors / 3 splices offset launch is robust in presence of multiple connectors and patch panels

Mode-conditioning patchcord (MCP)

Multimode Fibre Transmission: Electronic Compensation

Signal impairment due to fibre properties may be compensated after the receiver, using emerging electronic signal processing techniques

Instrumental in emerging 10 GbE standards in MMF

How far can we push MMF?

For the first time:

- Calculated the capacity of MMF
- Derived an analytical worst case model
- Further 7x speed enhancement possible over 10GbE using single laser

Need for 100 Gb/s – High performance computing

Historically:

12X increase in average GF/s needs

10X increase in Ethernet interconnect

What routes for higher speeds – Go parallel (with help from serial)

- Parallel Fibre

(as long as we have integration)

- Wavelength Division Multiplexing

(as long as we have integration)

Parallel Optics – Always Watch Copper!

850nm VCSEL 1X12 Array

2.5 Gb/s/ch 850 nm VCSEL Array

2.5 Gb/s per channel(30Gb/s per array)

Low Cost Wavelength Division Multiplexed Systems

- 4 wavelengths
- Low cost
- Potential future 100 Gb/s capacity

Source:

LA Buckman et al., IEEE PTL, Vol.14, pp 702-704, 2002

Chip Level Integrated Photonics

- Low cost IC paradigm
 - Fab costs
 - Yield
 - Volumes
- Higher levels of functionality
- New exploitable phenomena

Y.Vlasov, Nature 11/05

III-V Integrated PIC Transmitters for 400Gb/s

High performance components using advanced integration concepts

"400 Gb/s (10-channel x 40 Gb/s) DWDM Photonic Integrated Circuits", Infinera, OFC 2005

New generations of ultra-high speed integrated WDM transmitters emerging

Silicon Photonic and Electronic Integration

M Paniccia, 2007

Si Photonics Recent Progress

*This is not exhaustive

		Devi	ce perform ignificant	ance making advances	•	(intel)
	2002	2003	2004	2005	2006	2007
Pioneering work by Dr. Richard Soref early 1980's)	Integrated APD+TIA UT V rd Inverted ref Taper s) NTT, Cornel	Modeled GHz PIN Modulator Surrey, Naples DGADC Surrey PBG WG <25dB/om IBM	>GHz MOS Modulator Intel 30GHz Si-Ge Photodetector IBM PBG WG <7dB/cm IBM, FESTA, NTT	10Gb/s Modulator Intel, Luxtera 1.5Gb/s Ring Mod. Cornell 39GHz Si-Ge Photodetector Univ: Stuttgart PBG WG <3db/cm NTT	Cornell E-O Effect Strained-Si 4 oru OGb/s SiGe PIN Commercial Quality Intel	Ring Laser Intel OGb/s Modulator Intel 40Gb/s SiGe Wave Guide PIN Intel
		Raman λ Conv. ^{UCLA}	Polarization Indep. Rings ^{Surrey} Raman Laser ^{UCLA}	QCSE in Si Stanford Stim-Emission Brown CW Raman Laser Infel	Hybrid Silicon Laser Intel - UCSB Broadband Amplification	40Gb/s Raman Amp & λ Conv.

M Paniccia, 2007

4 x 10G Optical Cable using Integrated Silicon Chip

High speed optical modulator realized in CMOS-SOI

Optical Routing of Datacommunications Signals: Wavelength Striped Semisynchronous LAN

Addressing latency at the physical layer

- nanosecond optical switch
- WDM channel spacing ~nm

Integrated Photonic Switch Fabric

InP based semiconductor optical amplifier technology

Conventional ridge waveguide fabrication processes with mirror etch

Integrated Photonic Switch Fabric

2 input - 2 output SOA optical switch configured
Implemented using 4 integrated SOA gates and 4 amplifying splitters
Nanosecond switching time
Low operating power: on state 1V, tens mA

Switched Wavelength-striped Test-bed

Media access control via 1.3 mm control wavelength

High capacity data within 1.5 mm band

Three FPGAs interface custom wavelength striped protocols to GbE and PC line-card

