A Level-Encoded Transition Signaling Protocol
for High-Throughput
Asynchronous Global Communication

Peggy B. McGee, Melinda Y. Agyekum, Moustafa M. Mohamed
and Steven M. Nowick

{pmcgee, melinda, mmohamed, nowick}@cs.columbia.edu

Department of Computer Science
Columbia University

April 10, 2008

([]
1/48

Trends in Digital Systems Design

» Increased design complexity

e More functionality on a single chip
— Smaller transistor size
— Larger die size

e Multiple clock domains
» High-performance computing

e Multi-Giga Hertz clock rate

e Multiple independent computation nodes
— Processor cores, memories, etc.

» Plug-&-play components
e For re-usability

System-on-Chip (SoC)

([]
2/48

System-on-Chip (SoC): Challenges

» Heterogeneity
e Multiple clock domains
e Mixed asynchronous/synchronous components

» Wires do not scale at the same rate as transistors
e Increasing proportion of delay in interconnects
e (Challenges for global routing in physical design

» Deep submicron effects
¢ Handling dynamic timing variability, crosstalk, EMI, noise, etc.
e Clock jittering and/or drifting effects

» Power dissipation
¢ |nterconnects a significant source of of power

Need for new approaches for interconnect design

([]
3/48

SoC Communication Fabric: Ideal Requirements

» Speed
e High throughput, low latency
» Low power
e | ow switching activity
» Robustness
e Against timing variation
¢ Handling dynamic voltage scaling
e Handling single-event upset effects (soft errors)
» Flexibility
e Easy integration of modular Intellectual Properties (IPs)

o
4/48

Asynchronous Design for SoC Communication

» Potential benefits of asynchronous design

e Significant power advantage
— No clock routing

— “Compute-on-demand” approach

e Timing robustness using delay-insensitive (DI) encoding
— Eliminates global timing constraints

— Accommodates uncertainties in routing delay
— Accommodates skew between bits
e Supports modular design methodologies

— e.g. GALS (globally-asynchronous, locally-synchronous)
— Mixed synchronous/asynchronous components

Asynchronous design well-suited for ideal
requirements of SoC communication

([]
5/48

Application Model: Target SoC Architecture

Our focus

Data Data
encode encode

Asynchronous / Or Or Asynchronous /
Synchronous decode decode, Synchronous

Computation
node

Computation
node

Asynchronous
communication channel

([]
6/48

Application Model: Target SoC Architecture

1. Timing-robust, high-throughput

asynchronous encoding scheme

Our focus

Data Data
encode encode

Asynchronous / Or Or Asynchronous /
Synchronous decode decode, Synchronous

Computation
node

Computation
node

Asynchronous
communication channel

([]
6/48

Application Model: Target SoC Architecture

1. Timing-robust, high-throughput
asynchronous encoding scheme

Our focus

Data Data
encode encode

Asynchronous / Or Or Asynchronous /
Synchronous decode decode, Synchronous

AN

2. Protocol conversion interface
— Allows separation of computation and communication

Computation
node

Computation
node

Asynchronous
communication channel

e Some codes are better for computation
e Some codes are better for communication

([]
6/48

Application Model: Target SoC Architecture

Our focus

Data Data
encode encode

Asynchronous / Or Or Asynchronous
Synchronous decode decode, Synchronous

Computation
node

Computation
node

Asynchronous
communication channel

Current focus is on asynchronous computation nodes

— Expandable to synchronous

/

Key Contributions: Theoretical

» A new class of delay-insensitive code
for global communication

“Level-Encoded Transition Signaling (LETS)”

¢ Delay-insensitive
— Timing-robust
e Uses two-phase (transition) signaling
— High throughput: no return-to-zero phase
— most existing schemes use four-phase: have spacer phase
— Low switching activity
e | evel-encoded data
— Data values easily extracted from encoding

e Supports 1-of-N encoding
— Lower switching activity
— compared to existing level-encoded transition signaling code
— Main focus: 1-of-4 codes

([]
7/48

Key Contributions: Practical

» Practical 1-of-4 LETS codes

¢ Two example codes shown
— “Quasi-1-hot/cold”
— “Quasi-binary”

» Generalization to 1-of-N LETS codes
e First to demonstrate 1-of-N level-encoded codes
e Systematic procedure to generate LETS codes for all N = 2"

