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Summary

• Handshake Circuit paradigm is nice
• Control-driven style is flexible but slow
• Data-driven approaches provide better 

performance
• Combine data-driven approach with 

handshake circuit paradigm
• An alternative option for designers?
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Handshake Circuits
• Intermediate representation independent 

of implementation styles
• Networks of small components 

communicating by handshakes
• Each component (relatively) 

straightforward to implement in isolation
• Successful method of implementing large 

circuits
• Syntax-directed translation



Balsa one-place buffer
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Advantages of control-driven structure

• Passive-ported variable is very flexible. 
Read and write in any order like a 
sequential programming language

• Familiar control structures - loops etc.
• Low power – nothing gets done that does 

not need doing.



Why does the structure of Balsa 
circuits make them slow?

• Control-driven compilation
• Monolithic control
• Lots of sequencers
• Frequent synchronisation between control and 

data
• Control Overhead. Data is always waiting for 

control.
• Data-driven style attempts to avoid all of these 

problems
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Three main issues

• All inputs are synchronised
• Sequential activation of ‘reads’ and ‘writes’
• Data processing operations occur 

sequentially after control instead of in 
parallel

So look at the main structures of Balsa 
handshake circuits and replace with data-
driven alternatives
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Localised sequencing
input  i
output v
during

v <- i
end

input  v
output o
during

o <- v
end
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Data processing
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end



Data processing

input  a, b
output o1, o2
during

o1 <- a + b
o2 <- b

end

dup

a

b

+ o1

o2
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Data-driven structure
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Code

a, b -> then
o1 <- a + b
|| o2 <- b

end

input  a, b
output o1, o2
during

o1 <- a + b
o2 <- b

end

Each block in data-driven code is basically the
description of a pipeline stage.



Balsa vs. data-driven philosophy

• List of operations
• Do all of these 

operations as soon as 
you can (speculate)

• Don't synchronise 
until you absolutely 
must

• Throw away the 
results of operations 
you don't need

• Collect all inputs
• Decide what 

operation to do
• Do the operation
• Release the inputs



Design Flow
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nanoSpa

• Cut-down ARM processor
• Balsa design intended for maximum 

performance
• Data-driven equivalent with same architecture 

and handshake component implementation style 
(try to look just at improvement from structure)

• Data-driven bundled data and dual-rail 
implementations both about 1.5x improvement 
over Balsa version



Syntax-directed translation?

• To use syntax-directed translation I restricted the 
input language so that one could only write what 
I wanted to produce!

• This is probably fine for an experienced designer 
– it gives them what they want.

• Probably not fine for others – they don’t know 
how to think ‘asynchronous’.

• But the same thinking is needed to write fast 
Balsa.



Conclusion

• The structure of control-driven handshake 
circuits is familiar and flexible but contributes to 
their poor performance

• Data-driven circuits perform better but are not as 
familiar and flexible

• Both styles can be combined in the same flow
• Future work could include automatic 

transformation from control to data-driven or at 
least more structures to assist data-driven 
design
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