Fourth FPGA control SOA based switch

100 Gb/s Routing Performance for 2x2 Switch

Time resolved data packets and routed data packets (left) with three packets in four analysed

Bit error map (right) with open eye mask for one of ten 10 Gb/s data channels routed by 2x2 integrated switch

Outline

- **1** Introduction to Datacommunications
- 2 Background the LAN/Server Networks
 - GbE and 10 GbE systems
 - The importance of MultiMode optical Fibre (MMF)
- **3 The Need for Optical Interconnects**
 - Cluster Computing, Chip to Chip and on-Chip
 - PCB Optical Circuits
- 4 Conclusions

Optics in Interconnects

- Growing demand in optical interconnects driven by need for *high-capacity*, short-reach interconnections for future systems operating at data rates > 10 Gb/s.
- Existing interconnection technology:
 - Uses metal wiring architectures sophisticated electronic techniques
 - Imposes a bottleneck to system performance due to inherent disadvantages such as
 - electromagnetic interference
 - size/density issues
 - power/thermal dissipation issues
- Optics a promising solution as long as it:
 - is cost effective
 - has potential for integration into existing architectures
 - can be manufactured without significant capital expenditure (i.e. utilizes existing manufacturing processes and equipment)

Benefits for Optical Interconnects are Increasing for Shorter Distances as Signaling Rate Increases

- Benefits for optics are increasing for shorter distances (<10m)
- Optical interconnects at less than 10m emerging in 2010

M.A.Taubenblatt 2006

Optical Interconnect Roadmap

2-5 Years Optical communications will enter the computer, connecting one circuit board to another.

Electronic interconnection

DSL : 10 Mbps-km Ethernet : 10 Mbps-km Backplane : 10 Mbps-km

Optical interconnection Board: 100 Mbps-km Metro: 1 Tbps-km Long haul: 10 Tbps-km

Rick Clayton, Clayton & associates, Roadmapping exercise for the MIT Microphotonics Industry Consortium Today Optical connection between Individual computers are commercially available.

Chip to Chip

15+ Years Experts disagree on whether optical interconnects will ever connect the subsystems within a chip. Board to Board

5-10 Years Chip-to-chip communications will enter the market.

On Chip

Savage. IEEE Spectrum, 29 (3) 3000

Options for Chip to Chip (and Board to Board)

Program Goals

- Hybrid integration of optics into a server environment
- Explore limits of:
 - speed: 10-20Gb/s/Ch
 - density: 48 channels, 4x12
 - power: <10mW/Gbps/Ch (Ph I)</p>
 - <5mW/Gbps/Ch (Ph II)</p>

Major Efforts

- Optical Components: 2D arrays of 980nm
 VCSELs and PIN photodiodes, backside lenses
- IC's: Low Power CMOS designs
- <u>Si Carrier</u>: Wiring and mechanical packaging
- <u>Circuit Card:</u> Integrate waveguides onto SLC (buildup wiring) card for high speed surface
- <u>Packaging and Assembly</u>: Electrical interconnections, mechanical tolerances, thermal and mechanical issues, solder hierarchies

Funded by Darpa

Is there another way?

- Waveguides (and components on the PCB)

- Optical Interconnects today
 - We buy modules
- Electrical Interconnects today
 - Mostly assembled from subcomponents
- Need to move Optics to mass manufacturing from sub-components
 - Polymer waveguides on pcb

Multimode Polymer Waveguides

- Waveguides fabricated by conventional photolithographic techniques onto various substrates: FR4, silicon, glass.
- Waveguide cross-section is typically 50 µm x 50 µm, with waveguide separation of 250 µm to match conventional ribbon fiber, VCSEL and photodiode array spacing.
- Waveguides are effectively bit-rate transparent

Eye from 10 Gb/s data transmission in 1.4 meter long spiral waveguide

Multimode Polymer Waveguides

Straight waveguides

90° bends

S-bends

Spiral waveguides

Waveguide facet

Polymer Waveguides based on Dow Corning PDMS polymer

Siloxane based polymer waveguides

meet key requirements for successful integration into existing architectures and manufacturing processes

Siloxane polymer materials exhibit:

- excellent mechanical and thermal properties.
- withstand > 250° C required for lead-free solder reflow.
- can be deposited directly onto standard FR4 substrate.
- low intrinsic loss at 850 nm wavelength \rightarrow 0.03-0.05 dB/cm.
- readily patterned by photolithography or embossing techniques

Application Space: Backplanes

- Blade servers are a popular method of increasing packing density in IT environments.
- Network connectivity is currently provided by an electrical backplane capable of providing several Gb/s total throughput.
- Blade servers typically have 14 blades and another 2 external network connections, making a total of 16 backplane connections.
- There is a perceived need for a low cost next generation backplane which will enable one blade to talk to any other in the chassis at ~1Gb/s.

Polymer Backplane: Design Approach

Current implementation uses standard ribbon fibres to link backplane to transmit and receive arrays on line-cards.

Schematic of conventional electrical backplane with pluggable line cards.

Polymer Backplane: Design Details

- simple 90° bends rather than corner mirrors
 - bend loss ~ 1 dB for 8mm RoC bend
- 90° waveguide crossings all structures in single plane
 - crossing loss ~0.01 dB/crossing with MMF input
- crosstalk < 30 dB
- waveguide spacing of 250µm matches ribbon fiber

Demonstrated 10 Card Optical Backplane

Schematic of 10-card backplane layout and

- 100 waveguides
- single 90° bend per waveguide
- 90 crossings or less per waveguide

Photograph of FR4 based backplane with red light tracing the link illustrated at left. Note output spot visible at top.

Optical Power Meter

Output fiber

Insertion Loss and Crosstalk Measurements

Worst-case values

- longest links
- links most susceptible to crosstalk

Input Type	Insertion Loss	Crosstalk
50 μm MMF	2 to 8 dB	< -35 dB
SMF	1 to 4 dB	< -45 dB

As anticipated from previous work, *crosstalk from bends an crossings not a problem.*

Crosstalk contribution primarily due to coupling between long adjacent parallel waveguides.

Data Transmission Studies at 10 Gb/s (1 Tb/s Aggregate)

BER plot for two typical waveguides at 10Gb/s, 2³¹-1 PRBS. Solid line denotes BER for link, dashed line BER for corresponding back-to-back.

Recorded eye diagrams for (a) back-to-back and (b) waveguide link for 10Gb/s, 2³¹-1 PRBS.

Dell PowerEdge 2850 servers for GbE tests

Gigabit Ethernet Demonstrated Across Backplane

- full line-rate data transmission with no dropped packets
- transmission across waveguides with highest loss and greatest crosstalk Centre for Photonic Systems

Demonstrated Application of Y-splitters/combiners

Devices used to demonstrate: RoF multicasting/Multimode PON architecture

MM PON Downlink

MM PON Uplink

4 Conclusions

High performance *low cost* photonic transceivers can deliver transmission bandwidth for a range of LAN applications

MMF remains the dominant in-building fibre type

Recent advances in transmission have led to high performance demonstrations - > 10 GbE

However MMF data links have the potential to be useful for interconnect applications also

Simple low cost backplane is implemented with 1 Tb/s capacity

Background Slides

Gigabit Ethernet statistical model results

Calculate –3-dBo bandwidths of the MMF links, which is the key indicator of performance when using conventional receivers. For example:

A new approach:

Normalised worst case impulse and frequency responses

- The worst case discrete impulse response (IPR) and frequency response (FR) for the first four worst case IPR are plotted.
- The responses are normalised such that they have the same 3 dB electrical (1.5 dB optical) effective modal bandwidth (EMB)

Silicon Optoelectronics

Silicon photonics can satisfy distance x bandwidth needs of emerging volume applications.

Key market driver is reduced cost and growing edge bandwidth requirement

Key to reduced cost

Monolithic integration of selected technologies

Standardization of processes and form factors

Opportunity for a \$2G business by 2010

Shannon Capacity versus EMB

Systems Work using Multimode Y-Splitters/Combiners

No fundamental 3 dB loss as in single-mode combiners.