» Hardware support

e Efficient conversion circuit for 1-of-4 LETS proposed
— To/from 4-phase dual-rail signaling

e Pipeline design for global communication proposed
— |Improves throughput

([]
8/48

Outline

» Introduction

» Background
e Handshake protocol control signaling
e Handshake protocol: control signaling + data
e Asynchronous data encoding

1-of-4 LETS codes
1-of-N LETS codes
Hardware support
Analytical evaluation

vV v v vy

Conclusions

([]
9/48

Handshake Protocol Control Signaling: 4-Phase

© . ®
2n

@/ @

REQ

: One

esel __1L— transaction
|
|

ACK

]
.
,I

A
A
\

evaluate

A
Y

transaction # 1

» Four wire transition events per transaction

» All wires must return to zero
— Before next transaction

([]
10/48

Handshake Protocol Control Signaling: 2-Phase

@ @

T

~ B
1

REQ

@)

ACK

Y

-5x=----—-4+-=---

transaction #1 transaction #2

—

» Two wire transition events per transaction e :
transactions
» No return-to-zero phase
[J [J [J [J [J [J [J [J

([]
11/48

Handshake Protocol: Control Signaling + Data

Data wire

/

Sender Receiver

~

Control = Ack

([]
12/48

Handshake Protocol: Control Signaling + Data

Data

X

Sender Receiver

([]
12/48

Handshake Protocol: Control Signaling + Data

Entire data wave arrives

Sender Receiver

([]
12/48

Handshake Protocol: Control Signaling + Data

Entire data wave arrives

Receiver

Sender

/

Receiver sends Ack

([]
12/48

Handshake Protocol: Control Signaling + Data

Entire data wave arrives

Sender Receiver

/

Receiver sends Ack

2-phase transition signaling protocol completes

— Transition signaling = non-return-to-zero (NRZ)

Handshake Protocol: Control Signaling + Data

Spacer tokens (spacer = data reset to zero)

>

Q

Sender Receiver

Round trip for 4-phase (return-to-zero) protocol

Handshake Protocol: Control Signaling + Data

All wires reset to zero

Sender Receiver

/

Receiver sends Ack

4-phase (return-to-zero) protocol completes

Asynchronous Data Encoding: DI Codes

» Properties of delay-insensitive (DI) codes

e Timing-robust
— Insensitive to input arrival time

e Completion of data transaction encoded into data itself

— Unambiguous recognition of code
— no valid codeword seen when transitioning between codewords

([]
13/48

DI Return-to-Zero (RZ) Code #1: Dual-Rail

» Two wires to encode a single bit
Encoding Symbolic value

ai ao a
“reset” value

a
(1 bit of data) a

1

0
1 0
0
1 illegal

» Each dual-rail pair provides
e Data value: whether 1 or 0 is being transmitted
e Data validity: whether data is a value, illegal or reset

» Main benefit: allows simple hardware for computation blocks

» Main disadvantage: Iow throughput and high power
— Needs reset phase: all bits always reset to zero

([]
14/48

DI Return-to-Zero (RZ) Code #2: 1-of-N

» N wires to encode log N bits (one-hot encoding)
Example: 1-of-4 code

aN_1 Encoding Symbolic value
- a
a E 0 “reset" value
(log N bits of data) 0 00
“ 0 01
o 1 10
0

11

All other codewords illegal

» Main benefit: uses lower power than dual-rail
— 1 out of N rails changes value per data transaction

» Main disadvantage: gets expensive beyond 1-of-4
— Coding density decrease
— Complicated to concatenate irregularly-sized data streams

DI Non-Return-to-Zero (NRZ) Code #1: LEDR

LEDR = Level-Encoded Dual-Rail

» Two wires to encode a single bit Encoding Symbolic
value
Phase Parity Data a
» data rail rail rail
a Even
(1 bit of data) parity rail

» Properties of LEDR codes:
e [evel encoded: can retrieve data value directly from wires
e Alternating phase protocol: between odd and even phases

e Only 1 rail changes value: per bit per data transaction

Dean et al., “Efficient Self-Timing with Level-Encoded 2-Phase Dual-Rail (LEDR)”, Proc.
of UCSC Conf. on Adv. Research in VLSI, '91

DI Non-Return-to-Zero (NRZ) Code #1: LEDR (contd)

» Main benefits

e No return-to-zero phase
— High throughput, low power

e Easy to extract data

» Main disadvantages

e Significantly more complicated function blocks

— No practical solutions have been proposed
— Potential solution strategy:

— LEDR for global communication

— 4-phase RZ (dual-rail or single-rail) for computation

— Need efficient hardware for conversion between protocols:
Mitra, McLaughlin and Nowick, “Efficient asynchronous protocol converters
for two-phase delay-insensitive global communication”, ASYNC'07

e Uses more power than synchronous communication
— Uses less power than RZ

([]
17/48

Outline

vV v v vV V. VY

Introduction
Background

1-of-4 LETS codes
1-0f-N LETS codes
Hardware support
Analytical evaluation

Conclusions

([]
18/48

LETS Codes: Motivation & Contributions

“LETS = Level-Encoded Transition Signaling”

» A new class of delay-insensitive codes

e Extension of LEDR = 1-0f-2 LETS
— Uses fewer wire transitions per data transaction
— Analogous to 1-of-N extension to dual-rail in RZ

e Goal:
— Generate and evaluate entire family of 1-of-N codes

» Key benefits
¢ Maintains benefits of LEDR
— High throughput
— Delay-insensitive
— Efficient hardware conversion to 4-phase protocols

¢ Additional benefit
— Lower power consumption than LEDR

([]
19/48

1-of-4 LETS Code Derivation: Overview

Starting point: 4-bit code space

.,

16 codewords in code space

1-of-4 LETS Code Derivation: Overview

Goal: assign symbols to codewords
— Symbols to assign = {S0, S1, S2, S3}

— Codewords = {0000, 0001,, 1111}

1-of-4 LETS Code Derivation: Overview

Goal: assign symbols to codewords
— Symbols to assign = {S0, S1, S2, S3}
— Codewords = {0000, 0001,, 1111}

Rule 1 (Alternatingyphases):
— Odd and even phases must alternate

Rule 2 (Reachability):
— Each symbol S, must reach all symbols S0 — S3 in opposite phase

1-of-4 LETS Code Derivation: Details

Step 1: assign arbitrary symbol to arbitrary codeword

EVEN phase y

-

/

—

so&o

W=
Z 0000

.,

/

([]
21/48

1-of-4 LETS Code Derivation: Details

Step 2: assign symbols to all neighbors of SO at 0000 in ODD phase

"ooporase |} I
/
socé — |

Rule 1 (Reachability):
— Each symbol S, must reach all symbols S0 — S3 in opposite phase

1-of-4 LETS Code Derivation: Details

Step 3: assign symbols to all neighbors of S1 at 1000 in EVEN phase

-~/
/
soé —

g
|
N

([]
21/48

1-of-4 LETS Code Derivation: Details

Step 3: assign symbols to all neighbors of S1 at 1000 in EVEN phase

I
/
socé —

([]
21/48

1-of-4 LETS Code Derivation: Details

Step 3: assign symbols to all neighbors of S1 at 1000 in EVEN phase

EVEN phase | //“

I
SOé — —1 | st

1-of-4 LETS Code Derivation: Details

Final steps: complete symbol assignment

S3

1-of-4 LETS Code Derivation: Summary

(D Codewords in even phase
D Codewords in odd phase

’:’r\“‘
A\QQ

N

SO

[>®52 s
’
_ ‘;
y4
[y Entire code space filled up
X

Code space divided into EVEN and ODD phases

([]
22/48

1-of-4 LETS Codes: Code Space

» Many valid 1-of-4 codes possible

e 1152 unique codes derivable from method shown
— Complete enumeration derived in paper

» Some codes more “practical” than others
e All data values easily extracted from codeword

» OQur focus: Two “Practical” codes
e “Quasi-1-hot/cold”
e “Quasi-binary”

([]
23/48

A Practical 1-of-4 LETS Code: “Quasi-1-Hot/Cold"’

symbol r3 r2 r1 r0 symbol r3 r2 r1 r0
SO 1 0 0 O SO’ o 1 1 1
ST o 1 0 O ST’ 1 0 1 1
S2 o 0 1 O S2’ 1 1 0 1
S3 O 0 0 1 S3 1 1 1 0
SO 1T 1 1 1 SO’ O 0 0 O
ST o o0 1 1 St 1 1 0 O
S2 o 1 0 1 S2’ 1 0 1 O
S3 o 1 1 0 S3 1 0 0 1

