
A Level-Encoded Transition Signaling Protocol
for High-Throughput

Asynchronous Global Communication

Peggy B. McGee, Melinda Y. Agyekum, Moustafa M. Mohamed
and Steven M. Nowick

{pmcgee, melinda, mmohamed, nowick}@cs.columbia.edu

Department of Computer Science
Columbia University

April 10, 2008

1/48

Trends in Digital Systems Design

I Increased design complexity
• More functionality on a single chip

→ Smaller transistor size
→ Larger die size

• Multiple clock domains
I High-performance computing

• Multi-Giga Hertz clock rate
• Multiple independent computation nodes
→ Processor cores, memories, etc.

I Plug-&-play components
• For re-usability

System-on-Chip (SoC)

2/48

System-on-Chip (SoC): Challenges

I Heterogeneity
• Multiple clock domains
• Mixed asynchronous/synchronous components

I Wires do not scale at the same rate as transistors
• Increasing proportion of delay in interconnects
• Challenges for global routing in physical design

I Deep submicron effects
• Handling dynamic timing variability, crosstalk, EMI, noise, etc.
• Clock jittering and/or drifting effects

I Power dissipation
• Interconnects a significant source of of power

Need for new approaches for interconnect design

3/48

SoC Communication Fabric: Ideal Requirements

I Speed
• High throughput, low latency

I Low power
• Low switching activity

I Robustness
• Against timing variation
• Handling dynamic voltage scaling
• Handling single-event upset effects (soft errors)

I Flexibility
• Easy integration of modular Intellectual Properties (IPs)

4/48

Asynchronous Design for SoC Communication

I Potential benefits of asynchronous design

• Significant power advantage
→ No clock routing
→ “Compute-on-demand” approach

• Timing robustness using delay-insensitive (DI) encoding
→ Eliminates global timing constraints
→ Accommodates uncertainties in routing delay
→ Accommodates skew between bits

• Supports modular design methodologies
→ e.g. GALS (globally-asynchronous, locally-synchronous)
→ Mixed synchronous/asynchronous components

Asynchronous design well-suited for ideal
requirements of SoC communication

5/48

Application Model: Target SoC Architecture

Computation
node

Asynchronous /
Synchronous

Computation
node

Asynchronous /
Synchronous

Data
encode

or
decode

Data
encode

or
decode

Asynchronous
communication channel

Our focus

6/48

Application Model: Target SoC Architecture

Computation
node

Asynchronous /
Synchronous

Computation
node

Asynchronous /
Synchronous

Data
encode

or
decode

Data
encode

or
decode

Asynchronous
communication channel

Our focus

1. Timing-robust, high-throughput
asynchronous encoding scheme

6/48

Application Model: Target SoC Architecture

Computation
node

Asynchronous /
Synchronous

Computation
node

Asynchronous /
Synchronous

Data
encode

or
decode

Data
encode

or
decode

Asynchronous
communication channel

Our focus

2. Protocol conversion interface
→ Allows separation of computation and communication

• Some codes are better for computation
• Some codes are better for communication

1. Timing-robust, high-throughput
asynchronous encoding scheme

6/48

Application Model: Target SoC Architecture

Computation
node

Asynchronous /
Synchronous

Computation
node

Asynchronous /
Synchronous

Data
encode

or
decode

Data
encode

or
decode

Asynchronous
communication channel

Our focus

Current focus is on asynchronous computation nodes
→ Expandable to synchronous

6/48

Key Contributions: Theoretical

I A new class of delay-insensitive code
for global communication

“Level-Encoded Transition Signaling (LETS)”

• Delay-insensitive
→ Timing-robust

• Uses two-phase (transition) signaling
→ High throughput: no return-to-zero phase

→ most existing schemes use four-phase: have spacer phase
→ Low switching activity

• Level-encoded data
→ Data values easily extracted from encoding

• Supports 1-of-N encoding
→ Lower switching activity

→ compared to existing level-encoded transition signaling code
→ Main focus: 1-of-4 codes

7/48

Key Contributions: Practical

I Practical 1-of-4 LETS codes
• Two example codes shown
→ “Quasi-1-hot/cold”
→ “Quasi-binary”

