
Block-Level Relaxation for
Timing-Robust Asynchronous Circuits

Based on Eager Evaluation

Cheoljoo Jeong* Steven M. Nowick

Computer Science Department
Columbia University

*[now at Cadence Design Systems]

Outline

1. Introduction

2. Background: Asynchronous Threshold Networks

3. Gate-Level Relaxation

4. Block-Level Relaxation

5. Experimental Results

6. Conclusions and Future Work

2

Recent Challenges in Microelectronics Design

• Reliability challenge
– Variability issues in deep submicron technology

• process, temperature, voltage
• noise, crosstalk

– Dynamic voltage scaling

• Communication challenge
– Increasing disparity between gate and wire delay

• Productivity challenge
– Increasing system complexity + heterogeneity
– Shrinking time to market, timing closure issues
– Even when IP blocks are used, interface timing verification is difficult

3

Benefits and Challenges of Asynchronous Circuits

• Potential benefits:
– Mitigates timing closure problem
– Low power consumption
– Low electromagnetic interference (EMI)
– Modularity, “plug-and-play” composition
– Accommodates timing variability

• Challenges:
– Robust design is required: hazard-freedom
– Area overhead (sometimes)
– Lack of CAD tools
– Lack of systematic optimization techniques

4

Asynchronous Threshold Networks

• Asynchronous threshold networks
– One of the most robust asynchronous circuit styles
– Based on delay-insensitive encoding

• Communication: robust to arbitrary delays
• Logic block design: imposes very weak timing constraints (1-sided)

• Simple example: OR2

a0
a1

b0

b1

z1

z0

C

C

C

C

a zb

Boolean OR2 gate Async dual-rail threshold network for OR2
5

Challenges and Overall Research Goals

• Challenges in asynchronous threshold network synthesis
– Large area and latency overheads
– Few existing optimization techniques
– Even less support for CAD tools

• Overall Research Agenda:
– Develop systematic optimization techniques and CAD tools

for highly-robust asynchronous threshold networks

– Support design-space exploration:
automated scripts, target different cost functions

– Current optimization targets: area + delay + delay-area tradeoffs

– Future extensions: power (straightforward)

6

Overall Research Goals

Two automated optimization techniques proposed

1. Relaxation algorithms: multi-level optimization

– Existing synthesis approaches are conservative = over-designed

– Approach: selective use of eager-evaluation logic
• without affecting overall circuit’s timing robustness

– Can apply at two granularities:
• gate-level [Jeong/Nowick ASPDAC-07, Zhou/Sokolov/Yakovlev ICCAD-06]

• block-level [NEW]

7

Overall Research Goals (cont.)

2. Technology mapping algorithms
– First general and systematic technology mapping for

robust asynchronous threshold networks
[Jeong/Nowick Async-06, IEEE Trans. On CAD (April 2008)]

– Evaluated on substantial benchmarks:
• > 10,000 gates, > 1000 inputs/outputs
• Industrial (Theseus Logic): DES, GCD
• Academic: large MCNC circuits

– Use fully-characterized industrial cell library (Theseus Logic):
• slew rate, loading, distinct i-to-o paths/rise vs. fall transitions

– Advanced technique: area optimization under hard delay constraints

– Significant average improvements:
• Delay: 31.6%, Area: 9.5% (runtime: 6.2 sec)

“ATN_OPT” CAD Package: downloadable (for Linux)
http://www.cs.columbia.edu/~nowick/asynctools 8

Basic Synthesis Flow
(Theseus Logic/Camgian Networks)

Single-rail Boolean network Considered as
abstract multi-valued circuit

simple dual-rail expansion
(delay-insensitive encoding)

Instantiated Boolean circuit
(robust, unoptimized)Dual-rail async threshold network

9

New Optimized Synthesis Flow

Single-rail Boolean network

Relaxation
(i.e. relaxed dual-rail expansion)

“Relaxed” dual-rail async threshold network optimized

Technology mapping

Optimally-mapped dual-rail async threshold
network

optimized

10

New Optimized Synthesis Flow

Relaxation
(i.e. relaxed dual-rail expansion)

