Asynchronous Nano-Electronics

Alain J. Martin Piyush Prakash

California Institute of Technology

Async2008, April 2008

Why Asynchrony for nano?

- The robustness of asynchronous QDI logic to timing variations can absorb the important parameter variations of nano technology
- * No clock network in nano
- * Can we increase the reliability of QDI even further (XQDI)?
- * Applicable to nano CMOS as well

QDI tolerance to variations

Robustness to Voltage and Temperature Variations

SUBTHRESHOLD OPERATION (RING OF PCHBs in TSMC 0.18)

The following slide shows the result of an HPSICE simulation of a typical QDI asynchronous circuit: A five-stage ring of async (PCHB) pipeline stages. Technology: TSMC 0.18micron CMOS Vdd: 1.8V, Vt : .5V, Complete layout. Vdd is oscillating between 3.5V and 0V (maximal amplitude), and at various frequencies. The circuit keeps working correctly!

(It will malfunction at some very high-frequency noise in phase with circuit frequency.)

Robustness to Power-Supply Noise

-0.5

-0.5

Tolerance to Vth Variation

Molecular Nano-electronics

Molecular Nano-electronics

- Self-assembly (or nano-imprint) of molecular silicon nano-wires (NW) arranged in a grid
- * Wire ~ 5nm diameter, < 10 micron length
- Resistors and diodes can be constructed at junction of 2 orthogonal wires
- High density: 10**10 to 10**12 devices/cm2
- * Enough to build wired-or logic, but no gain
- Transistors with gain also possible at a junction: top metal wire crossing a doped semiconducting bottow NW create a transistor (p-type easier to build than ntype but both exist)

Programmable Junction

From Science 2004, Flood et al.

Junction Devices

Doped nanowires give:

Diode and FET Junctions

Cui...Lieber (2001) Science 291 p851

Huang...Lieber (2001) Science 294 p1313

lsd

Complementary NW Transistors

Improved p- and n-type NW transistors with good performance and reliability built in Heath's lab at Caltech. High yield inverters with gain ~10 are obtained reliably. The fabrication process enables complex circuitry such as the XOR gate shown on the right.

Complementary NW Transistors

From C.Lieber, Harvard

> QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Hypothetical Target Technology

- Inspired by HP technology
- Basic building block: tile of about 100x100 wires
- * Tile can be either only routing or computing
- * Connections only through orthogonal crossing
- * Computing tile: n-plane, p-plane, routing plane
- Connection resistance high (~100K ohms) and highly variable
- Transistor gain "good enough" (~10)
- * Up to 10% wires broken
- * Vdd/ GND in silicon layer

Example: Register Nano-Layout

General Layout Scheme

Nano-async

Reliability Issues in Nano-QDI

- * Designing gates:
 - Restricted geometry
 - State-holding gates
- * Designing systems:
 - Isochronic forks
 - Oscillating rings of gates
- Defect and fault tolerance
 - Not part of this talk

Combinational Gates

* nand, nor, inverter

State-holding Gates

* C-element, Set-reset latch, precharge logic

Holding State

- A gate is the implementation of the pair of production rules:
 - $Bu \rightarrow z^{\uparrow}$
 - $Bd \rightarrow z \downarrow$

What happens when Bu and Bd are both false?

- * State-holding gate: z must keep its current value.
- Usual solution ("keeper" or "staticizer") always maintain the current value:
- * Bu v z \rightarrow z \downarrow , \neg z \rightarrow z \uparrow Bd v \neg z \rightarrow z \uparrow , z \rightarrow z \downarrow

Fight when the value of z is changed!

Holding State with Keeper

- * Keeper requires balancing current strengths.
- * The current through the weak pullup $\neg z_{-} \rightarrow z^{\uparrow}$ must be:
 - (1) strong enough to compensate leakage and
 - (2) weak enough to "loose the fight" against the current through the pulldown Bu $\to z_\downarrow$
- * And similarly for the weak pulldown
- * Two-sided inequality on currents. Difficult with variability...

Holding State without Keeper

- Any state-holding gate can be transformed into a combinational gate with feedback
- General transformation: add the extra terms only when ¬Bu ∧ ¬Bd holds (in the "floating" states)

* Bu
$$v \neg Bd \land z \rightarrow z_\downarrow$$
, $\neg z_ \rightarrow z\uparrow$
Bd $v \neg Bu \land \neg z \rightarrow z_\uparrow$, $z_ \rightarrow z\downarrow$

 Drawback: possibly complex conditions with many transistors in series, resulting in too weak current to prevent leakage.