I Generalization to 1-of-N LETS codes
• First to demonstrate 1-of-N level-encoded codes
• Systematic procedure to generate LETS codes for all N = 2n

I Hardware support
• Efficient conversion circuit for 1-of-4 LETS proposed
→ To/from 4-phase dual-rail signaling

• Pipeline design for global communication proposed
→ Improves throughput

8/48

Outline

I Introduction
I Background

• Handshake protocol control signaling
• Handshake protocol: control signaling + data
• Asynchronous data encoding

I 1-of-4 LETS codes
I 1-of-N LETS codes
I Hardware support
I Analytical evaluation

I Conclusions

9/48

Handshake Protocol Control Signaling: 4-Phase

1

2

3

4
REQ

ACK One
transactionevaluate reset

transaction # 1

I Four wire transition events per transaction
I All wires must return to zero

→ Before next transaction

10/48

Handshake Protocol Control Signaling: 2-Phase

1

2

1

2
REQ

ACK

transaction #1 transaction #2

Two
transactions

I Two wire transition events per transaction

I No return-to-zero phase

11/48

Handshake Protocol: Control Signaling + Data

Sender Receiver

Data wire

Control = Ack

12/48

Handshake Protocol: Control Signaling + Data

Sender Receiver

Data

12/48

Handshake Protocol: Control Signaling + Data

Sender Receiver

Entire data wave arrives

12/48

Handshake Protocol: Control Signaling + Data

Sender Receiver

Entire data wave arrives

Receiver sends Ack

12/48

Handshake Protocol: Control Signaling + Data

Sender Receiver

Entire data wave arrives

Receiver sends Ack

2-phase transition signaling protocol completes
→ Transition signaling = non-return-to-zero (NRZ)

12/48

Handshake Protocol: Control Signaling + Data

Sender Receiver

Spacer tokens (spacer = data reset to zero)

Round trip for 4-phase (return-to-zero) protocol

12/48

Handshake Protocol: Control Signaling + Data

Sender Receiver

All wires reset to zero

Receiver sends Ack

4-phase (return-to-zero) protocol completes

12/48

Asynchronous Data Encoding: DI Codes

I Properties of delay-insensitive (DI) codes

• Timing-robust
→ Insensitive to input arrival time

• Completion of data transaction encoded into data itself

→ Unambiguous recognition of code
→ no valid codeword seen when transitioning between codewords

13/48

DI Return-to-Zero (RZ) Code #1: Dual-Rail

I Two wires to encode a single bit

a

(1 bit of data) a1

a0

Encoding Symbolic value
a1 a0 a

0 0 “reset” value
0 1 0
1 0 1
1 1 illegal

I Each dual-rail pair provides
• Data value: whether 1 or 0 is being transmitted
• Data validity: whether data is a value, illegal or reset

I Main benefit: allows simple hardware for computation blocks
I Main disadvantage: low throughput and high power

→ Needs reset phase: all bits always reset to zero

14/48

DI Return-to-Zero (RZ) Code #2: 1-of-N

I N wires to encode log N bits (one-hot encoding)

a

(logN bits of data)

aN−1

a1

a0

Example: 1-of-4 code
Encoding Symbolic value

a3 a2 a1 a0 a

0 0 0 0 “reset" value
0 0 0 1 00
0 0 1 0 01
0 1 0 0 10
1 0 0 0 11

All other codewords illegal

I Main benefit: uses lower power than dual-rail
→ 1 out of N rails changes value per data transaction

I Main disadvantage: gets expensive beyond 1-of-4
→ Coding density decrease
→ Complicated to concatenate irregularly-sized data streams

15/48

DI Non-Return-to-Zero (NRZ) Code #1: LEDR

LEDR = Level-Encoded Dual-Rail
I Two wires to encode a single bit

a

(1 bit of data) parity rail

data rail

Encoding Symbolic
value

Phase Parity Data a

rail rail
Even 0 0 0

1 1 1
Odd 1 0 0

0 1 1I Properties of LEDR codes:
• Level encoded: can retrieve data value directly from wires
• Alternating phase protocol: between odd and even phases
• Only 1 rail changes value: per bit per data transaction

