

Real-Time Communication Analysis for NoCs with Wormhole Switching Zheng Shi and Alan Burns

Real-time system group Department of computer science The University of York

> On-chip Communication:

- Point-to-Point
- Bus
- NoC: packet-switched, shared, optimized for communications
 - Resource efficiency
 - High scalability
 - IP reusability
 - High performance

NoC needs QoS

Differentiated Service Requirement

- Best Effort
- Guaranteed Service

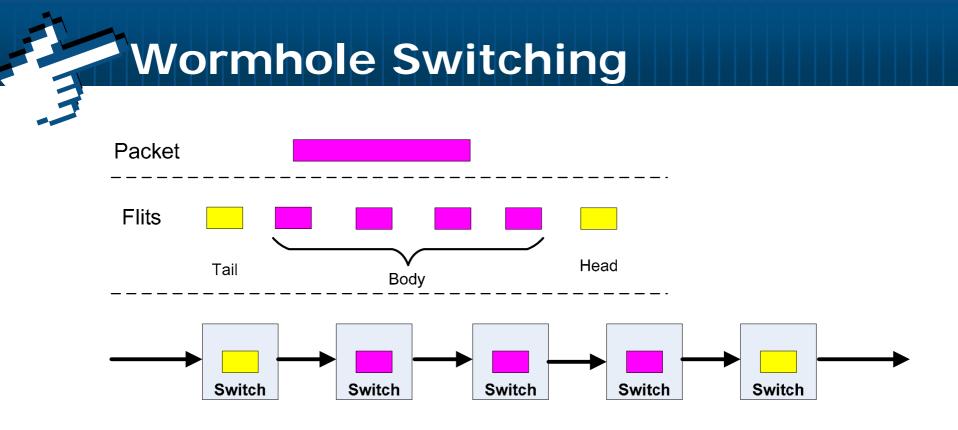
Performance parameters:

latency, bandwidth, bounded jitter and loss probability, inorder data, etc.

Real-Time Service:

- The correctness relies on not only the communication result but also the completion time bound (deadline).
- For hard real-time service, it is necessary that all the packets must be delivered before their deadlines even under worst case scenario.

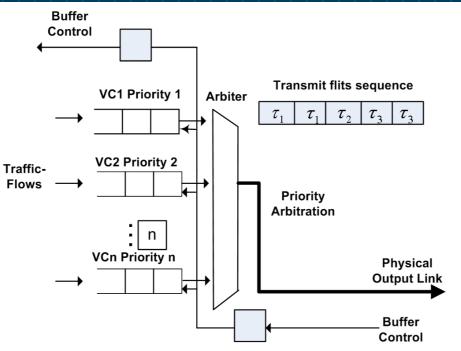
RTSyork


Several Solutions

Contradiction: The network gives more efficiency and flexibility but introduces the unpredictable delay due to the contention. Real-time service, requires the timing to be predictable even under the worst case situation

Contention avoidable

- Circuit Switching : aSoC
- TDM : AEtheral, Nostrum
- Contention acceptable
 - Priority based Wormhole Switching



Vork

Advantages (with Virtual Channels)

- Small Buffer Size
- High Throughput
- Low Average Latency

Priority Router Structure

- There are sufficient VCs at each router
- Each VC is assigned distinct global priority
- Each flow also has distinct priority
- Flow only requests the VC with same priority
- At any time, only the flit with highest priority can access the output link
- Flit-level priority preemption between different VCs

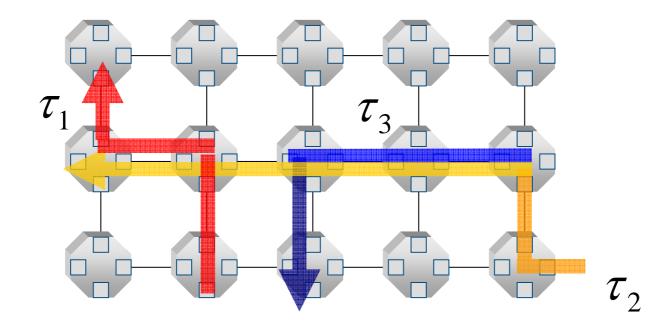
System Model

Characterize traffic-flow

 A traffic-flow is packet stream which traverses the same route from source to destination and requires the same grade of service.