16 codewords for 4 symbols

([]
24/48

A Practical 1-of-4 LETS Code: “Quasi-1-Hot/Cold"’

symbol r3 r2 r1 r0 symbol r3 r2 r1 r0
so 1 0 0 0 so 0 1 1 1
o0 st 0 1 0 0 st 1 0 1
s 20 0 1 0 s 1 1 0 1
S3 0 0 0 1 s 1 1 1 0
EVEN SO 1 1 1 1 SO 0 0 0 O
code- St 0 0 1 1 s 1 1 0 O
words s> 9 1 0 1 s 1 0 1 0
s3 0 1 1 0 s 1 0 0

Code space divided into ODD and EVEN phases

([]
24/48

A Practical 1-of-4 LETS Code: “Quasi-1-Hot/Cold"’

symbol r3 r2 r1 r0 symbol r3 r2 r1 r0
SO 1 0 0 O SO’ o 1 1 1
o0 st 0 1 0 0 st 1 0 1
words S2 O 0 1 0 S2’ 1 1 0 1
S3 O 0 0 1 S3 1 1 1 0

EVEN SO 1 1 1 1 SO 0 0 0 0
code- S1 0 0 1 1 st 1 1 0 O
words s> 9 1 0 1 s 1 0 1 0

s3 0 1 1 0 s 1 0 0 1

Multicode: 2 codewords for each symbol in each phase

A Practical 1-of-4 LETS Code: “Quasi-1-Hot/Cold"’

symbol r3 r2 r1 r0 symbol r3 r2 r1 r0
SO 1 0 0 O SO’ o 1 1 1
ST o1 0 O ST’ 110 1 1
S2 O[O0 1 O S2’ 111 0 1
S3 o0 0 1 S3’ 111 1 0
1-hot 1-cold
SO 1T 1 1 1 SO’ O 0 0 O
ST o0 1 1 St 111 0 O
S2 o1 0 1 S2’ 1170 1 O
S3 (O I S T ¢ S3’ 110 0 1
1-cold 1-hot

Outline

vV v v VvV V. VY

Introduction
Background

1-of-4 LETS codes
1-of-N LETS codes
Hardware support
Analytical evaluation

Conclusions

([]
25/48

1-of-N LETS Codes

» Goal
e To extend solution for 1-of-4 LETS codes to 1-of-N

» Challenge:
e Solution is not obvious for arbitrary N

e Must satisfy several properties
— Level-encoding: data can be extracted directly from codeword
— Transition signaling: each symbol must reach all others via 1 flip
— alternating phase

» Contributions
e Proof: existence of legal LETS codes for every N = 2"

e Systematic procedure to generate LETS codes
— LETS properties formulated as set of constraints
— Constraints captured in code generator matrix
— Many different LETS codes exist for each N

See paper for details

([]
26/48

Outline

Introduction
Background
1-of-4 LETS codes
1-of-N LETS codes

Hardware support
e Conversion circuit: interfacing channels to nodes
e LETS pipeline circuit: improving channel throughput

vV v v vY

v

Analytical evaluation

» (Conclusions

([]
27/48

LETS Hardware Support: Protocol Conversion

First, focus on protocol conversion circuits

Computation Data Data Computation

node
encode encode node

Asynchronous or or Asynchronous
4-phase RZ decode Asynchronous decode 4 phase RZ

communication channel
(LETS)

LEDR Converter: Prior Architecture Overview

LEDR Converter from Mitra et al., "Efficient Asynchronous Protocol Converters

for Two-Phase Delay-Insensitive Global Communication”, ASYNC’07

A
==

-

=)

2-phase

2-phase
comm. comm.
channel _, channel
| 1

([]
29/48

LEDR Converter: Prior Architecture Overview

2-phase 2-phase
completion completion
detector detector

LEDR
CD

-

2-phase 2-phase
comm. ~ comm.
channel channel

LEDR Converter: Control Signals

— four phase signals
— two phase signals

LEDR input

mmmmmd CONtrol logic

< | A
ack_left ack_right

phase

([]
30/48

New contribution: 1-of-4 LETS Converter

» Based on existing LEDR (1-of-2 LETS) converter

e Only minor modifications needed

— Same overall architecture
— Most pieces identical

— Internal logic of some blocks have minimal changes

([]
31/48

1-of-4 LETS Converter

< = Changed logic blocks

four \
phase
encode

control logic

ack _left

ack_right

([]
32/48

Completion Detector: LEDR vs. 1-of-4 LETS

_—completion detector

One layer of C-elements replaced by XNOR gates

LEDR completion detector

Left Encoder: LEDR vs. 1-of-4 LETS

j.m,f left encoder

——

Enable

LEDR
data bit b0

‘7

4—phase

E true rail bO

4—phase

I false rail bO

Enable
LEDR

data bit bl

Hjtriue rail bl

4—phase

4—phase

LEDR left encoder

D@se rail bl

Extra layer of XNOR gates
» Not on critical path!

