;2= Newcastle
University

The Royal Academy
of Engineering

Derivation of Monotonic Covers

for Standard C Implementation
Using STG Unfoldings

Victor Khomenko

Asynchronous Circuits

Asynchronous circuits — no clocks:
© Low power consumption

© Average-case rather than worst-case
performance

© Low electro-magnetic emission /s

© Modularity — no problems
with the clock skew

® Hard to synthesize

CG, gC and stdC architectures

a_
_ b+ a+ 1000 B
0100 ’oooo B d—
C+ C- b+ EE

0110 0—2—4 41100
\ 0010 .

a- d+

b—9 oG & b—
1110 1111 1101 d—
b —

Example: Deriving Equations

b+ a+ 1000
Q= >Q Code| Nxt. |Set.| Reset,
0100 10000 0100 | 1 1 0
0000 0 0 -
c+ C- b+ 1000 0 0 _
0110 1 - 0
Y _ Y 0010 0 0 1
0110 ¢ >0 01100 | 1100 0 0 -
0010 1110 1 - 0
1111 1 - 0
- d+ 1101 1 1 0
o d- O< C+ 5 Egn |abvcbvd|abvd b
1110 1111 1101
Nxt, (s) = Code, (s) @ Out, (s)

Set, / Reset, (s) =+

0

1 if Out,,,, (s)=1
If Nxt,(s)=0/1
otherwise

Monotonic cover condition

\

\

Lo

R
S

%Z

Violation

The cover must be entered only via

the states enabling the output

a+)01000
4 0000
C- b+
Y
>0Q 01100
0010

L R

A\

A

\\Q§
Gl
\N&;@.\

—{3bvd
C
b

Violation of MC condition

7

>

0110 4 .

\.\ N i\\\\ RN

Correct implementation

Strict Set/Reset functions

e Guarantee a

b+ o a8+ 1000 correct stdC
4 0000 implementation
c+ C- b+ e Bad for synthesis
(few don'’t cares)
0110 O———0 01100
\ 0010 e Can be used for
g+ overapproximating
a_
the support
d- S
O= O-= “‘:&\\@\
1110 1111 §\\§\\\\§\

sSet, / sReset, (s) =0ut,_,,_(S)

Entrance constraints

_,1000
c+ N D+ — Nth (S) =0
0110 —4—0 0 W
@}_O/\
Ula d* MC condition: The
_ cover must be

entered only via the
states enabling the

Set_(0110)=>Set_(1110) output
Set (1110)=>Set_(1111)

Example: Deriving Equations

Code

abcd et

Reset,

0100
0000
1000
0110
0010
1100
1110
1111
1101

o)

| OO 1 OO

-

|
(@) OO0 I RO I

Cover abvd

Entrance |Set.(0110)=Set_(1110)
Constraints|Set_ (1110)=Set (1111)

Monotonic — =
cover abcvd b

State Graphs vs. Unfoldings

State Graphs:

© Relatively easy theory
© Many algorithms

® Not visual

® State space explosion

Unfoldings:

© Alleviate state space
explosion

© Visual

© Proven efficient for
model checking

® Complicated theory

® Relatively few
algorithms

10

Synthesis using unfoldings

Outline of the algorithm for stdC synthesis:
for each output signal z

compute minimal supports of
sSet,/sReset,

for each “promising’ support X

compute the projection of the set of
reachable encodings onto X sorting them
according to the corresponding value
of non-strict Set,/Reset,

derive the entrance constraints

apply constrained Boolean minimization
to the obtained ON- and OFF-sets

choose the best implementation of z

11

CSC properties

The sCSC; /sCSC% property: sSet,/sReset, is
a well-defined Boolean function of projection
of the encoding of the current state on set of
signals X; i.e., X is a support

12

CSC conflicts

States M’ and M” are in sCSC; /sCSC¥ conflict if
* Code, (M’)=Code, (M”) for all xeX and
= F(M’) = F(M”)

where F=sSet,/sReset,

F can be expressed as a Boolean function with
support X iff there are no conflicts of the
corresponding type