Attribute

- P : Priority
- C : Basic network latency
- T : Period for periodic flow or minimal interval for sporadic flow
- D : Deadline
- J^R : Release Jitter


Interrelationship

- Direct competing: $Path(\tau_i) \cap Path(\tau_j) \neq \phi$ direct interference set: $S_i^D = \{ \forall \tau_j \mid Path(\tau_i) \cap Path(\tau_j) \neq \phi, P_j > P_i \}$
- Indirect competing: $Path(\tau_i) \cap Path(\tau_j) \neq \phi, Path(\tau_j) \cap Path(\tau_k) \neq \phi, Path(\tau_i) \cap Path(\tau_k) = \phi$ indirect interference set

 $S_i^I = \{ \forall \tau_k \mid \text{Path}(\tau_i) \cap \text{Path}(\tau_j) \neq \phi, \text{Path}(\tau_j) \cap \text{Path}(\tau_k) \neq \phi, \text{Path}(\tau_i) \cap \text{Path}(\tau_k) = \phi, P_k > P_j > P_i \}$

Wormhole Switching- A Case

Priority ordering: $P_1 > P_2 > P_3$

$$S_{1}^{D} = \phi, S_{1}^{I} = \phi$$
$$S_{2}^{D} = \{\tau_{1}\}, S_{2}^{I} = \phi$$
$$S_{3}^{D} = \{\tau_{2}\}, S_{3}^{I} = \{\tau_{1}\}$$

York

Characterize Network Latency

- > Worst case network latency R :
- The maximum length of time the packet could take to travel from source to destination
- The flow is schedulable if $R \le D$
- Basic network latency C :

the network latency happens when there no traffic-flow contention exists.

$$C = \left[\frac{L_{\max} + L_{add}}{f_{size}}\right] \cdot f_{size} / B_{link} + Hop \cdot S$$

Model and Assumption

- The physical communication links are treated as shared competition resource
- At any time, only one traffic-flow is permitted to access the shared path
- The packet moves ahead when gets highest priority along the path
- The arrivals of higher priority flows are considered as preemption interference
- The allowable service time for a flow is all the time interval at which no higher priority flow competes for the same physical link

Network Latency Evaluation(1)

Worst Case Network Latency:

$$R_i = C_i + I_i$$

- R_i : worst case latency
- I_i : maximum interference

the packets is supposed with maximum length and released at maximum rate

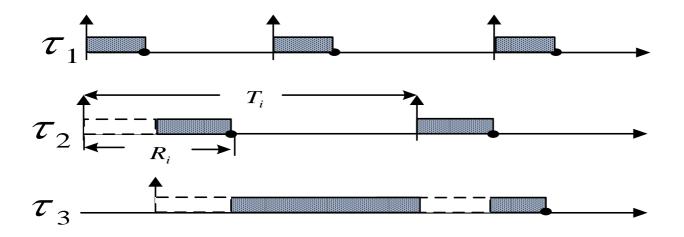
$$I_{i} = \sum_{\forall j \in S_{i}^{D}} \left[\frac{R_{i} + J_{j}^{R}}{T_{j}} \right] C_{j}$$

Network Latency Evaluation(2)

Worst case network latency equation

$$R_{i} = C_{i} + \sum_{\forall j \in S_{i}^{D}} \left[\frac{R_{i} + J_{i}^{R}}{T_{j}} \right] C_{j}$$

The eqaution is solved using iterative technique

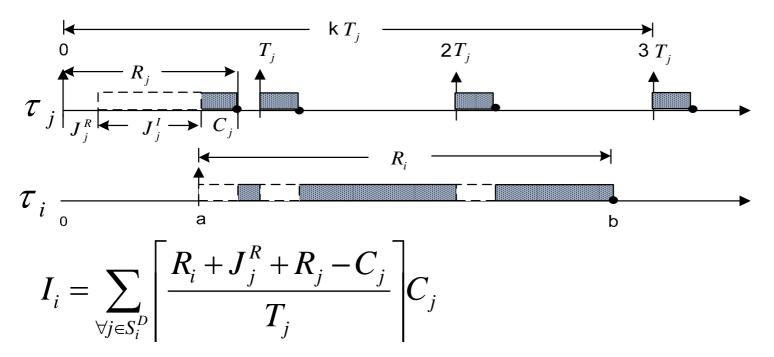

$$R_i^{n+1} = C_i + \sum_{\forall j \in S_i^D} \left[\frac{R_i^n + J_i^R}{T_j} \right] C_j$$

Iterative starts with $R_i^0 = C_i$ and terminates when $R_i^{n+1} = R_i^n$ or $R_i^{n+1} > D_i$ which denotes the deadline miss for this flow.