Single-rail

Technology mapping

Boolean network

“Relaxed” dual-rail async threshold network

Optimally-mapped dual-rail async threshold
network

optimized

optimized

11

Focus of this paper

Outline

1. Introduction

2. Background: Asynchronous Threshold Networks

3. Gate-Level Relaxation

4. Block-Level Relaxation

5. Experimental Results

6. Conclusions and Future Work

12

Single-Rail Boolean Networks

• Boolean Logic Network: Starting point for dual-rail circuit synthesis

– Modelled using three-valued logic with {0, 1, NULL}

• 0/1 = data values, NULL = no data (invalid data)

– Computation alternates between DATA and NULL phases

– DATA (Evaluate) phase:

• outputs have DATA values only after all inputs have DATA values

– NULL (Reset) phase:

• outputs have NULL values only after all inputs have NULL values

za
b

Boolean OR gate

3-valued
output

3-valued
inputs

N
N

N
1
N

N
1
0

1N
0

1
N
N

N

13

Delay-Insensitive Encoding

• Approach:
– Single Boolean signal is represented by two wires

– Goal: map abstract Boolean netlist to robust dual-rail
asynchronous circuit

a
a0

a1

a1 a0 a

0 0 NULL

0 1 0

1 0 1

1 1 Not allowed

spacer

dual-rail
expansion valid

data

invalid
Encoding table

- Motivation: robust data communication
14

Dual-Rail Expansion

Single Boolean gate: expanded into dual-rail network

dual-rail
output

a0
a1

b0
b1

z1

z0

dual-rail
inputs

complete set
of minterms3-valued

inputs 0-rail
3-valued
output

C

C

C

C

za
b

1-rail

Boolean OR gate “DIMS”-style dual-rail OR circuit
15

Summary: Existing Synthesis Approach
• Starting point: single-rail abstract Boolean network (3-valued)
• Approach: performs dual-rail expansion of each gate

– Use 'template-based' mapping

• End point: unoptimized dual-rail asynchronous threshold network

• Result: timing-robust asynchronous netlist

C
C
C
C

C
C
C
C

C
C
C
C

b1

a1

b1

a1

b0

a0

b0

a0

a

b

x
z0

z1

z

y

Boolean logic network Dual-rail asynchronous threshold network
16

Hazard Issues

• Ideal Goal = Delay-Insensitivity (delay model)
– Allows arbitrary gate and wire delay

• circuit operates correctly under all conditions

– Most robust design style
• when circuit produces new output, all gates stable

= “timing robustness”

• “Orphans” = hazards to delay-insensitivity
– “unobservable” signal transition sequences

– Wire orphans: unobservable wires at fanout

– Gate orphans: unobservable paths at fanout

17

Hazard Issues

• Wire orphan example:

0

0
0

Wire orphan example

wire orphan! =
unobservable wire transition

(at fanout point)

C

C

primary
outputs

18
If unobservable wire too slow, will interfere with next data item (glitch)

Hazard Issues

• Gate orphan example:

a0
b0

a1
b1

z0

z1

0

0

gate orphan! = unobservable path through 1+ gates (at fanout point)

0

0

C

C

Gate orphan example

19
If unobservable path too slow, will interfere with next data item (glitch)

Hazard Issues: Summary

• Wire orphans: typically not a problem in practice
– unobserved signal transition on wire (at fanout point)

– Solution: handle during physical synthesis (e.g. Theseus Logic)
• enforce simple 1-sided timing constraint

• Gate orphans: difficult to handle
– unobserved signal transition on path (at fanout point)

– can result in unexpected glitches: if delays too long

– harder to overcome with physical design tools

invariant of the proposed optimization algorithms:
ensure no gate orphans introduced

20

Outline

1. Introduction

2. Background: Asynchronous Threshold Networks

3. Gate-Level Relaxation

4. Block-Level Relaxation

5. Experimental Results

6. Conclusions and Future Work

21

Overview of Relaxation

• Relaxation: Multi-level optimization
– Allows more efficient dual-rail expansion using eager-evaluating logic
– Idea: selectively replace some gates by eager blocks

• either at gate-level or block-level
– Advantage: if carefully performed, no loss of overall circuit robustness

• Proposed flow
Single-rail Boolean network

Relaxation

Relaxed dual-rail async threshold network optimized

22

Input Completeness

• A dual-rail implementation of a Boolean gate is
input-complete w.r.t. its input signals if an output changes
only after all the inputs arrive.

a0
b0

a1
b1

z1

z0C

C

C

C

a zb

Boolean OR gate Input-complete dual-rail OR network

(input complete w.r.t. input signals a and b)

Enforcing input completeness for every gate is the traditional
synthesis approach to avoid hazards (i.e. gate orphans).

