The family of 4-phase latch controllers

Graham Birtwistle Ken Stevens DCS, Sheffield ECE, Utah

Async 2008 (April) Newcastle

A systematic way of studying the designspace for untimed, bundled, 4-phase latch controllers.

- 1. Shape of the most concurrent protocol.
- 2. Its family of less-state rich shapes.
- $3.\ {\rm Categorising/relating}$ the family.
- 4. Tabulation of pipeline behaviours.

Setting:

notation in, \overline{out}

Suitable abstraction for LC behaviours?

We argue that:

• internal states: implicit part of a spec • logic: just delays lr (or \overline{la})

• enable: another lateral delay

STG: Furber and Day, sect 6

- In our abstractions, internal states a and
 b are hidden; likewise lt.
- The constraints they impose will remain.
- Each abstraction will have several circuit implementations, each of which have the same pipeline characteristics.

Pipeline models

Outputs $\overline{rr}/\overline{la}$ and Inputs lr/ra

STGs/Abstract Shape/Family

- 1. Several STG's \rightarrow same abstract shape.
- 2. We can compare shapes.
- 3. We can define the maximal shape ... and its derivative family.

Max latch controller protocol

$$egin{array}{lll} L & = & lr \uparrow & . & \overline{la} \uparrow & . & lr \downarrow & . & \overline{la} \downarrow & . & L \ & & = & \overline{rr} \uparrow & . & ra \uparrow & . & \overline{rr} \downarrow & . & \overline{ra} \downarrow & . & R \ & LC & = & (& L \mid R &) \end{array}$$

In CCS $lr\uparrow.\overline{la}\uparrow$ is read as $lr\uparrow$ then some time later $\overline{la}\uparrow$ All possible interleavings are traced

$$L \hspace{0.5cm} = \hspace{0.1cm} lr \! \uparrow \hspace{0.1cm} . \hspace{0.1cm} \bullet \hspace{0.1cm} . \hspace{0.1cm} \overline{la} \! \uparrow \hspace{0.5cm} . \hspace{0.1cm} lr \! \downarrow \hspace{0.1cm} . \hspace{0.1cm} \overline{la} \! \downarrow \hspace{0.1cm} . \hspace{0.1cm} L$$

$$R = ullet \cdot \overline{rr} \!\! \uparrow \quad \cdot ra \!\! \uparrow \cdot lacktriangle \cdot \overline{rr} \!\! \downarrow \cdot \overline{ra} \!\! \downarrow \cdot R$$

$$LC_{max} = (L \mid R \mid \bullet \mid \blacksquare) \setminus \{\bullet, \blacksquare\}$$

UNTIMED Cutaway Rules

Cheap version: LC_{max} , shape 9599.

- 1. same state when quiescent
- 2. no holes in the state graph
- 3. always accept an input lr/ra
- 4. may delay an output $\overline{la}/\overline{rr}$

The Cut-Away Notation

. 0 0 0 0 0 0 0 0

Left cut-aways constrain \overline{rr}/ra .

Right cut-aways constrain \overline{la}/lr .

Cut-Away Notation II

- L1001 o R0040 (Furber/Day, sect. 6)
- ullet ALL L o R o generates the whole family
- The cutaway options make it trivial to order the family into a lattice

$$egin{aligned} & m{L}_1 \ \mathbf{o} \ m{R}_1 \supseteq m{L}_2 \ \mathbf{o} \ m{R}_2 \ & \mathbf{IFF} \ & m{L}_1 \supseteq m{L}_2 \ \mathbf{AND} \ m{R}_1 \supseteq m{R}_2 \end{aligned}$$

Pipeline categories

Is shape preserved when pipelined?

Protocol categories

- 6 categories emerge:
 - : STABLE
 - **.:** 2reg
 - : linear

regular: O(8): as O(16)

 $\frac{dead}{dead}$:

10

11

Parallel pipelines

$PP_{w,d}$

L0000	L1001	L1111	L2002	L2112	L3003	L3113	L2222	L3223	L3333	BL o R
:	:	:	•	:	:	:	:	:	:	R0000 R0020 R0040
:			••••	:	:		:	:	:	R0022 R0042 R2022 R2042
:	:	:	•	:	:	:	:	:		R2222 R2242 R2262
•••	:	:	•••	:	:	:	•	:	•	R0044 R2044 R4044
:	:	:	• • •	:	:	•	•	•		R2244 R2264 R4244 R4264

Independent of w.

Same result throughout each block.
Maths says TL; Engineering BR?

Single pipelines

0000	L1001	L1111	L2002	L2112	L3003	L3113	L2222	L3223	L3333	LoR
48	48	44	44	42	42	40	40	36	36	R0000
48 44	48 44	44 40	44 40	42 38	42 38	40 36	40 36	36 32		R0020 R0040
44 42	44 42	40 38	40 38	38 36	38 36	36 34	36 34	32 30		R0022 R0042
42	42	38	38	36	36	34	34	30		R2022
40	40	36	36	34	34	32	32	28		R2022
40	40	30	- 30	34	34	32	- 32	20	D	R2042
40	40	36	36	34	34	32	32	28	\mathcal{D}	R2222
36	36	32	32	30	30	28	28	24	\mathcal{D}	R2242
36	36	32	32	30	\mathcal{D}	D	28	\mathcal{D}	\mathcal{D}	R2262
40	40	36	36	34	34	32	32	28	28	R004
36	36	32	32	30	30	28	28	24		R2044
36	36	D	32	\mathcal{D}	30	20 D	D 20	\mathcal{D}		R4044

 \mathbf{SP}_2

lacktriangle shapes behave as lacktriangle shapes for $d \geq 2$. Many distinct shapes. Equivalences stay in the same box.

24 22 22 22 20 \mathcal{D} 22 \mathcal{D} 20 20 \mathcal{D}

24 22 D D

28 28 26 26 26 26 24 24

Lattice of stable shapes

13

14

Published circuit shapes

L0000 L1001 L1111	L2002 L2112 L3003 L3113	L2222 L3223 L3333	$\mathbf{L} \circ \mathbf{R}$
	•		R0000 R0020 R0040
			R0022 R0042 R2022 R2042
	•	•	R2222 R2242 R2262
	•		R0044 R2044 R4044
	•		R2244 R2264 R4244 R4264

Includes: Early; Broadish; Broad Un-/Semi-/Fully-Decoupled Normally open/normally closed

What's been done

- 1. Idea of an abstract design shape and how it composes.
 - Each shape may have many implementations but each will maintain the piped behaviour of its shape
- 2. Family of untimed, bundled protocols derived by cutaways from the most state rich shape.
 - Cutaways enable us to order the family.
- 3. We have classified pipeline behaviours for the whole family of shapes.
 - And can predict mixed parallel pipeline behaviour from their cutaways.

What's to be done

- 1. Circuit chrestomathy and shape cook book. Any other circuits out there?
- 2. Including lt signals (goes exponential).
- 3. Mixed parallel pipelines $\sqrt{.}$ Single pipelines en route.
- 4. Maths/Engineering interplay and insights.
- 5. Timed disciplines.
- 6. Y (Ken is generating circuits).

16

17