C-element without Keeper

*
$$x \land y \rightarrow z^{\uparrow}$$

 $\neg x \land \neg y \rightarrow z^{\downarrow}$

* Combinational logic transformation:

 $\begin{array}{c} (x \land y) \lor (x \land z) \lor (y \land z) \rightarrow z_{-} \downarrow \\ (\neg x \land \neg y) \lor (\neg x \land \neg z) \lor (\neg y \land \neg z) \rightarrow z_{-} \uparrow \\ \neg z_{-} \rightarrow z^{\uparrow} \\ z_{-} \rightarrow z^{\downarrow} \end{array}$

Precharge Function

* $\operatorname{en} \wedge \mathsf{F} \to \mathbb{Z} \downarrow$ $\neg \operatorname{en} \to \mathbb{Z} \uparrow$

General transformation:

- * en \land F v en \land z \rightarrow z \downarrow \neg en v \neg F \land \neg z \rightarrow z \uparrow
- It may be possible to simplify or eliminate the floating states using invariants: example of dual-rail precharge function
- * The performance of fine-grain PCHB-like pipelines may be difficult to achieve without keepers...

Second Issue: Isochronic Forks

- We have proved that the class of entirely DI circuits (no isochronic fork) is very limited: We cannot avoid isochronic forks.
- * The usual timing assumption on isochronic forks is too strong. (Sufficient but not necessary.)
 - "the difference between the delays on the branches of the fork is negligible."
- Difference between "cut" and "tie" transitions

Weakest Isochronic Fork Assumption

- Transition delay of the isochronic branch is less than the delay of the adversary path
- d(single transition) << d(multitransition path)
- One-sided inequality that can always be satisfied by making adversary path longer

Isochronic Fork: Nano implementation

d(single transition) << 3*d(transistor-chain) +9*RC-delays li ri li,(0->1) li (0->1) ro (0->?) li (0->1) x2_(1->0) X' x2 ro x1 (1)_iy X **IO** +C ri x' x2

в

Α

С

Third Issue: Ring Oscillators

- An async system is a collection of rings of operators.
- ★ Each transition z^{\uparrow} is eventually followed by a transition z^{\downarrow} on a ring. How do we guarantee that z^{\uparrow} does not self-invalidate through a sequence of fast transitions leading to z^{\downarrow} ?

Ring Oscillators, cont.

- * What are the requirements on the technology to guarantee that each ring oscillates?
- * Sufficient condition (requires gain):
- * Longest transition << shortest transition * (n-1)</p>
- Where n = # inverting stages

Conclusion: Recipe to build XQDI circuits

- * At least diodes to build boolean logic
- * Transistors for gain
- * State-holding gates: avoid keepers entirely (possible but can be expensive)
- * It is not possible to avoid isochronic forks but...
- Timing assumption on isochronic fork is a one-sided inequality that can always be satisfied
- * Rings of operators need to have gain and satisfy a onesided timing inequality that can always be satisfied
- It is possible to design XQDI circuits with only two types of one-sided timing inequalities that can always be satisfied by adding inverters.

Dual-rail Precharge Function

- * Floating states : $en \land \neg F1$ and $en \land \neg F2$
- * If we can guarantee that: $en \Rightarrow (F1 \lor F2)$, then in the floating state $en \land \neg F1$, $\neg zf_{-}$ holds, and in the floating state $en \land \neg F2$, $\neg zt_{-}$ holds. Which leads to the simple transformation:

* en
$$\wedge$$
 F1 \rightarrow zt_ \downarrow

* $\neg en \lor \neg zf \rightarrow zt_\uparrow$

 $\begin{array}{rccc} en \wedge F2 & \rightarrow zf_{-} \downarrow \\ \neg en \lor \neg zt & \rightarrow zf_{-} \uparrow \end{array}$

MiniMIPS Low-Voltage Operation

- * Functional from 0.5V Vdd up
- Functional at 0.4V with some transistor resizing

PROGRAMMABLE JUNCTION

From Luo, Chem Phys Chem 2002

Nano-Imprint

SNAP process procedure for transferring nanoscale features from a cleaved superlattice to a flat substrate. Nanoletters 2006, Jung et al.

Self-Assembly

Fig. 1. SiNW growth cartoon. Top row shows how a gold (Au) catalyst allows the SiH₄ molecules to shed their Hydrogen termination so the Silicon can assemble onto the top of the growing NW. Bottom row shows how the Hydrogen termination on the SiH₄ molecule prevents it from assembling onto the edge of the growing NW where the catalyst is not present.

From DeHon, JETC, 2005

Two possible layouts for multipleinput cell

Nano layouts for inverter and 2-input nand-gate

Isochronic Fork Example

Worst-case example! In CMOS: d(single transition)<< 3*d(gate) li+; (li1+,li2+); (x1_-, x2_-); lo+; li-; (li1-,li2-); ro+; ri_-; x1_+, x2_+; ro-; ri_+; lo-

Layout of 2 and 3 input C-elements

Function Block with single output

Complete Pipeline Stage

Two-port/Four-phase Sequencer

Read/write Boolean Register

(Only combinational gates as building blocks)

Register Nano-Layout

48

Sum Computation: Example of Function Block