Fig. 1: Schematic of polymer Y-splitters

(b)

Fig. 2: Output facet of a 1x8 splitter (a) photograph (b) IR image with an 850 nm

Innut	Splitter loss (dB)			
Input	1x2	1x4	1x8	
SMF	3.4	6.6	10	
50μm MMF	5	7.8	11	
62.5µm MMF	5.7	9	12.5	
loout	Combiner loss (dB)			
Input	1x2	1x4	1x8	
SMF	0.9	1.5	4	
50μm MMF	4	5.1	7	
62.5µm MMF	4.7	6	9	
	Contro f	or Dhoton	ic Suct	

Uniformity of Splitting/Combining

Shannon Capacity Versus EMB: OM1 at 1300 nm

For the first time:

- Calculated the capacity of MMF
- Derived an analytical worst case model
- Eliminated the need for time consuming statistical models

Expectations for Server Optical Interconnects: 2010

- CMOS frequencies won't exceed 10 GHz (power efficiency)
 - Performance gain from parallelism & sophisticated design
 - System-level: Interconnects & optics get more important in time

Cost per Gb/s for 10–50 m optics must reach \$1 per Gb/s

 Optics for 25 Petabit/sec network cannot cost more than \$25M, to balance remainder of system costs

Longer-link methods will be used for shorter-length links

- Telephone tech (FEC, NEXT/FEXT cancellation, PAM...) in 10GBASE-T
- WDM (probably CWDM) for on-campus links

adapted from Alan Benner, IBM

Market Technology Drivers

- Optical/electrical transition point a moving target
- New applications emerging

Industry	Current BW	Doubles every:	Electrical Limit	Transition Year
Serial Computer Bus	2.5 Ghz	4 Years	15-20 Ghz	12 Years
Backplane	3.6 Ghz	4 Years	10-20 Ghz	8 Years
DVI (Display I/F)	8 Ghz	4 Years	10 Ghz	Soon!
Cabie	200 Mhz (Shared with up to 50 subscribers)	TBD	~200 Mhz (Shared with up to 50 subscribers)	TBD

BW and Volume Drivers

- Requirements for investment:
 - Volume driven by network edge
 - Standardization in processes, form factors, etc

- Computer performance is a function of internal architecture, processor speed, external architecture, data and I/O access ...
- Cluster architectures provide value, and require lots of interconnect
 - now the most common architecture for top 500 machines
 - http://www.top500.org/lists/2005/06/PerformanceDevelopment.php

adapted from Alan Benner, IBM

Component requirements

Computing systems require

- Receivers
 - Optical coupling, light guiding, detector, circuit
- Transmitters
 - Optical coupling, light guiding, modulator/source, circuit
- Filters
- Packaging and Interconnect strategy
- Source strategy
- Integration strategy

Point to point interconnection does not address issues such as:

Fast reconfigurability; bandwidth on demand, low latency

- Ease of redeployment
- Ease of upgradeability

Optical Waveguides for On-Board Links

- Multimode waveguides:
 - relaxed alignment tolerances
 - simple fabrication process
 - \rightarrow potential manufacturing cost efficiency.

• Successful on-board integration can be improved by

- forming components in the guides
 - obtain further cost reduction
 - achieve increased functionality.
- designing complex optical paths
 - minimise link lengths
 - enable advanced on-board topologies.
- However, high-speed, on-board optical networks have stringent power budget requirements:
 - low loss transmission
 - excellent crosstalk performance.
 (eg, the 10GbE standard only allows an 8 dB optical power budget.)

Issues with Electrical Switched Backplanes

- High throughput using a purely electrical backplane requires a very high performance electrical switch at its heart.
- Power dissipation is high thermal management becomes a key concern.
- The backplane is not upgradeable in bitrate without replacing the switch.
- High-bandwidth serial connections pose serious microwave engineering challenges at high bit rates, e.g. above 10 Gb/s
- Parallel electrical solutions require complex spatial routing

Schematic of a Fast Switched Backplane for a Gigabit Switched Router

- After Nick McKeown

Optical interconnects can **improve bandwidth-length products**, **eliminate electromagnetic interference effects** and **reduce thermal costs**.