Dean et al., “Efficient Self-Timing with Level-Encoded 2-Phase Dual-Rail (LEDR)”, Proc.
of UCSC Conf. on Adv. Research in VLSI, ’91

16/48

DI Non-Return-to-Zero (NRZ) Code #1: LEDR (cont’d)

I Main benefits
• No return-to-zero phase
→ High throughput, low power

• Easy to extract data
I Main disadvantages

• Significantly more complicated function blocks
→ No practical solutions have been proposed
→ Potential solution strategy:

→ LEDR for global communication
→ 4-phase RZ (dual-rail or single-rail) for computation
→ Need efficient hardware for conversion between protocols:
Mitra, McLaughlin and Nowick, “Efficient asynchronous protocol converters
for two-phase delay-insensitive global communication”, ASYNC’07

• Uses more power than synchronous communication
→ Uses less power than RZ

17/48

Outline

I Introduction
I Background

I 1-of-4 LETS codes
I 1-of-N LETS codes
I Hardware support
I Analytical evaluation

I Conclusions

18/48

LETS Codes: Motivation & Contributions

“LETS = Level-Encoded Transition Signaling”
I A new class of delay-insensitive codes

• Extension of LEDR = 1-of-2 LETS
→ Uses fewer wire transitions per data transaction
→ Analogous to 1-of-N extension to dual-rail in RZ

• Goal:
→ Generate and evaluate entire family of 1-of-N codes

I Key benefits
• Maintains benefits of LEDR
→ High throughput
→ Delay-insensitive
→ Efficient hardware conversion to 4-phase protocols

• Additional benefit
→ Lower power consumption than LEDR

19/48

1-of-4 LETS Code Derivation: Overview

w=0

w=1

x

y
z

Starting point: 4-bit code space

Code space represented by 4-D hypercube

16 codewords in code space

20/48

1-of-4 LETS Code Derivation: Overview

w=0

w=1

x

y
z

→ such that all LETS properties are observed

Goal: assign symbols to codewords
→ Symbols to assign = {S0, S1, S2, S3}
→ Codewords = {0000, 0001,, 1111}

20/48

1-of-4 LETS Code Derivation: Overview

w=0

w=1

x

y
z

Goal: assign symbols to codewords
→ Symbols to assign = {S0, S1, S2, S3}
→ Codewords = {0000, 0001,, 1111}

Rule 2 (Reachability):
→ Each symbol Sx must reach all symbols S0 − S3 in opposite phase

Rule 1 (Alternating phases):
→ Odd and even phases must alternate

20/48

1-of-4 LETS Code Derivation: Details

w=0

w=1

x

y
z

S0

Step 1: assign arbitrary symbol to arbitrary codeword

0000

EVEN phase

21/48

1-of-4 LETS Code Derivation: Details

w=0

w=1

x

y
z

S0

S0
S2

S3

S1

Step 2: assign symbols to all neighbors of S0 at 0000 in ODD phase

Rule 1 (Reachability):
→ Each symbol Sx must reach all symbols S0 − S3 in opposite phase

ODD phase

21/48

1-of-4 LETS Code Derivation: Details

w=0

w=1

x

y
z

S0

S0
S2

S3

S1

EVEN phase

Step 3: assign symbols to all neighbors of S1 at 1000 in EVEN phase

Assign neighbors to S1

21/48

1-of-4 LETS Code Derivation: Details

w=0

w=1

x

y
z

S0

S0
S2

S3

S1

EVEN phase

Step 3: assign symbols to all neighbors of S1 at 1000 in EVEN phase

S0 already assigned to 0000

21/48

1-of-4 LETS Code Derivation: Details

w=0

w=1

x

y
z

S0

S0
S2

S3

S1

S2’
S1’

S3’

EVEN phase

Step 3: assign symbols to all neighbors of S1 at 1000 in EVEN phase

Assign S1, S2 and S3 to remaining neighbors

21/48

1-of-4 LETS Code Derivation: Details

w=0

w=1

x

y
z

S0

S0
S2

S3

S1

S2’
S1’

