
Derivation of Monotonic Covers
for Standard C Implementation

Using STG Unfoldings

Victor Khomenko

2

Asynchronous Circuits
Asynchronous circuits – no clocks:
☺ Low power consumption
☺ Average-case rather than worst-case

performance
☺ Low electro-magnetic emission
☺ Modularity – no problems

with the clock skew

/ Hard to synthesize

3

CG, gC and stdC architectures
a
b
c
d

ab∨cb∨d¯ c
d

b+ a+

b-

d- c+

0100

c+ c- b+

0000
1000

a- d+

0110
0010

1100

1110 1111 1101

a
b
d

ab∨d¯

cС
b b

+

–

b b

cС

a
b
d

abc∨d¯ ¯

4

Example: Deriving Equations
Code Nxtc Setc Resetc
0100
0000
1000
0110
0010
1100
1110
1111
1101

1
0
0
1
0
0
1
1
1

1
0
0
-
0
0
-
-
1

0
-
-
0
1
-
0
0
0

Eqn ab∨cb∨d ab∨d b̄¯ ¯

b+ a+

b-

d- c+

0100

c+ c- b+

0000
1000

a- d+

0110
0010

1100

1110 1111 1101

⎪
⎩

⎪
⎨

⎧

−
=

=
=

−+

otherwise
1/0)(if0
1)(if1

)(/
/

sNxt
sOut

sResetSet z

zz

zz

)()()(sOutsCodesNxt zzz ⊕=

5

Monotonic cover condition
The cover must be entered only via

the states enabling the output

a
b
d

ab∨d¯

b b

cС

Violation

b+ a+

b-

d- c+

0100

c+ c- b+

0000
1000

a- d+

0110
0010

1100

1110 1111 1101

6

Violation of MC condition
b+ a+

b-

d- c+

0100

c+ c- b+

0000
1000

a- d+

0110
0010

1100

1110 1111 1101

a
b
d

ab∨d¯

b b

cС

b b

cС

a
b
d

abc∨d¯ ¯

Correct implementation

7

Strict Set/Reset functions
• Guarantee a
correct stdC
implementation
• Bad for synthesis
(few don’t cares)
• Can be used for
overapproximating
the support

b+ a+

b-

d- c+

0100

c+ c- b+

0000
1000

a- d+

0110
0010

1100

1110 1111 1101

)()(/ / sOutssResetsSet zzzz −+=

8

Entrance constraints

MC condition: The
cover must be

entered only via the
states enabling the

output

b+ a+

b-

d- c+

0100

c+ c- b+

0000
1000

a- d+

0110
0010

1100

1110 1111 1101

⇓

⇒

0)(=sNxtz

Setc(0110)⇒Setc(1110)
Setc(1110)⇒Setc(1111)

9

Example: Deriving Equations
Code
abcd Setc Resetc

0100
0000
1000
0110
0010
1100
1110
1111
1101

1
0
0
-
0
0
-
-
1

0
-
-
0
1
-
0
0
0

Cover ab∨d b

Entrance
Constraints

Setc(0110)⇒Setc(1110)
Setc(1110)⇒Setc(1111)

∅

Monotonic
cover abc∨d b¯ ¯ ¯

¯¯

10

State Graphs vs. Unfoldings
State Graphs:
☺ Relatively easy theory
☺ Many algorithms
/ Not visual
/ State space explosion

Unfoldings:
☺ Alleviate state space

explosion
☺ Visual
☺ Proven efficient for

model checking
/ Complicated theory
/ Relatively few

algorithms

11

Synthesis using unfoldings
Outline of the algorithm for stdC synthesis:
for each output signal z

compute minimal supports of
sSetz/sResetz
for each ‘promising’ support X
compute the projection of the set of
reachable encodings onto X sorting them
according to the corresponding value
of non-strict Setz/Resetz
derive the entrance constraints
apply constrained Boolean minimization
to the obtained ON- and OFF-sets
choose the best implementation of z

12

CSC properties

The sCSCz+ /sCSCz- property: sSetz/sResetz is
a well-defined Boolean function of projection
of the encoding of the current state on set of
signals X; i.e., X is a support

X X

13

CSC conflicts

States M’ and M’’ are in sCSCz+ /sCSCz- conflict if
� Codex(M’)=Codex(M’’) for all x∈X and
� F(M’) ≠ F(M’’)

where F=sSetz/sResetz

F can be expressed as a Boolean function with
support X iff there are no conflicts of the
corresponding type