13

Example

0100 9= b+ ’Oooao+)01000
c+ C- b+
0110 § | Y100 sCSCE:b, o conflict,
0010 but ok for gC
a- d+
o—0- o— &

14

Example: sCSCY conflict in prefix

|

|
b+ d+ ; c+F—1d a

|

C! : Cu :

e e e e e e e - - —— -
b+ d+ c+ d- a-

a b d Out,(C)=1=0ut,(C")=0
Code(C’) 1 1% SCSC®* conflict
Code(C”) 1 1 i} 1 Nxt_ (C’)=1=Nxt_ (C”’)
X={a,b,d}, Code, (C’)=Code (C") ok for gC

Computing non-supports

 Using unfoldings, it is possible to construct a
Boolean formula CSC"(X,...) such that
CSCT(X,...)[Y/X] is satisfiable iff Y is not a
support of F=sSet,/sReset,

 The projection of the set of satisfying
assignments of CSC“(X,...) onto X is the set
of all non-supports of F (it is sufficient to
compute the maximal elements of this
projection)

Need to know how to compute projections!

16

Example: projections
adb

¢=(a v b)(—a v —b)(c vd v e)
a b cde
0100 1 Proj 0)
01010 tab.cl
01011 a b c
01100 0120
01101 01 1
01110 100
01111 1 0 1
100/7 o Proj in Proj

max Froj a,b,c} P min Froj a,b,c} P

10 0/1 1 tab.e} tab.ch
10 110 O ab c abc
1 0 1,0 1 01 1 0120
1 0 1/1 0 1 0 1 1 0 0
10 1)1 1

Computing projections
ad®b
o=(avb)(avb)(cvdve)(avbvc)(avbvc)(@avbvc)(avbve)

Proj{a,b,c} ¢
e

O IO (= (= T
o\ O \O \O

C

0
1)
0
1)

"

UNSAT

 Incremental SAT

Computing supports

The set of maximal non-supports is known
The set of supports:
{ Y | YEX, for all maximal non-supports X }

The problem can be reduced to computing the
compliment of a unate Boolean function

For example, let {{a,b,c},{a,b,d},{a,c,d},{b,c,d}}
be the set of maximal non-supports

The corresponding characteristic function is
7a+ b+ ¢+ d

Its complement is abcd, so the set of minimal
supports is {{a,b,c,d}}

19

Computing entrance constraints

 Given a support X, construct a Boolean
formula ECT(X,...) such that EC™(X,..)[Y/X]
is satisfiable iff there is a reachable state from
which it is possible to illegally enter the cover
with the encoding projection Y

 Use Incremental SAT to compute the set of
entrance constraints (on each step, a clause
ruling out all the satisfying assignments which
would result in the computed entrance
constraint is added)

20

Computing the set/reset covers

« Compute the projection of the set of reachable
encodings onto the given support X partitioning
them according to the corresponding value of
Set,/Reset,

 Apply conditional (binate) Boolean minimization
to this projection and the entrance constraints

21

Optimizations

© Triggers belong to every support —
significantly improves the efficiency

© Further optimizations are possible for

certain net subclasses, e.g. unique-choice
nets

22

Experimental Results

Unfoldings of STGs are almost always small in
practice and thus well-suited for synthesis

Huge memory savings

Dramatic speedups

Every valid speed-independent solution can be
obtained using this method, so no loss of
quality

We can trade off quality for speed (e.g. consider
only minimal supports): in our experiments, the

solutions are the same as Petrify’s (up to
Boolean minimization)

Multiple implementations produced

23

Thank you!
Any questions?

	Derivation of Monotonic Covers for Standard C Implementation Using STG Unfoldings
	Asynchronous Circuits
	CG, gC and stdC architectures
	Example: Deriving Equations
	Monotonic cover condition
	Violation of MC condition
	Strict Set/Reset functions
	Entrance constraints
	Example: Deriving Equations
	State Graphs vs. Unfoldings
	Synthesis using unfoldings
	CSC properties
	CSC conflicts
	Example
	Example: sCSCz+ conflict in prefix
	Computing non-supports
	Example: projections
	Computing projections
	Computing supports
	Computing entrance constraints
	Computing the set/reset covers
	Optimizations
	Experimental Results