23

Input Incompleteness

• A dual-rail implementation of a Boolean gate is
input-incomplete w.r.t. its input signals (“eager-evaluating”),
if the output can change before all inputs arrive.

a0
b0

z0

a zb a1
b1

z1

Boolean OR gate Input-incomplete dual-rail OR network

24

Gate-Level Relaxation Example #1

• Existing approach to dual-rail expansion is too restrictive.
– Every Boolean gate is fully-expanded into an input-complete block.

C
C
C
C

C
C
C
C

C
C
C
C

b1

a1

b1

a1

b0

a0

b0

a0

a

b

x
z0

z1

z

input-complete
dual-rail block

y

Boolean network Dual-rail circuit with full expansion (no relaxation)
25

Gate-Level Relaxation Example #1 (cont.)

• Not every Boolean gate needs to be expanded into
input-complete block.

Robust expansion

a

b

x

y

z

Boolean network

C
C
C
C

C
C
C
C

b1

a1

b1

a1

b0

a0

b0

a0

z0

z1

Relaxed expansion Relaxed dual-rail circuit

Optimized dual-rail circuit is still timing-robust (gate-orphan-free) 26

Gate-Level Relaxation Example #2

• Different choices may exist in relaxation.

x

a

b
c

d

i

j

k

l

m

y

z
PICKED = relaxed

PICKED = relaxed

Relaxation of Boolean network with two relaxed gates

27

Gate-Level Relaxation Example #2 (cont.)

• Different choices may exist in relaxation.

x

a

b
c

i

j

k

l

m

y

z

PICKED = relaxed

d

PICKED = relaxed

Relaxation of Boolean network with four relaxed gates

28

Gate-Level Relaxation: Summary

• Conservative approach:
– Every path from a gate to a primary output must contain only

robust (input-complete) gates

• Optimized approach: [Nowick/Jeong ASPDAC-07, Zhou/Sokolov/Yakovlev ICCAD-
06]

– At least one path from each gate to some
primary output must contain only robust (i.e. input-complete) gates
(Theorem)

– … all other gates can be safely ‘relaxed’ (I.e. input-incomplete)

Resulting implementation has no loss of timing robustness
(remains “gate-orphan-free”)

29

Which Gates Can Safely Be Relaxed?

• Localized theorem: gate relaxation [Jeong/Nowick ASPDAC-07]

A dual-rail implementation of a Boolean network is
timing-robust (i.e. gate-orphan-free) if and only if, for
each signal, at least one of its fanout gates is
input-complete (I.e. not relaxed).

• Example:

a

b

x

z

y

Boolean network

30

Which Gates Can Safely Be Relaxed?

• Localized theorem: gate relaxation [Jeong/Nowick ASPDAC-07]

A dual-rail implementation of a Boolean network is
timing-robust (i.e. gate-orphan-free) if and only if, for
each signal, at least one of its fanout gates is
input-complete (i.e. not relaxed).

• Example:

a

b

x

y

z

Boolean network Two fanout gates for signal a

31

Which Gates Can Safely Be Relaxed?

a

b

x

y

z

Two fanout gates for signal a

Only one of two fanout gates must be input-complete.

Boolean network

not relaxed

• Localized theorem:
Dual-rail implementation of a Boolean network is
timing-robust (i.e. gate-orphan-free) if and only if, for
each signal, at least one of its fanout gates is
input complete (I.e. not relaxed).

• Example:

[Jeong/Nowick ASPDAC-07]

32

Gate-Level Relaxation Algorithm

• Gate-level relaxation based on unate covering

– Step 1: setup covering table
• Captures requirements on which gates cannot be relaxed
• For each pair <u, v>, signal u fed into gate v:

– Add u as a covered element (row)
– Add v as a covering element (column)

– Step 2: solve “unate covering problem”

– Step 3: generate dual-rail threshold network
• Picked gates: expanded into input-complete block
• Other gates: expanded into input-incomplete block

33

Outline

1. Introduction

2. Background: Asynchronous Threshold Networks

3. Gate-Level Relaxation

4. Block-Level Relaxation

5. Experimental Results

6. Conclusions and Future Work

34

Block-Level Relaxation

• Block-level vs. Gate-level circuits

Block-level circuit Gate-level circuit

Consists of large granularity blocks Consists of simple gates

Blocks have multiple outputs Gates have single output

prgr plgl(gl , pl) (gr , pr)

(gout , pout)

2 2

2

gout pout

P/G block in prefix adders Gate-level implementation of P/G block
35

Why Relaxation at Block-Level?