S3’

S1’

S3’

S2’

S0’

S3

S1

S2

S0’
Final steps: complete symbol assignment

Follow same reasoning in previous steps

21/48

1-of-4 LETS Code Derivation: Summary

w=0

w=1

x

y
z

S0

S0
S2

S3

S1

S2’
S1’

S3’

S1’

S3’

S2’

S0’

S3

S1

S2

S0’

Code space divided into EVEN and ODD phases

Entire code space filled up

Codewords in even phase

Codewords in odd phase

22/48

1-of-4 LETS Codes: Code Space

I Many valid 1-of-4 codes possible
• 1152 unique codes derivable from method shown

→ Complete enumeration derived in paper

I Some codes more “practical” than others
• All data values easily extracted from codeword

I Our focus: Two “Practical” codes
• “Quasi-1-hot/cold”
• “Quasi-binary”

23/48

A Practical 1-of-4 LETS Code: “Quasi-1-Hot/Cold"

symbol r3 r2 r1 r0

S0 1 0 0 0
S1 0 1 0 0
S2 0 0 1 0
S3 0 0 0 1

S0 1 1 1 1
S1 0 0 1 1
S2 0 1 0 1
S3 0 1 1 0

symbol r3 r2 r1 r0

S0’ 0 1 1 1
S1’ 1 0 1 1
S2’ 1 1 0 1
S3’ 1 1 1 0

S0’ 0 0 0 0
S1’ 1 1 0 0
S2’ 1 0 1 0
S3’ 1 0 0 1

16 codewords for 4 symbols

24/48

A Practical 1-of-4 LETS Code: “Quasi-1-Hot/Cold"

symbol r3 r2 r1 r0

S0 1 0 0 0
S1 0 1 0 0
S2 0 0 1 0
S3 0 0 0 1

S0 1 1 1 1
S1 0 0 1 1
S2 0 1 0 1
S3 0 1 1 0

symbol r3 r2 r1 r0

S0’ 0 1 1 1
S1’ 1 0 1 1
S2’ 1 1 0 1
S3’ 1 1 1 0

S0’ 0 0 0 0
S1’ 1 1 0 0
S2’ 1 0 1 0
S3’ 1 0 0 1

ODD
code-
words

EVEN
code-
words

Code space divided into ODD and EVEN phases

24/48

A Practical 1-of-4 LETS Code: “Quasi-1-Hot/Cold"

symbol r3 r2 r1 r0

S0 1 0 0 0
S1 0 1 0 0
S2 0 0 1 0
S3 0 0 0 1

S0 1 1 1 1
S1 0 0 1 1
S2 0 1 0 1
S3 0 1 1 0

symbol r3 r2 r1 r0

S0’ 0 1 1 1
S1’ 1 0 1 1
S2’ 1 1 0 1
S3’ 1 1 1 0

S0’ 0 0 0 0
S1’ 1 1 0 0
S2’ 1 0 1 0
S3’ 1 0 0 1

ODD
code-
words

EVEN
code-
words

Multicode: 2 codewords for each symbol in each phase

24/48

A Practical 1-of-4 LETS Code: “Quasi-1-Hot/Cold"

symbol r3 r2 r1 r0

S0 1 0 0 0
S1 0 1 0 0
S2 0 0 1 0
S3 0 0 0 1

S0 1 1 1 1
S1 0 0 1 1
S2 0 1 0 1
S3 0 1 1 0

symbol r3 r2 r1 r0

S0’ 0 1 1 1
S1’ 1 0 1 1
S2’ 1 1 0 1
S3’ 1 1 1 0

S0’ 0 0 0 0
S1’ 1 1 0 0
S2’ 1 0 1 0
S3’ 1 0 0 1

1-hot 1-cold

1-cold 1-hot
Quasi-1-hot/1-cold data value easily extracted from codeword

24/48

Outline

I Introduction
I Background

I 1-of-4 LETS codes
I 1-of-N LETS codes
I Hardware support
I Analytical evaluation