LETS
data_rO

4—phase

E true rail bO

4—phase

false rail b0

4—phase

D@e rail bl

4—phase
false rail bl

Right Encoder: LEDR vs. 1-of-4 LETS

_—right encoder

Input

phase

complete

4—phase true rail b

Extra storage logic

» Not on critical path!

LEDR

arit
Fail byC

LEDR

4—phase false rail bQ)

s rgﬂt%(}
[¢]
R

4—phase true rail b

LEDR

STORAGE COMPARAT!

arit
?ail byl

LEDR

4—phase false rail bl

LEDR right encoder

data
® o rail bl
R

40 true bl
false bl
ZN) true b0
4$ el L oo oo ool o oo el

1-of-4 LETS right encoder

+ OUTPUTS
AR z3

s

ERZZ
L IS
-5
.

R |Z
f S

LETS

1-of-4 LETS Converter Performance Evaluation

» Layout performed for LEDR (1-of-2 LETS) conversion circuits
Mitra et al., "Efficient Asynchronous Protocol Converters for Two-Phase Delay-Insensitive
Global Communication”, ASYNC’07

e With a 4-phase multiplier function block
e (0.18um TSMC CMOS process
e Summary of simulation results:

Forward latency input arrival — output data available 6.8ns
Stabilization time input arrival — reset complete 10.9ns
Pipelined cycle time | min processing time / data item (steady state) | 8.3ns

» 1-0f-4 LETS expected to add 15 - 20% overhead

» Design is delay-insensitive
— Except for two simple one-sided timing constraints

([]
36/48

LETS Hardware Support: Pipelining Channels

Computation Data Data Computation

node node

encode encode

Asynchronous or or Asynchronous
4-phase RZ decode Asynchronous decode 4 phase RZ

communication channel
(LETS)

Completed: hardware for interfacing
with computation nodes

([]
37/48

LETS Hardware Support: Pipelining Channels

Now focus on: improving performance of global communication
— through pipelining

Computation Data Data Computation
node node

encode encode

Asynchronous or or Asynchronous
4-phase RZ decode Asynchronous decode 4 phase RZ

communication channel
(LETS)

Completed: hardware for interfacing
with computation nodes

([]
37/48

LETS Pipeline: Improving Channel Throughput

» Support #1: MOUSETRAP-based design
Singh & Nowick, “MOUSETRAP: High-Speed Transition Signaling Asynchronous
Pipelines”, TVLSI'07

e Original MOUSETRAP pipeline
— High-speed pipeline scheme for bundled-data encoding

e Proposed design
— Pipelines DI communication channel based on MOUSETRAP
— Eliminates MOUSETRAP bundled-data timing requirements

— only retains one simple 1-sided timing constraint
e Simple hardware design

» Support #2: LEDR-based design
Dean et al., “Efficient Self-Timing with Level-Encoded 2-Phase Dual-Rail (LEDR)”,
Proc. of UCSC Conf. on Adv. Research in VLSI, 91

e Timing-robust approach, see paper for details

([]
38/48

1-of-4 LETS Pipeline: MOUSETRAP-based design

Stage
Latch
Control
W=
Stage L
Register : ¥ .
Bank —,, -ﬁ"'
l-of—4 LETS it ' || | 1-of—4 LETS
Data :i I Data
Inputs E . : Outputs

([] ([]
39/48

1-of-4 LETS Pipeline: MOUSETRAP-based design

Latch control: Completion detector:

— same as MOUSTRAP — replaced with 1-of-4 LETS CD
Control

Stage
Register

Bank \"‘""".
B - : : :
1-of—4 LETS it \ | ;'ﬁ 1-of—4 LETS
Data 1 HEEEE R B Data
Inputs E"—\ : A aniE o Outputs
—— : = : Tl E = E ———
i — S -
rDQ : DQ ' DQ :
Stage Stage Stage
N-1 W\ N+1