X X

14

Example

b+ a+

b-

d- c+

0100

c+ c- b+

0000
1000

a- d+

0110
0010

1100

1110 1111 110111 111 1

sCSCc+ conflict,
but ok for gC

{a,b,d}

15

Example: sCSCz+ conflict in prefix

c+ a-d-a+ d+

X

b+

C’ C’’

c+ a-d-a+ d+b+

Outc+(C’)=1≠Outc+(C’’)=0a b c d
Code(C’) 1 1 0 1
Code(C’’) 1 1 1 1

X={a,b,d}, Code (C’)=Code (C’’) X X

sCSCc+ conflict!
Nxtc(C’)=1=Nxtc(C’’)

ok for gC

16

Computing non-supports
• Using unfoldings, it is possible to construct a

Boolean formula CSCF(X,…) such that
CSCF(X,…)[Y/X] is satisfiable iff Y is not a
support of F=sSetz/sResetz

• The projection of the set of satisfying
assignments of CSCz(X,…) onto X is the set
of all non-supports of F (it is sufficient to
compute the maximal elements of this
projection)

Need to know how to compute projections!

17

Example: projections

ϕ=(a ∨ b)(¬a ∨ ¬b)(c ∨ d ∨ e)
a b c d e
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1

a ⊕ b

Proj{a,b,c} ϕ

a b c
0 1 0
0 1 1
1 0 0
1 0 1

max Proj{a,b,c} ϕ

a b c
0 1 1
1 0 1

min Proj{a,b,c} ϕ

a b c
0 1 0
1 0 0

18

Computing projections

0 1 0 0 1

Proj{a,b,c} ϕ
a b c d e

0 1 1 0 0
1 0 0 0 1
1 0 1 0 0
UNSAT

(a∨b∨c)(a∨b∨c)(a∨b∨c)(a∨b∨c)
a ⊕ b

ϕ=(a∨b)(a∨b)(c∨d∨e)

• Incremental SAT

19

Computing supports
• The set of maximal non-supports is known
• The set of supports:

{ Y | Y⊆X, for all maximal non-supports X }
• The problem can be reduced to computing the

compliment of a unate Boolean function
• For example, let {{a,b,c},{a,b,d},{a,c,d},{b,c,d}}

be the set of maximal non-supports
• The corresponding characteristic function is

¬a + ¬b + ¬c + ¬d
• Its complement is abcd, so the set of minimal

supports is {{a,b,c,d}}

20

Computing entrance constraints
• Given a support X, construct a Boolean

formula ECF(X,…) such that ECF(X,…)[Y/X]
is satisfiable iff there is a reachable state from
which it is possible to illegally enter the cover
with the encoding projection Y

• Use Incremental SAT to compute the set of
entrance constraints (on each step, a clause
ruling out all the satisfying assignments which
would result in the computed entrance
constraint is added)

21

Computing the set/reset covers

• Compute the projection of the set of reachable
encodings onto the given support X partitioning
them according to the corresponding value of
Setz/Resetz

• Apply conditional (binate) Boolean minimization
to this projection and the entrance constraints

22

Optimizations

☺ Triggers belong to every support –
significantly improves the efficiency

☺ Further optimizations are possible for
certain net subclasses, e.g. unique-choice
nets

23

Experimental Results
• Unfoldings of STGs are almost always small in

practice and thus well-suited for synthesis
• Huge memory savings
• Dramatic speedups
• Every valid speed-independent solution can be

obtained using this method, so no loss of
quality

• We can trade off quality for speed (e.g. consider
only minimal supports): in our experiments, the
solutions are the same as Petrify’s (up to
Boolean minimization)

• Multiple implementations produced

24

Thank you!
Any questions?

	Derivation of Monotonic Covers for Standard C Implementation Using STG Unfoldings
	Asynchronous Circuits
	CG, gC and stdC architectures
	Example: Deriving Equations
	Monotonic cover condition
	Violation of MC condition
	Strict Set/Reset functions
	Entrance constraints
	Example: Deriving Equations
	State Graphs vs. Unfoldings
	Synthesis using unfoldings
	CSC properties
	CSC conflicts
	Example
	Example: sCSCz+ conflict in prefix
	Computing non-supports
	Example: projections
	Computing projections
	Computing supports
	Computing entrance constraints
	Computing the set/reset covers
	Optimizations
	Experimental Results