I Conclusions

25/48

1-of-N LETS Codes

I Goal
• To extend solution for 1-of-4 LETS codes to 1-of-N

I Challenge:
• Solution is not obvious for arbitrary N
• Must satisfy several properties

→ Level-encoding: data can be extracted directly from codeword
→ Transition signaling: each symbol must reach all others via 1 flip

→ alternating phase

I Contributions
• Proof: existence of legal LETS codes for every N = 2n

• Systematic procedure to generate LETS codes
→ LETS properties formulated as set of constraints
→ Constraints captured in code generator matrix
→ Many different LETS codes exist for each N

See paper for details

26/48

Outline

I Introduction
I Background

I 1-of-4 LETS codes
I 1-of-N LETS codes
I Hardware support

• Conversion circuit: interfacing channels to nodes
• LETS pipeline circuit: improving channel throughput

I Analytical evaluation

I Conclusions

27/48

LETS Hardware Support: Protocol Conversion

Computation
node

Asynchronous
4-phase RZ

Computation
node

Asynchronous
4-phase RZ

Data
encode

or
decode

Data
encode

or
decodeAsynchronous

communication channel
(LETS)

First, focus on protocol conversion circuits

28/48

LEDR Converter: Prior Architecture Overview

four
phase

function
block

four
phase
encode

four
phase
decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

2-phase
comm.
channel

2-phase
comm.
channel

LEDR Converter from Mitra et al., "Efficient Asynchronous Protocol Converters
for Two-Phase Delay-Insensitive Global Communication", ASYNC’07

29/48

LEDR Converter: Prior Architecture Overview

four
phase

function
block

four
phase
encode

four
phase
decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

2-phase
comm.
channel

2-phase
comm.
channel

2/4-phase conversion circuit

2-phase
completion
detector

2-phase
completion
detector

29/48

LEDR Converter: Control Signals

two phase signals

four phase signals

four
phase

function
block

four
phase
encode

four
phase
decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

30/48

New contribution: 1-of-4 LETS Converter

I Based on existing LEDR (1-of-2 LETS) converter

• Only minor modifications needed

→ Same overall architecture

→ Most pieces identical

→ Internal logic of some blocks have minimal changes

31/48

1-of-4 LETS Converter

four
phase

function
block

four
phase
encode

four
phase
decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

= Changed logic blocks

32/48

Completion Detector: LEDR vs. 1-of-4 LETS

completion detector

C

C

C

C

C

C

C

C

LEDR completion detector 1-of-4 LETS completion detector

One layer of C-elements replaced by XNOR gates

33/48

Left Encoder: LEDR vs. 1-of-4 LETS

left encoder

Enable

Enable

4−phase
true rail b0

false rail b0
4−phase

true rail b1
4−phase

4−phase
false rail b1

data bit b1
LEDR

data bit b0
LEDR

Enable

Enable

4−phase
true rail b0

4−phase
false rail b0

4−phase
true rail b1

false rail b1
4−phase

LETS
data_r0

data_r1
LETS

LETS
data_r0

data_r2
LETS

LEDR left encoder 1-of-4 LETS left encoder

Extra layer of XNOR gates
I Not on critical path!

34/48

Right Encoder: LEDR vs. 1-of-4 LETS

right encoder

Input
phase LEDR

parity
rail b0

LEDR
data

rail b0

parity
LEDR

rail b1

LEDR
data

rail b1

S

R

Q

S
Q

R

G

Q

S

R

Q

S
Q

D

R

complete

4−phase true rail b0
4−phase false rail b0

4−phase true rail b1
4−phase false rail b1

S

R

S

R

S

R

S

R

STORAGE COMPARATOR

r3

r1

r0

r2

r0

r1

r3

r0

r1

r2

r3

SELECT

z2

z1

z3

z0

r2

r2
r1

r0

r3

tr
ue

 b
1

φφφ φcompleteenable

z3

z2

z1

z0

LETS
OUTPUTS

fa
ls

e
b1

tr
ue

 b
0

fa
ls

e
b0

4444

Q’

QD

Q’