RTS York

Consider Indirect Interference (1)

Minimal interval between subsequent preemption is less than period



 This could happen only when indirect interference is considered.

Consider Indirect Interference (2)

Preemption interference upper bound

Worst case latency

$$R_{i} = C_{i} + \sum_{\forall j \in S_{i}^{D}} \left[\frac{R_{i} + J_{i}^{R} + R_{j} - C_{j}}{T_{j}} \right] C_{j}$$

Case Example

Trafffic- Flows	С	Ρ	Т	D
$ au_1$	2	1	6	6
$ au_2$	3	2	7	7
$ au_3$	3	3	13	13

• T_3 suffers both direct and indirect interference with $S_3^D = \{\tau_2\}, S_3^I = \{\tau_1\}$

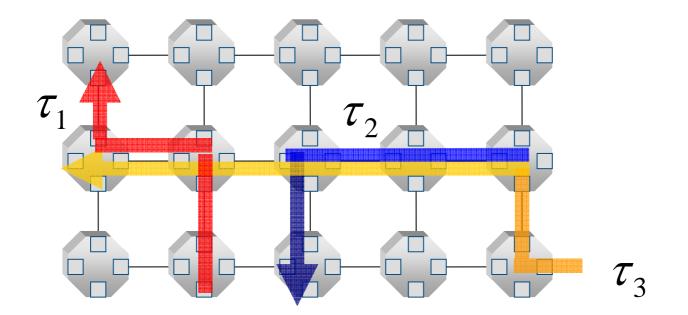
The interference jitter of au_2 referred to

$$\tau_3 \text{ equals } R_2 - C_2 = 5 - 3 = 2$$

So
 $R_3 = C_3 + \left[\frac{R_3 + R_2 - C_2}{T_2} \right] C_2$

which stops at $R_3 = 9$

- For au_1 : there is no higher priority flow than au_1 , so $R_1 = C_1 = 2$
- For τ_2 : τ_2 shares the physical link with higher priority flow τ_1 and $S_2^D = \{\tau_1\}, S_2^I = \phi$

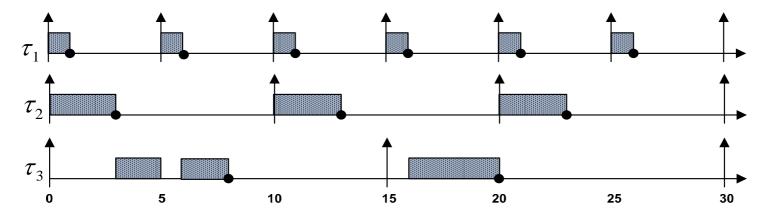

$$R_{2}^{0} = 3$$

$$R_{2}^{1} = 3 + \left[\frac{3}{6}\right]2 = 5$$

$$R_{2}^{2} = 3 + \left[\frac{5}{6}\right]2 = 5$$

Tightness of analysis (1)

Priority ordering:


 $P_1 > P_2 > P_3$

 $S_{1}^{D} = \phi, S_{1}^{I} = \phi$ $S_{2}^{D} = \phi, S_{2}^{I} = \phi$ $S_{3}^{D} = \{\tau_{1}, \tau_{2}\}, S_{3}^{I} = \phi$

ork

Tightness of analysis (2)

Parallel Interference

- When parallel interference exists, the real worst case network latency is no more than the analysis result.
- When parallel interference exists, finding worst case network latency is NP-hard (the proof details refers the paper).
- Our analysis is safe but pessimistic.

- Real time communication service can be supported by priority based wormhole switching technique.
- The schedulable test is derived by worst case network latency analysis.
- Both direct and indirect interferences are taken into account.
- When parallel interference exists, finding worst case network latency is NP-hard, but our analysis still form an upper bound.