• Like gate-level relaxation: blocks are either
– input complete: wait for all inputs to arrive
– relaxed: eager, do not wait for all inputs to arrive

• New idea: 3rd possibility
– “partially-eager”:

• input complete: each input vector acknowledged on some output
• partially-eager: allows some outputs to fire early

36

Block-Level Relaxation Example

• Basic approach = direct extension of gate-level relaxation
– No output in robust block fires before all inputs arrive

a0 b0 c1 a0 b1 c0 a0 b1 c1 a1 b0 c0 a1 b0 c1 a1 b1 c0 a1 b1 c1a0 b0 c0
Input-complete

(non-eager)

z0 z1 w0
w1

C CCC CCC C

a b c

z w
z = a + b + c
w = abc

Block example
37

Block-Level Relaxation Example

• Basic approach = direct extension of gate-level relaxation
– No output in robust block fires before all inputs arrive

a0 b0 c1 a0 b1 c0 a0 b1 c1 a1 b0 c0 a1 b0 c1 a1 b1 c0 a1 b1 c1a0 b0 c0
Input-complete

(non-eager)
C CCC CCC C

z0 z1 w0
w1

a b c

z w a0 b0 c0 a1 b1 c1a1 b1 c1 a0 b0 c0

z = a + b + c
w = abc

Input-incomplete
(eager) z1z0

C
w0 w1

C

38

Block-Level Relaxation Example
• New Option #1: “Biased Approach”

– In biased implementation of blocks, only one output is implemented
in a robust way; other outputs are eager-evaluating

Input-complete block
(and partially eager!)

a0 b0 c1 a0 b1 c0 a0 b1 c1 a1 b0 c0 a1 b0 c1 a1 b1 c0 a1 b1 c1a0 b0 c0 a0 b0 c0

a b c

z w

C CCC CCC C

z0 z1 w1 w0

z = a + b + c
w = abc

Output z: waits for all inputs (“non-eager”)
Output w: early evaluating (“eager”)Block example

39

Block-Level Relaxation Example
• New Option #2: “Distributive Approach”

• outputs jointly share responsibility to detect arrival of all input vectors
• each block output: also partially “eager”!

Input-complete block
(and partially eager!)

a b c

z w
z = a + b + c
w = abc

Block example
40

Output z: waits for inputs a/b (otherwise eager)
Output w: waits for inputs b/c (otherwise eager)

a0 b1 a1 b0 a1 b1a0 b0 c0

z0 z1 w0 w1

C C CC

a0 b0 c1

C

b0 c0 b1 c0 b0 c1

C CC

a0 b1 c1

C

a1 b1 c1

C

Summary: Why Relaxation at Block-Level?

Gate-level
relaxation

Block-level
relaxation

(NEW)

Single Boolean gate

Input-complete
dual-rail impl.
(non-eager)

Input-incomplete
dual-rail impl.

(eager)

Single Boolean block

Input-complete
dual-rail impl.
(non-eager)

Input-incomplete
dual-rail impl.

(eager)

Input-complete
dual-rail impl.

(partially-eager)

More optimization opportunities + larger design space
41

Block-Level Relaxation Algorithm

• Sketch:
– Step #1: set up covering table

• Captures requirements on which gates cannot be relaxed

– Step #2: solve “unate covering problem”

– Step #3: generate dual-rail threshold network

• Picked block: expanded into input-complete dual-rail logic

– Pick "most desirable" input-complete impltn. from several choices
– e.g. for full-adder block in ripple-carry adder,

pick biased dual-rail logic which is eager w.r.t. cout

• Other blocks: expanded into input-incomplete dual-rail logic

42

Block- vs Gate-Level Relaxation Example

Gate-level 8-bit
Brent-Kung adder circuit
(Initial Boolean network)

