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Asynchronous Circuits
Asynchronous circuits – no clocks:
☺ Low power consumption
☺ Average-case rather than worst-case 

performance
☺ Low electro-magnetic emission
☺ Modularity – no problems 

with the clock skew

/ Hard to synthesize
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CG, gC and stdC architectures
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Example: Deriving Equations
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Monotonic cover condition
The cover must be entered only via 

the states enabling the output
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Violation of MC condition
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Strict Set/Reset functions
• Guarantee a 
correct stdC
implementation 
• Bad for synthesis 
(few don’t cares)
• Can be used for 
overapproximating 
the support
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Entrance constraints

MC condition: The 
cover must be 

entered only via the 
states enabling the 

output
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Example: Deriving Equations
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State Graphs vs. Unfoldings
State Graphs:
☺ Relatively easy theory
☺ Many algorithms
/ Not visual
/ State space explosion

Unfoldings:
☺ Alleviate state space 

explosion
☺ Visual
☺ Proven efficient for 

model checking
/ Complicated theory
/ Relatively few 

algorithms
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Synthesis using unfoldings
Outline of the algorithm for stdC synthesis:
for each output signal z

compute minimal supports of 
sSetz/sResetz
for each ‘promising’ support X
compute the projection of the set of 
reachable encodings onto X sorting them
according to the corresponding value 
of non-strict Setz/Resetz
derive the entrance constraints
apply constrained Boolean minimization 
to the obtained ON- and OFF-sets
choose the best implementation of z
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CSC properties

The sCSCz+ /sCSCz- property: sSetz/sResetz is 
a well-defined Boolean function of projection
of the encoding of the current state on set of 
signals X; i.e., X is a support

X X
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CSC conflicts

States M’ and M’’ are in sCSCz+ /sCSCz- conflict if
� Codex(M’)=Codex(M’’) for all x∈X and
� F(M’) ≠ F(M’’)

where F=sSetz/sResetz

F can be expressed as a Boolean function with 
support X iff there are no conflicts of the 
corresponding type

X X
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Example
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Example: sCSCz+ conflict in prefix

c+ a-d-a+ d+

X

b+

C’ C’’

c+ a-d-a+ d+b+

Outc+(C’)=1≠Outc+(C’’)=0a b c d
Code(C’) 1 1 0 1
Code(C’’) 1 1 1 1

X={a,b,d}, Code  (C’)=Code  (C’’) X X

sCSCc+ conflict!
Nxtc(C’)=1=Nxtc(C’’)

ok for gC
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Computing non-supports
• Using unfoldings, it is possible to construct a 

Boolean formula CSCF(X,…) such that 
CSCF(X,…)[Y/X] is satisfiable iff Y is not a 
support of F=sSetz/sResetz

• The projection of the set of satisfying 
assignments of CSCz(X,…) onto X is the set 
of all non-supports of F (it is sufficient to 
compute the maximal elements of this 
projection)

Need to know how to compute projections!
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Example: projections

ϕ=(a ∨ b)(¬a ∨ ¬b)(c ∨ d ∨ e)
a b c d e
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1

a ⊕ b

Proj{a,b,c} ϕ

a b c
0 1 0
0 1 1
1 0 0
1 0 1

max Proj{a,b,c} ϕ

a b c
0 1 1
1 0 1

min Proj{a,b,c} ϕ

a b c
0 1 0
1 0 0
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Computing projections

0 1 0 0 1

Proj{a,b,c} ϕ
a b c d e

0 1 1 0 0
1 0 0 0 1
1 0 1 0 0
UNSAT

(a∨b∨c)(a∨b∨c)(a∨b∨c)(a∨b∨c)
a ⊕ b

ϕ=(a∨b)(a∨b)(c∨d∨e)

• Incremental SAT
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Computing supports
• The set of maximal non-supports is known
• The set of supports:

{ Y | Y⊆X, for all maximal non-supports X }
• The problem can be reduced to computing the 

compliment of a unate Boolean function
• For example, let {{a,b,c},{a,b,d},{a,c,d},{b,c,d}}

be the set of maximal non-supports
• The corresponding characteristic function is 

¬a + ¬b + ¬c + ¬d
• Its complement is abcd, so the set of minimal 

supports is {{a,b,c,d}}
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Computing entrance constraints
• Given a support X, construct a Boolean 

formula ECF(X,…) such that ECF(X,…)[Y/X]
is satisfiable iff there is a reachable state from 
which it is possible to illegally enter the cover 
with the encoding projection Y

• Use Incremental SAT to compute the set of 
entrance constraints (on each step, a clause 
ruling out all the satisfying assignments which 
would result in the computed entrance 
constraint is added)
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Computing the set/reset covers

• Compute the projection of the set of reachable 
encodings onto the given support X partitioning 
them according to the corresponding value of 
Setz/Resetz

• Apply conditional (binate) Boolean minimization 
to this projection and the entrance constraints
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Optimizations

☺ Triggers belong to every support –
significantly improves the efficiency

☺ Further optimizations are possible for 
certain net subclasses, e.g. unique-choice 
nets
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Experimental Results
• Unfoldings of STGs are almost always small in 

practice and thus well-suited for synthesis
• Huge memory savings
• Dramatic speedups
• Every valid speed-independent solution can be 

obtained using this method, so no loss of 
quality

• We can trade off quality for speed (e.g. consider 
only minimal supports): in our experiments, the 
solutions are the same as Petrify’s (up to 
Boolean minimization)

• Multiple implementations produced
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Thank you!
Any questions?
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