QD

Q’

QD

Q’

QD

LEDR right encoder 1-of-4 LETS right encoder

Extra storage logic
I Not on critical path!

select block

35/48

1-of-4 LETS Converter Performance Evaluation

I Layout performed for LEDR (1-of-2 LETS) conversion circuits
Mitra et al., "Efficient Asynchronous Protocol Converters for Two-Phase Delay-Insensitive

Global Communication", ASYNC’07

• With a 4-phase multiplier function block
• 0.18µm TSMC CMOS process
• Summary of simulation results:

Forward latency input arrival → output data available 6.8ns
Stabilization time input arrival → reset complete 10.5ns
Pipelined cycle time min processing time / data item (steady state) 8.3ns

I 1-of-4 LETS expected to add 15 - 20% overhead
I Design is delay-insensitive

→ Except for two simple one-sided timing constraints

36/48

LETS Hardware Support: Pipelining Channels

Computation
node

Asynchronous
4-phase RZ

Computation
node

Asynchronous
4-phase RZ

Data
encode

or
decode

Data
encode

or
decodeAsynchronous

communication channel
(LETS)

Completed: hardware for interfacing
with computation nodes

37/48

LETS Hardware Support: Pipelining Channels

Computation
node

Asynchronous
4-phase RZ

Computation
node

Asynchronous
4-phase RZ

Data
encode

or
decode

Data
encode

or
decodeAsynchronous

communication channel
(LETS)

Completed: hardware for interfacing
with computation nodes

Now focus on: improving performance of global communication
→ through pipelining

37/48

LETS Pipeline: Improving Channel Throughput

I Support #1: MOUSETRAP-based design
Singh & Nowick, “MOUSETRAP: High-Speed Transition Signaling Asynchronous
Pipelines”, TVLSI’07

• Original MOUSETRAP pipeline
→ High-speed pipeline scheme for bundled-data encoding

• Proposed design
→ Pipelines DI communication channel based on MOUSETRAP
→ Eliminates MOUSETRAP bundled-data timing requirements

→ only retains one simple 1-sided timing constraint
• Simple hardware design

I Support #2: LEDR-based design
Dean et al., “Efficient Self-Timing with Level-Encoded 2-Phase Dual-Rail (LEDR)”,
Proc. of UCSC Conf. on Adv. Research in VLSI, ’91

• Timing-robust approach, see paper for details

38/48

1-of-4 LETS Pipeline: MOUSETRAP-based design

Stage
N−1

Stage
N

Bank

Control

N+1
Stage

1−of−4 1−of−4

CD
LETS

1−of−4
LETS

CD
LETS

CD

Stage
Register

Stage
Latch

1−of−4
Data
Inputs

1−of−4
Data

Outputs

LETS LETS

D

D

D

D

Q

Q

Q

QQD

D

D

D

Q

Q

Q

D

D

D

D

Q

Q

Q

Q

39/48

1-of-4 LETS Pipeline: MOUSETRAP-based design

Stage
N−1

Stage
N

Bank

Control

N+1
Stage

1−of−4 1−of−4

CD
LETS

1−of−4
LETS

CD
LETS

CD

Stage
Register

Stage
Latch

1−of−4
Data
Inputs

1−of−4
Data

Outputs

LETS LETS

D

D

D

D

Q

Q

Q

QQD

D

D

D

Q

Q

Q

D

D

D

D

Q

Q

Q

Q

Latch control:
→ same as MOUSTRAP

Completion detector:
→ replaced with 1-of-4 LETS CD

39/48

Outline

I Introduction
I Background

I 1-of-4 LETS codes
I 1-of-N LETS codes
I Hardware support
I Analytical evaluation

• Coding efficiency and transition power metric

I Conclusions

40/48

Analytical Evaluation: Coding Efficiency (LETS vs. RZ)

0

1/10

1/5

3/10

2/5

1/2

3/5

RZ
LETS

bits/rails

1 of N LETS vs. 1 of N RZ

of Rails

2 4 8 16 32 64 128 264

Coding Efficiency

1-of-N LETS vs. RZ codes
I Same coding efficiency

41/48

Analytical Evaluation: Coding Efficiency (LETS vs. RZ)