• Gate-level relaxation example
–

43

Block- vs Gate-Level Relaxation Example

Gate-level 8-bit
Brent-Kung adder circuit
w/ relaxed gates marked

• Gate-level relaxation example
–

44

Block- vs Gate-Level Relaxation Example

Block-level 8-bit
Brent-Kung adder circuit
(Initial Boolean network)

• Block-level relaxation example
–

45

Block- vs Gate-Level Relaxation Example

Block-level 8-bit
Brent-Kung adder circuit
w/ relaxed blocks marked

• Block-level relaxation example
–

46

Outline

1. Introduction

2. Background: Asynchronous Threshold Networks

3. Gate-Level Relaxation

4. Block-Level Relaxation

5. Experimental Results

6. Conclusions and Future Work

47

Experimental Results

Experiment #1: Effectiveness of block-level relaxation

Block-level synchronous (Boolean)
arithmetic circuit

dual-rail mapping
without block-level relaxation

dual-rail mapping
with block-level relaxation

Unoptimized dual-rail
arithmetic circuit

Relaxed dual-rail
arithmetic circuit

compared

48

Experimental Results (cont.)

Experiment #1: Effectiveness of block-level relaxation
– 13.1% delay reduction (avg.)
– 27.2% area improvement (avg.)

Original block-level network Unoptimized block-level
dual-rail circuit

Relaxed block-level
dual-rail circuit

name #i/#o/#g area critical delay area critical delay

8-b Brent-Kung 32/18/49 9020.2 8.45 6094.1 6.64

16-b Brent-Kung 4/34/110 21599.9 12.19 13587.8 9.65

8-b Kogge-Stone 32/18/67 16208.6 7.68 9624.9 5.84

16-b Kogge-Stone 64/34/179 44916.0 13.36 22596.4 7.57

8-b unopt. mult 32/16/323 29231.2 25.01 24998.4 23.52

16-b unopt. mult 64/32/1411 126786.0 53.78 108728.0 52.29

8-b opt. mult 32/16/320 28984.4 17.66 24745.0 15.44

16-b opt. mult 64/32/1408 126538.0 37.02 108474.0 32.97

Average percentage 72.8% 86.9%
49

Experimental Results (cont.)

Experiment #2: Gate-level vs. block-level relaxation

Block-level synchronous (Boolean)
arithmetic circuit

Gate-level synchronous (Boolean)
arithmetic circuit

Relaxed dual-rail
arithmetic circuit

Relaxed dual-rail
arithmetic circuit

dual-rail mapping
w/ gate-level relaxation

dual-rail mapping
w/ block-level relaxation

compared

50

Experimental Results (cont.)
Experiment #2: Gate-level vs. block-level relaxation

– Block-relaxation had 8.8% better delay with 10.8% worse area (avg.),
compared to gate-level relaxation

Original Boolean network Relaxed gate-level
dual-rail circuit

Relaxed block-level
dual-rail circuit

name #i/#o/#g area critical delay area critical delay

8-b Brent-Kung 32/18/49 4688.6 7.48 6094.1 6.64

16-b Brent-Kung 4/34/110 10396.8 10.69 13587.8 9.65

8-b Kogge-Stone 32/18/67 6341.8 5.57 9624.9 5.84

16-b Kogge-Stone 64/34/179 16571.5 6.99 22596.4 7.57

8-b unopt. mult 32/16/323 28828.4 25.69 24998.4 23.52

16-b unopt. mult 64/32/1411 125915.0 55.87 108728.0 52.29

8-b opt. mult 32/16/320 28523.1 20.98 24745.0 15.44

16-b opt. mult 64/32/1408 125610.0 46.70 108474.0 32.97

Average percentage 110.8% 91.2%
51

Experimental Results (cont.)
Experiment #2: Gate-level vs. block-level relaxation

– Block-relaxation had 8.8% better delay with 10.8% worse area (avg.),
compared to gate-level relaxation

