FPGA Implementation of an Asynchronous Processor with Both Online and Offline Testing Capabilities

Nikolaos Minas Matthew Marshall Gordon Russell Alex Yakovlev

Outline

- Introduction.
- Error Detection/Correction overview.
- Information Redundancy Scheme.
- Dong's Code.
- CED Pipeline.
- Asynchronous Reconfigurable Tester.
- Results.
- Conclusions.

Introduction

- Technological advances reduce reliability of components due to:
 - Process variation
 - Reduction in power supply voltages
 - High operating frequencies
- These factors increase the occurrence of transient and intermittent faults.

Intermittent and Transient Fault characteristics

Intermittent

- Poor fabrication.
- Process Variation.
- Occur repeatedly at a give location.
- Errors occur in bursts once activated.

Transient

- Alpha or neuron particles.
- Power supply transients.
- Interconnect noise.
- EMI
- Random and short duration.

Error Detection/Correction Overview

General Architecture of CED Scheme

	Hardware	Time	Information
Speed	Fast	Slow	Medium
Area	High	Medium	Medium
Power	High	Medium	Low

Information Redundancy Schemes

- Check bits are attached to the data bits to form a code word.
- For all input combinations only a subset represents valid information.
- In Berger code the number of check bits is a function of the data bits.
- In Dong's code the number of check bits are a function of error coverage.

Dong's Code Formation

The completed Check Symbol is made of two parts

C1 is a count of the zeroes within the data word, modulo (m+1)('m' is the maximum weight of unidirectional errors to be detected by the code) C2 is a count of the number of zeroes in C1. Completed codeword is - Data word||C1||C2. $C1 = log_2(m+1)$

As a result, check bits are not a function of the data word.

Check Symbol Prediction

- No single code can detect both :
 - data processing errors.
 - data transfer errors.

Consequently the technique of Check Symbol Prediction is used.

Pipeline Processor

- To demonstrate the applicability of Dong's Code, a 32-bit asynchronous RISC based processor was implemented.
- The processor has a repertoire of 32 instructions related to:

ALU Operation	18 instructions
Program Flow	9 instructions
Memory Access	2 instructions
System set Op.	6 instructions

CED Pipeline Architecture

Asynchronous Reconfigurable Tester

- Automatic Test Equipment (ATE) are not capable of fully testing Asynchronous circuits because of the absence of a global clock.
- The physical cost of testing can be reduced by using FPGAs as an embedded test platform.

Stimuli Pipeline Architecture

- FIFO stages have been designed using a GALS approach to take advantage of the FPGA hardware resources.
- Asynchronous communication was achieved using controllers to generate the Request (Req), Acknowledge (Ack) and Enable signals.

Error Mapping

Fault-Free Output

Results – Error Detection

Operand Error

Opcode Error

Results- Power consumption and area overheads

- If direct comparison is to be made between different processor design styles it is essential that they have a common:
 - Architecture.
 - Instruction Set.
 - Technology.
- To this end 4 designs of an identical processor architecture were undertaken, that is,
 - Synchronous processor with/without CED.
 - Asynchronous processor with/without CED

Results – Power Dissipation ASIC

Results – Power Dissipation FPGA

Results – Area Overhead

FPGA Layout

- The asynchronous CED processor and the asynchronous tester were implemented in a Virtex2-1000 FPGA from Xilinx.
- The system utilised 57% of the total FPGA area.
- The processor comprises 5375 LUTs and the tester 517 LUTs

Asynchronous Circuit on FPGAs

Problems

- Timing closure
- Place and Route
- Delay Chains

Solutions

- Control Signals placed as clocks.
- Manual P&R.
- Use of carry chain gates to create predictable delays.

Conclusions

- 32-bit asynchronous RISC based processor with CED was designed in both ASIC and FPGA.
- Implementation of an asynchronous reconfigurable tester.
- Results showed that the asynchronous CED processor offers significant advantages over the synchronous equivalent, in area overheads and power consumption.

	ASIC	FPGA
Area	4%	6%
Power	25%	29%

Thank you!!

Any Questions?

Check Symbol Prediction Circuit

Example of Dong's Code

Information Bits (I)		Number of Zeros in 'I'	Zeros mod 8	C1	C2		
00000000	00000000	00000000	00000000	32	0	000	11
00000000	00000000	00000000	00000001	31	7	111	00
00000000	00000000	00000000	00000011	30	6	110	01
00000000	00000000	00000000	00000111	29	5	101	01
00000000	00000000	00000000	00001111	28	4	100	10
00000000	00000000	00000000	00011111	27	3	011	01
00000000	00000000	00000000	00111111	26	2	010	10
00000000	00000000	00000000	01111111	25	1	001	10
00000000	00000000	00000000	11111111	24	0	000	11

Error Coverage for Dong's Code

Information Bits	Value of 'm'	Bits in C1	Error Coverage (%)
16	3	2	93.74
32	3	2	93.75
48	3	2	93.75
64	3	2	93.75
16	7	3	99.04
32	7	3	98.54
48	7	3	98.33
64	7	3	98.47

'm' is the maximum weight of unidirectional errors to be detected by the code

Dong's Code Error Detection Ability

Type of error affecting the information bits	Type of error affecting the check bits	Number of errors detected by the code
Unidirectional 1→0 OR 0→1	Error free	Errors of weight ≠ (m+1) or multiples
Unidirectional 1→0 OR 0→1	Unidirectional 1→0 OR 0→1	All errors
Bi-directional 1→0 AND 0→1	Unidirectional 1→0 OR 0→1	All errors

Area Overheads