0

1/10

1/5

3/10

2/5

1/2

3/5

RZ
LETS

bits/rails

1 of N LETS vs. 1 of N RZ

of Rails

2 4 8 16 32 64 128 264

Coding Efficiency

1-of-N LETS vs. RZ codes
I Same coding efficiency

Coding efficiency drops off after N>4

41/48

Analytical Evaluation: Transition Power (LETS vs. RZ)

0

1/2

1

1 1/2

2

2 1/2

LETS

RZ

 wire flips/transaction

1 of N LETS vs. 1 of N RZ

Transition Power

of Rails

 2 4 8 16 32 64 128 264

1-of-N LETS vs. RZ codes
I LETS uses less power

42/48

Analytical Evaluation: Interpreting LETS Scaling

0

1/5

2/5

3/5

4/5

1

1 1/5

Transition Power

Coding Efficiency

 wire flips/transaction

bits/rails

1 of N LETS

Transition Power and Coding Efficiency

of Rails

 2 4 8 16 32 64 128 264

43/48

Analytical Evaluation: Interpreting LETS Scaling

0

1/5

2/5

3/5

4/5

1

1 1/5

Transition Power

Coding Efficiency

 wire flips/transaction

bits/rails

1 of N LETS

Transition Power and Coding Efficiency

of Rails

 2 4 8 16 32 64 128 264

Trend: Power decreases as # of rails increase
→ but coding efficiency also decreases

43/48

Analytical Evaluation: Interpreting LETS Scaling

0

1/5

2/5

3/5

4/5

1

1 1/5

Transition Power

Coding Efficiency

 wire flips/transaction

bits/rails

1 of N LETS

Transition Power and Coding Efficiency

of Rails

 2 4 8 16 32 64 128 264

Trend: Power decreases as # of rails increase
→ but coding efficiency also decreases

Sweet spot: going from LEDR to 1-of-4 LETS
→ halves the power, same coding efficiency

43/48

Analytical Evaluation: LETS vs. Synchronous

I Coding efficiency (# bits encoded/wire)

• Synchronous better than 1-of-N LETS
→ Synchronous: N bits for N wires
→ 1-of-N LETS: log N bits for N wires

I Transition power metric (# transitions/wire/data transaction)

• 1-of-N LETS better than synchronous as N increases
→ Synchronous: constant

→ assumes equal probability of wire transition
→ 1-of-N LETS: decreases as N grows

→ = 1 / log N
→ Transition power metric same for N = 4

44/48

Conclusions

I A new class of delay-insensitive codes
“Level-Encoded Transition Signaling (LETS)”
• High throughput, low power for global communication
• Two example 1-of-4 LETS codes shown
• Generalization to 1-of-N LETS

→ first 1-of-N level-encoded transition signaling scheme

I Efficient hardware
• For protocol conversion to/from four-phase dual-rail signaling
• For pipelining global communication channel

I Power and throughput improvements over existing codes
• Demonstrated via analytical evaluation