– For 16-bit multiplier, 29.5% delay improvement

Original Boolean network Relaxed gate-level
dual-rail circuit

Relaxed block-level
dual-rail circuit

name #i/#o/#g area critical delay area critical delay

8-b Brent-Kung 32/18/49 4688.6 7.48 6094.1 6.64

16-b Brent-Kung 4/34/110 10396.8 10.69 13587.8 9.65

8-b Kogge-Stone 32/18/67 6341.8 5.57 9624.9 5.84

16-b Kogge-Stone 64/34/179 16571.5 6.99 22596.4 7.57

8-b unopt. mult 32/16/323 28828.4 25.69 24998.4 23.52

16-b unopt. mult 64/32/1411 125915.0 55.87 108728.0 52.29

8-b opt. mult 32/16/320 28523.1 20.98 24745.0 15.44

16-b opt. mult 64/32/1408 125610.0 46.70 108474.0 32.97

Average percentage 110.8% 91.2%
52

Experimental Results (cont.)
Experiment #2: Gate-level vs. block-level relaxation

– Block-relaxation had 8.8% better delay with 10.8% worse area (avg.),
compared to gate-level relaxation

– For 16-bit multiplier, 29.5% delay improvement
– For multipliers, 14.5% smaller area, on average

Original Boolean network Relaxed gate-level
dual-rail circuit

Relaxed block-level
dual-rail circuit

name #i/#o/#g area critical delay area critical delay

8-b Brent-Kung 32/18/49 4688.6 7.48 6094.1 6.64

16-b Brent-Kung 4/34/110 10396.8 10.69 13587.8 9.65

8-b Kogge-Stone 32/18/67 6341.8 5.57 9624.9 5.84

16-b Kogge-Stone 64/34/179 16571.5 6.99 22596.4 7.57

8-b unopt. mult 32/16/323 28828.4 25.69 24998.4 23.52

16-b unopt. mult 64/32/1411 125915.0 55.87 108728.0 52.29

8-b opt. mult 32/16/320 28523.1 20.98 24745.0 15.44

16-b opt. mult 64/32/1408 125610.0 46.70 108474.0 32.97

Average percentage 110.8% 91.2%
53

Conclusions and Future Work

• Block-Level Relaxation
– Optimization technique for robust "asynchronous" circuits
– Relaxes overly-restrictive style of existing approaches
– More relaxation opportunities than gate-level relaxation
– Comparison to existing gate-level relaxation:

• Average delay improvement of up to 8.8% (best: 29.5%)
• Average area overhead of 10.8% (best: 14.5% reduction)

• Future Work
– Hybrid scheme that combines gate-level and block-level

relaxation techniques

No change to overall timing-robustness of circuits

54

	Block-Level Relaxation forTiming-Robust Asynchronous CircuitsBased on Eager Evaluation
	Outline
	Recent Challenges in Microelectronics Design
	Benefits and Challenges of Asynchronous Circuits
	Asynchronous Threshold Networks
	Challenges and Overall Research Goals
	Overall Research Goals
	Overall Research Goals (cont.)
	Basic Synthesis Flow(Theseus Logic/Camgian Networks)
	New Optimized Synthesis Flow
	New Optimized Synthesis Flow
	Outline
	Single-Rail Boolean Networks
	Delay-Insensitive Encoding
	Dual-Rail Expansion
	Summary: Existing Synthesis Approach
	Hazard Issues
	Hazard Issues
	Hazard Issues
	Hazard Issues: Summary
	Outline
	Overview of Relaxation
	Input Completeness
	Input Incompleteness
	Gate-Level Relaxation Example #1
	Gate-Level Relaxation Example #1 (cont.)
	Gate-Level Relaxation Example #2
	Gate-Level Relaxation Example #2 (cont.)
	Gate-Level Relaxation: Summary
	Which Gates Can Safely Be Relaxed?
	Which Gates Can Safely Be Relaxed?
	Which Gates Can Safely Be Relaxed?
	Gate-Level Relaxation Algorithm
	Outline
	Block-Level Relaxation
	Why Relaxation at Block-Level?
	Block-Level Relaxation Example
	Block-Level Relaxation Example
	Block-Level Relaxation Example
	Block-Level Relaxation Example
	Summary: Why Relaxation at Block-Level?
	Block-Level Relaxation Algorithm
	Block- vs Gate-Level Relaxation Example
	Block- vs Gate-Level Relaxation Example
	Block- vs Gate-Level Relaxation Example
	Block- vs Gate-Level Relaxation Example
	Outline
	Experimental Results
	Experimental Results (cont.)
	Experimental Results (cont.)
	Experimental Results (cont.)
	Experimental Results (cont.)
	Experimental Results (cont.)
	Conclusions and Future Work

