
Automatic Compilation of
Data-Driven Circuits

Sam Taylor, Doug Edwards, Luis Plana
University of Manchester

smtaylor|doug|lplana@cs.manchester.ac.uk

Summary

• Handshake Circuit paradigm is nice
• Control-driven style is flexible but slow
• Data-driven approaches provide better

performance
• Combine data-driven approach with

handshake circuit paradigm
• An alternative option for designers?

Balsa Design Flow
Balsa code

Handshake Circuit
(Breeze netlist)

Gate−level netlist

balsa−netlist

Balsa compiler

Gate−level simulation

Layout simulation

Behavioural simulation

(breeze−sim)
Behaviour

Function

Layout

Commercial
layout tools

Timing

re
−

us
e

Design refinement (manual process)

Handshake Circuits
• Intermediate representation independent

of implementation styles
• Networks of small components

communicating by handshakes
• Each component (relatively)

straightforward to implement in isolation
• Successful method of implementing large

circuits
• Syntax-directed translation

Balsa one-place buffer

#

;

V

Sync (activation) channel
Data channel
Request
Acknowledge

variable v
loop

i -> v;
o <- v

end

O

activate

i

Advantages of control-driven structure

• Passive-ported variable is very flexible.
Read and write in any order like a
sequential programming language

• Familiar control structures - loops etc.
• Low power – nothing gets done that does

not need doing.

Why does the structure of Balsa
circuits make them slow?

• Control-driven compilation
• Monolithic control
• Lots of sequencers
• Frequent synchronisation between control and

data
• Control Overhead. Data is always waiting for

control.
• Data-driven style attempts to avoid all of these

problems

Control-driven
structure

V1

;

FV

@

Output
control

activate

Write
control

conditional
processing

output
processing

V0

Input control

A

O

Write
control

Input controlInput control

Output
control

conditional
processing

output
processing

Three main issues

• All inputs are synchronised
• Sequential activation of ‘reads’ and ‘writes’
• Data processing operations occur

sequentially after control instead of in
parallel

So look at the main structures of Balsa
handshake circuits and replace with data-
driven alternatives

Input control

FV

FV

Processing

activate

a

b

Processing

dup

a

b

activate

Localised sequencing
input i
output v
during

v <- i
end

input v
output o
during

o <- v
end

#

;

V V

loop
i -> v;
o <- v

end

i o i o

Data processing

FV

FV

activate

a

b
+

| |

o1

o2

a, b -> then
o1 <- a + b
|| o2 <- b

end

Data processing

input a, b
output o1, o2
during

o1 <- a + b
o2 <- b

end

dup

a

b

+ o1

o2

T

T

C

C

C

T

T

o1.req

o1.ack

o2.req

o2.ack

activate.req activate.ack

a.req

a.ack

b.req

b.ack

T
C

TC o2.ack

a.req

a.ack

b.req

b.ack

o1.req

o1.ack

o2.req

Data-driven structure

V1

@

Output
control

Write
control

conditional
processing

output
processing

V0

A

O

Write
control

Output
control

conditional
processing

output
processing

Code

a, b -> then
o1 <- a + b
|| o2 <- b

end

input a, b
output o1, o2
during

o1 <- a + b
o2 <- b

end

Each block in data-driven code is basically the
description of a pipeline stage.

Balsa vs. data-driven philosophy

• List of operations
• Do all of these

operations as soon as
you can (speculate)

• Don't synchronise
until you absolutely
must

• Throw away the
results of operations
you don't need

• Collect all inputs
• Decide what

operation to do
• Do the operation
• Release the inputs

Design Flow

Handshake Circuit
(Breeze netlist)

Gate−level netlist
Gate−level simulation

Layout simulation

Behavioural simulation

(breeze−sim)
Behaviour

Function

Layout

Commercial
layout tools

Timing

Data−driven code Balsa code

Balsa compiler
re

−
us

eData−driven
compiler

behaviour descriptions
new component

gate−level descriptions
new component balsa−netlist

Design refinement (manual process)

nanoSpa

• Cut-down ARM processor
• Balsa design intended for maximum

performance
• Data-driven equivalent with same architecture

and handshake component implementation style
(try to look just at improvement from structure)

• Data-driven bundled data and dual-rail
implementations both about 1.5x improvement
over Balsa version

Syntax-directed translation?

• To use syntax-directed translation I restricted the
input language so that one could only write what
I wanted to produce!

• This is probably fine for an experienced designer
– it gives them what they want.

• Probably not fine for others – they don’t know
how to think ‘asynchronous’.

• But the same thinking is needed to write fast
Balsa.

Conclusion

• The structure of control-driven handshake
circuits is familiar and flexible but contributes to
their poor performance

• Data-driven circuits perform better but are not as
familiar and flexible

• Both styles can be combined in the same flow
• Future work could include automatic

transformation from control to data-driven or at
least more structures to assist data-driven
design

C
C

C T

T

T

C

T

C

CD CD

adder

0

00

0

activate.ackactivate.req

a.ack

b.ack

b.req

a.req

o1.ack

o2.ack

o1.req

o2.req

T

T

C
adder

CD

a.ack

b.ack

a.req

b.req

o1.ack

o2.ack

o1.req

o2.req

@

|

|

|

|

|

to execute

LDM/STM

decode
Iterative

Regular

from fetch

decode

@

|

|

|

|

|

from fetch

to execute

ctrl

LDM/STM
decode

Regular
decode

Write
Control

r0

r1

r3

r4

control

data r0

r1

r2

r3

control

data

Control
Write

Control
Write

Control
Write

Control
Write

| |

	Automatic Compilation of Data-Driven Circuits
	Summary
	Balsa Design Flow
	Handshake Circuits
	Balsa one-place buffer
	Advantages of control-driven structure
	Why does the structure of Balsa circuits make them slow?
	Control-driven structure
	Three main issues
	Input control
	Localised sequencing
	Data processing
	Data processing
	Data-driven structure
	Code
	Balsa vs. data-driven philosophy
	Design Flow
	nanoSpa
	Syntax-directed translation?
	Conclusion

