# Statistical Approach to NoC Design

Itamar Cohen, Ori Rottenstreich and Isaac Keslassy

**Technion (Israel)** 





# The traffic matrix in NoCs is often-changing and unpredictable

⇒ makes NoCs hard to design

#### **Road Capacities**

- Goal: Design road capacities between a city and its suburbs
- Let's model the traffic matrices...



#### **Road Capacities**

#### Morning peak: most traffic towards city



#### **Road Capacities**

- Morning peak: most traffic towards city
- Afternoon peak: most traffic leaving city



# **Solution (1): Average-Case**

- Solution (1): plan for average-case
  - i.e. allocate capacity of ~5 for each link.
  - > λ < μ
- Problem: traffic jam during many hours, every day.



# **Solution (2): Worst-Case**

#### Solution (2): plan for worst-case

 i.e. allocate capacity of 10 for each link.



# **Holidays**

 Problem: traffic burst in the holidays
 ⇒ excessive resources

# Solution (3): statistical approach

- Enough capacity for 99% of the time
- Allow for occasional congestion



#### **Back to the NoC world**

- Similar problems in NoC design process
  - > City  $\rightarrow$  Shared cache
  - > Suburbs  $\rightarrow$  Cores
  - Many possible traffic matrices: writing, reading, etc.



#### **Motivation**

Tradeoff: more resources vs. better guarantee

#### "Easy" solution: Worst-Case Guarantee

E.g., no-congestion guarant time

Better when no congestion is allowed

#### Objective: Statistical Guarantee

E.g., no-congestion guaranteet time

Better when power/area are most important

# **Statistical Approach to NoC Design**

#### Given:

- Traffic matrix distribution
  - Topology
  - Routing
  - Link capacities



Compute congestion guarantee -

"95% of traffic matrices will receive enough capacity"

## **CMP (Chip Multi-Processor)**



#### How can we model the future traffic matrix distribution?

#### **Traffic Matrix Distribution**

- Measure on real large CMP networks?
- Problems
  - > Their future applications are unknown
  - Their future traffic types are unknown: Between processors? Cache accesses? Control traffic?
  - Chicken-and-egg problem: traffic might depend on what architecture offers)

#### **Traffic Matrix Distribution**

- General model: any core can communicate with any core - but with a bounded core input/output rate.
  - > Example: each core may send/receive up to 1 Gbps.
  - Used in CMPs [Murali et al. '07] but also backbone networks [Dukkipati et al. '05], interconnection networks [Towles and Dally '02], VPN networks [Duffield et al. '99], routers [McKeown et al. '96]

Core 1 sends 
$$\longrightarrow$$
  
 $T = \begin{pmatrix} 0 & 0.5 & 0.1 & 0.2 \\ 0 & 0 & 0 & 0.6 \\ 0.2 & 0.1 & 0 & 0 \\ 0.1 & 0.1 & 0.3 & 0 \end{pmatrix} \leq 1$ 

Reminder: just one model among many...

# **Statistical Approach to NoC Design**

#### Given:

- Traffic matrix distribution
  - Topology
  - Routing
  - Link capacities



#### Compute congestion guarantee

"95% of traffic matrices will receive enough capacity"

### **Compute Congestion Guarantee**

Show that "95% of all traffic matrices will receive enough capacity on link *l*"

#### $\Leftrightarrow$

- 1. Compute *Traffic-load distribution Plot* (or *T-Plot*) for link *(*
- 2. Show that the load on link *ℓ* is less than its capacity for **95%** of traffic matrices.

#### **Link T-Plot**



### **Global T-Plot**



- We want to provide statistical guarantees on the whole network
  - i.e. on all links
- Global T-Plot: for each traffic matrix *T*, measure maximum load among all links





### **Local T-Plots in NoCs**



#### Given:

- ➤ Traffic matrices T∈S
- > 3x4 mesh topology
- XY routing
- Link l

#### Find T-Plot on



#### **T-Plot**

#### Close-up view:



#### **Are T-Plots Gaussian?**

- Some T-Plots may be well approximated as Gaussian.
- Intuition (Central Limit Theorem): when N grows, the sum of N i.i.d. (independent and identically distributed) random variables converges to a Gaussian distribution.

# **Gaussian T-Plot Example**

- Example: n x n mesh with XY routing.
- Assume i.i.d traffic from *i* to *j*
- Theorem: As n grows, T-Plot for converges to Gaussian.



# **Computing the T-Plot**



- Theorem: for an arbitrary graph and routing, computing the *T-Plot* is *#P-complete*.
- #P-complete problems are at least as hard as NP-complete problems.
  - > NP: "Is there a solution?"
  - #P: "How many solutions?"

# **Computing the T-Plot**



- Idea: use Monte Carlo simulations to approximate T-Plots
  - Plot many points, and count number of points to approximate density.

#### Link T-Plot Vs Global T-Plot

Global T-Plot: for each traffic matrix T, measure maximum load among all links



# Link-Independent Model: Simple Example

> Assume:

> If  $\ell_1$  and  $\ell_2$  independent:

Global Load: 
$$\begin{cases} 0 & w.p.\frac{1}{4} \\ 1 & w.p.\frac{3}{4} \end{cases}$$

#### **Independent-Gaussian Model**



# **Statistical Approach to NoC Design**

#### Given:

- Traffic matrix distribution
  - Topology
  - Routing
  - Link capacities



Compute congestion guarantee –

"95% of traffic matrices will receive enough capacity"

#### **Capacity Allocation Intuition**

Idea: given a total capacity, distribute it so that the overflow probability on each link is the same.



### **Capacity Allocation Intuition**

- Idea: given a total capacity, distribute it so that the overflow probability on each link is the same.
- Theorem: if Gaussian-independent model holds, with same standard-deviation σ on all links, then this scheme is optimal.



#### **Average Flow Delay Model**

- > Assume M/M/1 delay model
- Average flow delay distribution over all traffic matrices, for two different Capacity Allocation (CA) schemes:



# **Statistical Approach to NoC Design**



capacity"

#### **Comparing routing algorithms**

> DOR (XY) and O1TURN ( $\frac{1}{2}$  XY,  $\frac{1}{2}$  YX) on 3x4 mesh:



#### **NUCA network**

More complex CMP architectures show similar results

- NUCA (Non-Uniform Cache Architecture) with sharing degree 4.
- Traffic model: each core (cache) may only send/receive traffic to/from caches (cores) in its sub-network.



#### **NUCA network – Total capacity**

Total capacity required for various Capacity Allocation (CA) targets.



#### **Summary**

- Statistical approach to NoC design
  - > Deals with several traffic matrices
  - Can optimize capacity allocation and routing
- Can be applied to any
  - > Traffic matrix distribution
  - > Topology
  - > Oblivious routing
  - Link capacities

#### Thank you.