([]
39/48

Outline

Introduction
Background

1-of-4 LETS codes
1-of-N LETS codes
Hardware support

vV v v v VY

Analytical evaluation
e Coding efficiency and transition power metric

v

Conclusions

([]
40/48

Analytical Evaluation: Coding Efficiency (LETS vs. RZ)

Coding Efficiency
1-of N LETS vs. 1-of N RZ

: : 1-of-N LETS vs. RZ codes
b”7/ rails » Same coding efficiency

/

[T]
16 32 64 128 264

of Rails

Analytical Evaluation: Coding Efficiency (LETS vs. RZ)

Coding Efficiency
1-of N LETS vs. 1-of N RZ

1-of-N LETS vs. RZ codes
» Same coding efficiency

bits/rails

64 128 264
of Rails

([]
41/48

Analytical Evaluation: Transition Power (LETS vs. RZ)

Transition Power
1-of N LETS vs. 1-of-N RZ

1-0of-N LETS vs. RZ codes

» LETS uses less power
wire-flips/transaction

lll16LLLL-

64 128 264

of Rails

Analytical Evaluation: Interpreting LETS Scaling

1-of-N LETS

Transition Power and Coding Efficiency

wire-flips/transaction

Transition Power

bits/rails

M Coding Efficiency

32 64 128 264

of Rails

Analytical Evaluation: Interpreting LETS Scaling

Trend: Power decreases as # of rails increase
— but coding efficiency also decreases

wire-flips/transaction

; ; Transition Power
bits/rails

M Coding Efficiency

16 32 64 128 264

of Rails
(] [] [] [] (] [] [] (]

[]
43/48

Analytical Evaluation: Interpreting LETS Scaling

Trend: Power decreases as # of rails increase
— but coding efficiency also decreases

Sweet spot: going from LEDR to 1-of-4 LETS
— halves the power, same coding efficiency

Wil

; ; Transition Power
bits/rails

M Coding Efficiency

16 32 64 128 264

of Rails
[) [) [) [) o [) [) o

([]
43/48

Analytical Evaluation: LETS vs. Synchronous

» Coding efficiency (# bits encoded/wire)

e Synchronous better than 1-of-N LETS

— Synchronous: N bits for N wires
— 1-0f-N LETS: log N bits for N wires

» Transition power metric (# transitions/wire/data transaction)

e 1-of-N LETS better than synchronous as N increases
— Synchronous: constant
— assumes equal probability of wire transition

— 1-of-N LETS: decreases as N grows
—=1/logN
— Transition power metric same for N = 4

o
44/48

Conclusions

» A new class of delay-insensitive codes
“Level-Encoded Transition Signaling (LETS)”

e High throughput, low power for global communication
e Two example 1-of-4 LETS codes shown

e Generalization to 1-of-N LETS
— first 1-of-N level-encoded transition signaling scheme

» Efficient hardware
e For protocol conversion to/from four-phase dual-rail signaling
e For pipelining global communication channel

» Power and throughput improvements over existing codes
e Demonstrated via analytical evaluation

([]
45/48

Future Work

» Better evaluation of performance/power metrics

e | ayout of proposed circuits

e Evaluation of second-order effects
— €.g. cross-coupling, noise, etc

» Extend conversion circuits to support other encoding styles

e e.g. 1-of-4 RZ, single-rail bundled

([]
46/48

Appendix

([]
47/48

LEDR Converter: System Simulation

Step 1: Two-phase inputs arrive
LEDR inputs begin arriving at quiescent system

four

phase four

phase

four

phase function

encode ok decode | LEDR output

comp

Y

completion 7|
detection phase
LEDR
|nputs aCk_I’ight
arrive
[J [J [J [J [J [J [J [J

([]
48/48

LEDR Converter: System Simulation

Step 2: Two-to-four phase conversion
Input completion detection sent to control

four f
— phase r? ur
function Phase
LEDR input encode ok decode LEDR output

enb COmMp _
control logic
phase
Phase — t :
ack S|gna| aCk_rlght
changes
[J [J [J [J [J [J [J [J

