

The Royal Academy of Engineering



## Derivation of Monotonic Covers for Standard C Implementation Using STG Unfoldings

**Victor Khomenko** 

## **Asynchronous Circuits**

#### Asynchronous circuits – no clocks:

- **☺** Low power consumption
- Average-case rather than worst-case performance
- ☺ Low electro-magnetic emission
- Modularity no problems with the clock skew
- ⊗ Hard to synthesize



## CG, gC and stdC architectures



## **Example: Deriving Equations**



### **Monotonic cover condition**

# The cover must be entered only via the states enabling the output



## **Violation of MC condition**



**Correct implementation** 

### **Strict Set/Reset functions**



- Guarantee a correct stdC implementation
- Bad for synthesis (few don't cares)

• Can be used for overapproximating the support

 $sSet_z / sReset_z(s) = Out_{z+/z-}(s)$ 

### **Entrance constraints**



## **Example: Deriving Equations**

| Code<br><mark>abcd</mark> | Set <sub>c</sub>                                                                    | Reset <sub>c</sub> |
|---------------------------|-------------------------------------------------------------------------------------|--------------------|
| 0100                      | 1                                                                                   | 0                  |
| 0000                      | 0                                                                                   | -                  |
| 1000                      | 0                                                                                   | -                  |
| 0110                      | -                                                                                   | 0                  |
| 0010                      | 0                                                                                   | 1                  |
| 1100                      | 0                                                                                   | -                  |
| 1110                      | _                                                                                   | 0                  |
| 1111                      | _                                                                                   | 0                  |
| 1101                      | 1                                                                                   | 0                  |
| Cover                     | abvd                                                                                | b                  |
| Entrance<br>Constraints   | $set_{c}(0110) \Rightarrow set_{c}(1110)$ $set_{c}(1110) \Rightarrow set_{c}(1111)$ | Ø                  |
| Monotonic<br>cover        | abcvd                                                                               | b                  |

## State Graphs vs. Unfoldings

#### **State Graphs:**

- ③ Relatively easy theory
- Output Many algorithms
- Not visual
- ⊗ State space explosion



### **Unfoldings:**

- Alleviate state space explosion
- Over the second seco
- Proven efficient for model checking
- Complicated theory
- Relatively few algorithms

## Synthesis using unfoldings

**Outline of the algorithm for stdC synthesis:** 

- for each output signal z
  - compute minimal supports of sSet<sub>z</sub>/sReset<sub>z</sub>
  - for each 'promising' support X
  - compute the projection of the set of reachable encodings onto X sorting them according to the corresponding value of non-strict  $Set_z/Reset_z$
  - derive the entrance constraints
  - apply *constrained* Boolean minimization to the obtained ON- and OFF-sets
  - choose the best implementation of  ${\bf z}$

#### The $sCSC_X^{z^+}/sCSC_X^{z^-}$ property: $sSet_z/sReset_z$ is a well-defined Boolean function of projection of the encoding of the current state on set of signals X; i.e., X is a support

## **CSC** conflicts

States M' and M'' are in  $sCSC_X^{z+}/sCSC_X^{z-}$  conflict if

- $Code_x(M')=Code_x(M'')$  for all  $x \in X$  and
- F(M') ≠ F(M'')
- where F=sSet<sub>z</sub>/sReset<sub>z</sub>

F can be expressed as a Boolean function with support X iff there are no conflicts of the corresponding type

### Example



## Example: sCSC<sub>X</sub><sup>z+</sup> conflict in prefix



## **Computing non-supports**

- Using unfoldings, it is possible to construct a Boolean formula CSC<sup>F</sup>(X,...) such that CSC<sup>F</sup>(X,...)[Y/X] is satisfiable iff Y is not a support of F=sSet<sub>z</sub>/sReset<sub>z</sub>
- The projection of the set of satisfying assignments of CSC<sup>z</sup>(X,...) onto X is the set of all non-supports of F (it is sufficient to compute the maximal elements of this projection)

Need to know how to compute projections!

## **Example:** projections a ⊕ b $\varphi = (a \lor b)(\neg a \lor \neg b)(c \lor d \lor e)$ $\begin{array}{c|cccc} b & c & d & e \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 \\ \hline 1 & 0 & 1 & 1 \\ \hline 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1$ a000000011111 **Proj**<sub>{a,b,c}</sub> φ a b c 0 1 0 0 1 1 1 0 0 1 0 1 $\textbf{max}~\textbf{Proj}_{\{a,b,c\}}~\phi$ $\textbf{min Proj}_{\{a,b,c\}} \ \phi$ a b c 0 1 1 1 0 1

1

0

b c 1 0 0 0 a 0 1

## **Computing projections**



Incremental SAT

## **Computing supports**

- The set of maximal non-supports is known
- The set of supports:
  - { Y | Y ∠X, for all maximal non-supports X }
- The problem can be reduced to computing the compliment of a unate Boolean function
- For example, let {{a,b,c},{a,b,d},{a,c,d},{b,c,d}} be the set of maximal non-supports
- The corresponding characteristic function is
   a + ¬b + ¬c + ¬d
- Its complement is abcd, so the set of minimal supports is {{a,b,c,d}}

## **Computing entrance constraints**

- Given a support X, construct a Boolean formula *EC<sup>F</sup>(X,...)* such that *EC<sup>F</sup>(X,...)[Y/X]* is satisfiable iff there is a reachable state from which it is possible to illegally enter the cover with the encoding projection Y
- Use Incremental SAT to compute the set of entrance constraints (on each step, a clause ruling out all the satisfying assignments which would result in the computed entrance constraint is added)

## **Computing the set/reset covers**

- Compute the projection of the set of reachable encodings onto the given support X partitioning them according to the corresponding value of Set<sub>z</sub>/Reset<sub>z</sub>
- Apply conditional (binate) Boolean minimization to this projection and the entrance constraints

## **Optimizations**

- Triggers belong to every support significantly improves the efficiency
- Further optimizations are possible for certain net subclasses, e.g. unique-choice nets

## **Experimental Results**

- Unfoldings of STGs are almost always small in practice and thus well-suited for synthesis
- Huge memory savings
- Dramatic speedups
- Every valid speed-independent solution can be obtained using this method, so no loss of quality
- We can trade off quality for speed (e.g. consider only minimal supports): in our experiments, the solutions are the same as Petrify's (up to Boolean minimization)
- Multiple implementations produced

# Thank you! Any questions?