45/48

Future Work

I Better evaluation of performance/power metrics

• Layout of proposed circuits
• Evaluation of second-order effects

→ e.g. cross-coupling, noise, etc

I Extend conversion circuits to support other encoding styles

• e.g. 1-of-4 RZ, single-rail bundled

46/48

Appendix

47/48

LEDR Converter: System Simulation

four
phase

function
block

four
phase
encode

four
phase

decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

completion
detection

LEDR
Inputs
arrive

Step 1: Two-phase inputs arrive
LEDR inputs begin arriving at quiescent system

48/48

LEDR Converter: System Simulation

four
phase

function
block

four
phase
encode

four
phase

decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

Phase
signal
changes

Step 2: Two-to-four phase conversion

Input completion detection sent to control

48/48

LEDR Converter: System Simulation

four
phase

function
block

four
phase
encode

four
phase

decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

Enable
rises

Step 2: Two-to-four phase conversion

Control enables four-phase evaluate phase

48/48

LEDR Converter: System Simulation

four
phase

function
block

four
phase
encode

four
phase

decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

Enable
now high

Step 2: Two-to-four phase conversion

LEDR input converted to four-phase

48/48

LEDR Converter: System Simulation

four
phase

function
block

four
phase
encode

four
phase

decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

Step 3: Four-phase evaluate

Four-phase function evaluation

48/48

LEDR Converter: System Simulation

four
phase

function
block

four
phase
encode

four
phase

decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

LEDR output
generated

Step 4: Four-to-two phase conversion

Four-phase bits decoded to LEDR

48/48

LEDR Converter: System Simulation

four
phase

function
block

four
phase
encode

four
phase

decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

Ack from right may arrive at any time after all pairs are sent

Step 4: Four-to-two phase conversion

LEDR output completion detection

48/48

LEDR Converter: System Simulation

four
phase

function
block

four
phase
encode

four
phase

decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

Enable
falls

Step 5: Four-phase reset

Control enables four-phase reset phase

48/48

LEDR Converter: System Simulation

four
phase

function
block

four
phase
encode

four
phase

decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

Enable
now low

Pipeline concurrency:
Request new data during reset

Step 5: Four-phase reset

Function block inputs return to zero

48/48

LEDR Converter: System Simulation

four
phase

function
block

four
phase
encode

four
phase

decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

Complete falls

Step 5: Four-phase reset
Four-phase reset propagates through logic block

48/48

LEDR Converter: System Simulation

four
phase

function
block

four
phase
encode

four
phase

decode

data

parity

LEDR
CD

data

parity

LEDR
CD

control logic

LEDR input LEDR output

ack_left ack_right

phase

phase

enb comp

Ready to evaluate again
New evaluate phase begins when enable rises again

48/48

	Trends in Digital Systems Design
	System-on-Chip (SoC):
Challenges
	SoC Communication Fabric: Ideal Requirements
	Asynchronous Design for SoC Communication
	Application Model: Target SoC Architecture
	Key Contributions: Theoretical
	Key Contributions: Practical
	Outline
	Handshake Protocol Control Signaling: 4-Phase
	Handshake Protocol Control Signaling: 2-Phase
	Handshake Protocol: Control Signaling + Data
	Asynchronous Data Encoding: DI Codes
	DI Return-to-Zero (RZ)
Code #1: Dual-Rail
	DI Return-to-Zero (RZ)
Code #2: 1-of-N
	DI Non-Return-to-Zero (NRZ)
Code #1: LEDR
	mytwelvept DI Non-Return-to-Zero {mythirteenpt (NRZ)}
Code #1: LEDR (cont'd)
	Outline
	LETS Codes: Motivation & Contributions
	1-of-4 LETS Code Derivation: Overview
	1-of-4 LETS Code Derivation: Details
	1-of-4 LETS Code Derivation: Summary
	1-of-4 LETS Codes: Code Space
	A Practical 1-of-4 LETS Code: ``Quasi-1-Hot/Cold"
	Outline
	1-of-N LETS Codes
	Outline
	LETS Hardware Support: Protocol Conversion
	LEDR Converter: Prior Architecture Overview
	LEDR Converter: Control Signals
	New contribution: 1-of-4 LETS Converter
	1-of-4 LETS Converter
	Completion Detector: LEDR vs. 1-of-4 LETS
	Left Encoder: LEDR vs. 1-of-4 LETS
	Right Encoder: LEDR vs. 1-of-4 LETS
	1-of-4 LETS Converter Performance Evaluation
	LETS Hardware Support: Pipelining Channels
	LETS Pipeline: Improving Channel Throughput
	1-of-4 LETS Pipeline: MOUSETRAP-based design
	Outline
	mytwelvept Analytical Evaluation: Coding Efficiency (LETS vs. RZ)
	mytwelvept Analytical Evaluation: Transition Power (LETS vs. RZ)
	mytwelvept Analytical Evaluation: Interpreting LETS Scaling
	mytwelvept Analytical Evaluation: LETS vs. Synchronous
	Conclusions
	Future Work
	
	LEDR Converter: System Simulation

