Dual-channel access mechanism for cost-effective NoC design

Shijun Lin, Li Su, Depeng Jin, Lieguang Zeng Department of electronic engineering Tsinghua University, Beijing, China

Outline

- Background
- Single-channel access mechanism
- Dual-channel access mechanism
- Experimental results
- Conclusions

Background

- Network-on-Chip (NoC) paradigm is emerging as a new design methodology when entering the billiontransistor era.
- NoC design is different from traditional network design because of the following three characteristics:
 - Resource-limited;
 - Latency-sensitive;
 - Traffic predictability.
- NoC design must be a trade-off between performance and cost!

Single-channel access mechanism

(2) NI design in single-channel access mechanism

In this mechanism,
every IP only has
one channel to
enter the network
even when more
than one virtual
channel is
available.

Figure 1. Router and NI design in single-channel access mechanism.

Dual-channel access mechanism

- Two access channels are provided for every IP.
- Make sure that NoC works at the state of "light-congestion" all the time, thus this mechanism make good use of network capacity and improve the performance.

Dual-channel access mechanism

- Static allocation method is used in the access arbiter since the traffic of NoC is predictable.
- Detailed description:
 - We pre-allocate the access channels for data of different destination IPs according to their average traffic load.
 - The principles of the pre-allocation process:
 - Data of the same destination IP is allocated to the same access channel; therefore, the transmission order is guaranteed.
 - Make sure that the average traffic loads of both access channels are as close as possible so as to increase the utilization of access channels.

Experimental results

• Parameters in our simulation platform

l able 1					
Parameter	Value				
Packet length	16 flits				
Topology	2D-mesh				
Number of IPs	16				
Buffer size of every virtual channel	3 flits				
Buffer size of every access channel	3 flits				
Number of bits in every flit	32				
Total flit number for simulation	120000				

• Comparison of Area

Table 2

	Single-channel access	Dual-channel access	
	Area (NAND gates)	Area (NAND gates)	Increase
router	95242	100709	
NI	2323	4703	
Total	97565	105412	8.04%

Experimental results

• Comparison of Performance

Table 3

Configuration parameters		Single-channel access	Dual-channel access		
			value	improvement	
TL=	F2:F1=2:1;	Th	0.4046	0.4045	-0.02%
0.4050	3 virtual channels	La	11.3	11.1	1.77%
flits/	F2:F1=2:1;	Th	0.4046	0.4045	-0.02%
\mathbf{IP} /	6 virtual channels	La	11.2	9.1	18.75%
routing	F2:F1=4:1;	Th	0.4047	0.4046	-0.02%
clock	3 virtual channels	La	9.8	9.9	-1.02%
cycle	F2:F1=4:1;	Th	0.4047	0.4046	-0.02%
	6 virtual channels	La	9.6	7.7	19.79%
TL	F2:F1=2:1;	Th	0.7078	0.9699	37.03%
=0.9735	3 virtual channels	La	621.4	30.1	95.16%
flits/	F2:F1=2:1;	Th	0.7089	0.9699	36.82%
\mathbf{IP} /	6 virtual channels	La	618.1	24.5	96.04%
routing	F2:F1=4:1;	Th	0.7528	0.9703	28.89%
clock	3 virtual channels	La	509.3	15.3	97.00%
cycle	F2:F1=4:1;	Th	0.7701	0.9703	26.00%
	6 virtual channels	La	480.1	11.4	97.63%

Note: "F2" is the frequency of all the clocks used among routers, NI and IP; "F1" is the frequency of all the clock used inside routers; routing clock cycle is the reciprocal of "F1"; "Th" and "La" represents throughput and latency respectively.

Conclusions

- Dual-channel access mechanism increases the throughput and cuts down average latency greatly with reasonable implementation cost, especially when the traffic load is high.
- Thus, dual-channel access mechanism is more cost-effective than single-channel access mechanism.
- Thank you for your attentions!