Asynchronous Computing in Sense Amplifier-based Pass Transistor Logic

Tsung-Te Liu, Louis P. Alarcón, Matthew D. Pierson, and Jan M. Rabaey

University of California, Berkeley

1

- Motivation
- Sense Amplifier-based Pass Transistor Logic (SAPTL)
- Self-timed SAPTL
 - Bundled-data self-timed SAPTL design
 - Dual-rail self-timed SAPTL design
- Simulation results
 - Area
 - Energy-delay
 - Leakage
- Conclusion

Focus: Ultra Low Voltage Design

Issue-1:

Leakage dominates at low supply voltage

Leakage dominates the power and energy at low V_{DD}

Leakage determines standby power for portable devices

Issue-2:

Delay is large & variable at low supply voltage

- Motivation
- Sense Amplifier-based Pass Transistor Logic (SAPTL)
- Self-timed SAPTL
 - Bundled-data self-timed SAPTL design
 - Dual-rail self-timed SAPTL design
- Simulation results
 - Area
 - Energy-delay
 - Leakage
- Conclusion

Solution: Use pass transistor logic!

Pass Transistor Network

- No VDD and GND connections in the logic path
 - Nearly zero leakage through the logic path
 - Can keep scaling down the threshold voltage

[JOLPE]

SAPTL:

Sense Amplifier-based Pass Transistor Logic

SAPTL Computation: to contain leakage while reducing threshold

Stack

Sense Amplifier

- Current steering
- Works for very low I_{on} to I_{off} ratio
- Could be programmable

- \bullet Outputs pre-charge to V_{DD} to reset
- Latch retains the computation results
- Low voltage operation down to 300mV

SAPTL Control: to deal with delay variation & uncertainty

Fact:

- Computation delay varies in actual technology environment
 - I_{on} to I_{off} current ratio varies and changes the stack delay
 - Offset variations in the sense amplifier reduce the stack output margins
- Energy efficiency is function of timing accuracy
 - Turn off the sense amplifier when inactive
- Synchronous timing is too conservative
 - Unable to track local delay variations
 - Additional skew and jitter in the clock distribution

Solution: Use Self-timed control!

- Exploit local timing information
- Low implementation cost in SAPTL

- Motivation
- Sense Amplifier-based Pass Transistor Logic (SAPTL)
- Self-timed SAPTL
 - Bundled-data self-timed SAPTL design
 - Dual-rail self-timed SAPTL design
- Simulation results
 - Area
 - Energy-delay
 - Leakage
- Conclusion

Data Evaluation in Bundled-Data Self-Timed SAPTL

* RTA : Relative Timing Assumption 12

Data Reset in Bundled-Data Self-Timed SAPTL

Solution to Avoid Data Reset Glitch

Use different handshake protocols

- Use $Din \downarrow < Reqin \downarrow$ for data evaluation
- Use Reqin↑ < Din↑ for data reset

Implementation-1: Late reset

- Increase data delay: delay data input signals
- Easy to implement
- But...retards the data reset operation

Implementation-2: Early reset

- Decrease control delay: trigger driver before data inputs reset
- Maintains the original data reset latency and throughput
- But...requires an additional relative timing assumption ...which is easy to meet
 Our choice!

Glitch-Free Bundled-Data Self-Timed SAPTL

- Replace the global clock signal with local handshake logic
- Delay line controls the local timing
- Still have a delay-matching issue $(T_{Control} > T_{Data})$

- Motivation
- Sense Amplifier-based Pass Transistor Logic (SAPTL)
- Self-timed SAPTL
 - Bundled-data self-timed SAPTL design
 - Dual-rail self-timed SAPTL design
- Simulation results
 - Area
 - Energy-delay
 - Leakage
- Conclusion

Dual-Rail Self-Timed SAPTL Design

Dual-Rail Self-Timed SAPTL

- No delay matching issue anymore
- C-element combines several functions
 - Protocol control
 - Signal recovery
- Hardware complexity similar to the original synchronous SAPTL design

- Motivation
- Sense Amplifier-based Pass Transistor Logic (SAPTL)
- Self-timed SAPTL
 - Bundled-data self-timed SAPTL design
 - Dual-rail self-timed SAPTL design
- Simulation results
 - Area
 - Energy-delay
 - Leakage
- Conclusion

SAPTL5 Area Comparison in 90-nm CMOS

Synchronous SAPTL: 20 μm x 18 μm

Bundled-data SAPTL:

25 μm x 19 μm (~ 32% larger area)

* Dual-rail SAPTL: 20 μm x 21 μm (~ 17% larger than synchronous SAPTL)

Energy-Delay Simulations

Leakage Simulations

Conclusion

- SAPTL is a promising candidate for low energy computation at low supply voltage
- Self-timed operation improves reliability and energy-delay performance without increasing hardware complexity
- Dual-rail self-timed SAPTL

achieves better energy and speed performance in technologies with process variations

Acknowledgement

- Marly Roncken and Ivan Sutherland
- Berkeley Wireless Research Center
- NSF Infrastructure Grant
- STMicroelectronics
- Gigascale Systems Research Center

Thank you!