Automatic Compilation of
Data-Driven Circuits

Sam Taylor, Doug Edwards, Luis Plana
University of Manchester
smtaylor|doug|lplana@cs.manchester.ac.uk

EPS Rc Engineering and Physical Sciences

Research Council

Summary

Handshake Circuit paradigm is nice
Control-driven style is flexible but slow

Data-driven approaches provide better
performance

Combine data-driven approach with
handshake circuit paradigm

An alternative option for designers?

Balsa Design Flow

Balsa code
A

Balsa compiler

re-use

Y
Handshake Circuit gepavioural simulation

: » Behaviour
(Breeze netlist) (breeze—sim)
balsa—netlist
A/) Gate-level simulation .
Gate-level netlist » Function
Commercial
layout tools
\ Layout simulation
Layout y

» Timing

Handshake Circuits

Intermediate representation independent
of Implementation styles

Networks of small components
communicating by handshakes

Each component (relatively)
straightforward to implement in isolation

Successful method of implementing large
CIrcuits

Syntax-directed translation

Balsa one-place buffer

variable v activate — Sync (activation) channel
loop -—p Data channel

1 -> V; —> Request

0O <— V Acknowledge

end

Advantages of control-driven structure

» Passive-ported variable is very flexible.
Read and write in any order like a
sequential programming language

« Familiar control structures - loops etc.

* Low power — nothing gets done that does
not need doing.

Why does the structure of Balsa

circuits make them slow?

Control-driven compilation
Monolithic control
Lots of sequencers

Frequent synchronisation between control and
data

Control Overhead. Data is always waiting for
control.

Data-driven style attempts to avoid all of these
problems

activate

Control-driven
structure

Three main issues

 All inputs are synchronised
e Seguential activation of ‘reads’ and ‘writes’

e Data processing operations occur
sequentially after control instead of In
parallel

So look at the main structures of Balsa
handshake circuits and replace with data-
driven alternatives

activate

FV

FV

Input control

Processing

activate

l

b_>

Processing

loop

Localised sequencing

input 1
output v
during

Vv <- 1
end

input v
output o
during

0O <-V

Data processing

activate a. b -> then
0l <- a+b
| 02 <- b

Data processing

input a, b
output ol, o2
during
ol <-a+b
02 <- Db
end

activate.req

b.req |

b.ack

activate.ack

O

a.req

a.ack

b.req

b.ack4<?

)

o]

®
T
T
}ol.req
P ol.ack

02.req

02.ack

ol.req

ol.ack

02.req

02.ack

Data-driven structure

Code

a, b -> then input a, b
ol <-a+b output ol, o2
|| 02 <- D during
end ol <-a+b
02 <- Db
end

Each block in data-driven code is basically the
description of a pipeline stage.

Balsa vs. data-driven philosophy

Collect all inputs

Decide what
operation to do

Do the operation
Release the inputs

List of operations

Do all of these
operations as soon as

you can (S

Don't sync
until you a
must

peculate)
nronise

nsolutely

Throw away the
results of operations
you don't need

Design Flow

Data—driven code Balsa code

Data—driven

compiler Balsa compiler

re—-us

Handshake Circuit gepavioural simulation

(Breeze netlist) ™ {preeze—sim) > Behaviour
new component
behaviour descriptions
t _ o
gg}rlc\éfl(z:r\?eplodn:sr::riptions balsa—netlist
Y : :
: Gate—-level simulation :
Gate—level netlist » Function
Commercial
layout tools
M Layout simulation

Layout > Timing

nhanoSpa

Cut-down ARM processor

Balsa design intended for maximum
performance

Data-driven equivalent with same architecture
and handshake component implementation style
(try to look just at improvement from structure)

Data-driven bundled data and dual-rall
Implementations both about 1.5x improvement
over Balsa version

Syntax-directed translation?

To use syntax-directed translation | restricted the
Input language so that one could only write what
| wanted to produce!

This is probably fine for an experienced designer
— It gives them what they want.

Probably not fine for others — they don’t know
how to think ‘asynchronous’.

But the same thinking is needed to write fast
Balsa.

Conclusion

The structure of control-driven handshake
circuits i1s familiar and flexible but contributes to
their poor performance

Data-driven circuits perform better but are not as
familiar and flexible

Both styles can be combined in the same flow

Future work could include automatic
transformation from control to data-driven or at
least more structures to assist data-driven
design

activate.req

a.req _g

activate.ack

O

b.req __|

a.ack

ol.ack

(C T 02.ack

CD

CD

b.ack

>01.req

]

>02.req

a.ack

b.ack

a.req

b.req

@ ol.ack

02.ack

(o]

CD|

>ol.req

g
lappe

=
>02.req

to execute

Regular

decode

LDM/STM
decode

N
V|

to execute

from fetch

»
»
»
L
»
»
»
»

T Wee
= n =210
go /..nla~0
g R

J - J

N
V|

from fetch

] e]

data)

control

Write
Control

data

control

Write
Control

Write
Control

Write
Control

Write

Control

	Automatic Compilation of Data-Driven Circuits
	Summary
	Balsa Design Flow
	Handshake Circuits
	Balsa one-place buffer
	Advantages of control-driven structure
	Why does the structure of Balsa circuits make them slow?
	Control-driven structure
	Three main issues
	Input control
	Localised sequencing
	Data processing
	Data processing
	Data-driven structure
	Code
	Balsa vs. data-driven philosophy
	Design Flow
	nanoSpa
	Syntax-directed translation?
	Conclusion