([]
48/48

LEDR Converter: System Simulation

Step 2: Two-to-four phase conversion
Control enables four-phase evaluate phase

four f
— phase r? ur
function phase
LEDR input block decode LEDR output

Y

Enable
rises
- I A
ack left ack_right
[) [) [) [) o [) [) o

([]
48/48

LEDR Converter: System Simulation

Step 2: Two-to-four phase conversion
LEDR input converted to four-phase

four
phase

four

function phase

decode LEDR output
- I A
ack left ack_right
[J [J [J [J [J [J [J

([]
48/48

LEDR Converter: System Simulation

Step 3: Four-phase evaluate

Four-phase function evaluation

=
four l
N & phase

function '

four
phase

LEDR input decode LEDR output

Y

phase
- I A
ack left ack_right

([]
48/48

LEDR Converter: System Simulation

Step 4: Four-to-two phase conversion
Four-phase bits decoded to LEDR

four
phase four data

function phase '—EDR
LEDR input block decode

udimm

LEDR output

V

| A

-

ack_left

: it
LEDR outout

generated

LEDR Converter: System Simulation

Step 4: Four-to-two phase conversion

LEDR output completion detection

four f
—_— phase our ‘ data
function S '—EDR
LEDR input block decode EDR output

parlty

Y

. | A

ack left ack_right

LEDR Converter: System Simulation

Step 5: Four-phase reset
Control enables four-phase reset phase

four f
— phase r? ur
function phase
LEDR input block decode LEDR output

Y

Enable
falls
- I A
ack left ack_right
o o o o [] [] o []

([]
48/48

LEDR Converter: System Simulation

Step 5: Four-phase reset

Function block inputs return to zero

four f
— phase r? ur
function phase
LEDR input decode LEDR output

Y

Enable
now low

ack left ack_right
Pipeline concurrency:
Request new data during reset
([[[[([[[([

([]
48/48

LEDR Converter: System Simulation

Step 5: Four-phase reset
Four-phase reset propagates through logic block

four l
phase
function '

four
phase

LEDR input decode LEDR output

Y

phase

-

ack left ack_right
Complete falls

([]
48/48

LEDR Converter: System Simulation

Ready to evaluate again
New evaluate phase begins when enable rises again

four f
— phase r? ur
. function Phase
LEDR input encoas block decode LEDR output

vontrol logic

ack left ack_right

	Trends in Digital Systems Design
	System-on-Chip (SoC):
Challenges
	SoC Communication Fabric: Ideal Requirements
	Asynchronous Design for SoC Communication
	Application Model: Target SoC Architecture
	Key Contributions: Theoretical
	Key Contributions: Practical
	Outline
	Handshake Protocol Control Signaling: 4-Phase
	Handshake Protocol Control Signaling: 2-Phase
	Handshake Protocol: Control Signaling + Data
	Asynchronous Data Encoding: DI Codes
	DI Return-to-Zero (RZ)
Code #1: Dual-Rail
	DI Return-to-Zero (RZ)
Code #2: 1-of-N
	DI Non-Return-to-Zero (NRZ)
Code #1: LEDR
	mytwelvept DI Non-Return-to-Zero {mythirteenpt (NRZ)}
Code #1: LEDR (cont'd)
	Outline
	LETS Codes: Motivation & Contributions
	1-of-4 LETS Code Derivation: Overview
	1-of-4 LETS Code Derivation: Details
	1-of-4 LETS Code Derivation: Summary
	1-of-4 LETS Codes: Code Space
	A Practical 1-of-4 LETS Code: ``Quasi-1-Hot/Cold"
	Outline
	1-of-N LETS Codes
	Outline
	LETS Hardware Support: Protocol Conversion
	LEDR Converter: Prior Architecture Overview
	LEDR Converter: Control Signals
	New contribution: 1-of-4 LETS Converter
	1-of-4 LETS Converter
	Completion Detector: LEDR vs. 1-of-4 LETS
	Left Encoder: LEDR vs. 1-of-4 LETS
	Right Encoder: LEDR vs. 1-of-4 LETS
	1-of-4 LETS Converter Performance Evaluation
	LETS Hardware Support: Pipelining Channels
	LETS Pipeline: Improving Channel Throughput
	1-of-4 LETS Pipeline: MOUSETRAP-based design
	Outline
	mytwelvept Analytical Evaluation: Coding Efficiency (LETS vs. RZ)
	mytwelvept Analytical Evaluation: Transition Power (LETS vs. RZ)
	mytwelvept Analytical Evaluation: Interpreting LETS Scaling
	mytwelvept Analytical Evaluation: LETS vs. Synchronous
	Conclusions
	Future Work
	
	LEDR Converter: System Simulation

