
Debugging
Distributed-Shared-Memory Communication

at Multiple Granularities
in Networks on Chip

Bart Vermeulen 1
Kees Goossens 1,2
Siddharth Umrani 2

1 Research, NXP Semiconductors
2 Computer Engineering, Delft University of Technology

2

2008-04-08 NOCS

overview

transaction-based communication-centric debug

traditional debug architecture & flow and NOC architecture
– distributed shared memory (DSM)
– communication model

new debug architecture & flow and NOC architecture
– debug granularity, DCI, TPR, EDI, FSM, TAP, API

example

conclusions

3

2008-04-08 NOCS

debug is…

error localisation when a chip does
not work in its intended application

difficult due to limited visibility
of the internal behaviour

debugging first silicon uses
>50% of project time
unpredictable

negative impact on
– time to market
– brand image

4

2008-04-08 NOCS

communication-centric debug

processor debug is mature
system debug complexity resides in the interactions between IP blocks
– multi-processor debug is a challenge

older interconnects serialised all transactions
– a unique global communication trace

latest interconnects allow split, pipelined, concurrent transactions
– no unique communication trace

ML-AHB
AXI

NOC
CPU

T

T

mem

mem

CPU
T

T

B

B

B

B

5

2008-04-08 NOCS

communication-centric debug

traditional processor-centric debug
focusses on control of the IP (computation)

interconnect is the locus of all IP interactions
we propose to focus debug on the interactions between IPs
through control of the interconnect (communication)

IPinterconnectIP

monitormonitor

debug control

monitor

IPinterconnectIP

monitor monitor

debug control

2008-04-08 NOCS

transactions

transaction
request & response
valid/accept handshake
– signal groups
– data words (elements)

communication types
– peer-to-peer streaming
– distributed shared memory

master slave

master
slave 0x00-0x1F

slave 0x20-0xFF

cmd_valid
cmd_accept
cmd_read
cmd_addr

cmd_block_size

wr_valid
wr_accept
wr_data
wr_last

rd_valid
rd_accept
rd_data
rd_last

initiator

target

com
m

and
w

rite data
read data

7

2008-04-08 NOCS

communication & debug granularities

coarser
granularity

clock
cycle

message
element

(write or read
data element)

(flit) message
(request or
response)

transaction
(request and

response)

channel
(request or
response
between a
master and

1 slave)

connection
(requests and

response channels
between a master
and all its slaves)

finest grain that is
based on handshake

finest grain that is
based on transactions

required for
distributed shared memory

debug flow
Start

Program Breakpoint(s)

Optional Functional Reset

Switch to Debug Mode

Inspect System State

Switch to Functional Mode

Finish
N

Y

N

Y

Monitor(s) hit
breakpoint?

New run or
continue?

Quiescent
State?

Y

Force
Stop?

N

Y

N

Distribute event

2008-04-08 NOCS

9

2008-04-08 NOCS

conventional master network interface

NI shell FSM implements
– protocol (de)serialisation (s)
– distributed address map (d)
– request/response ordering (i)
– width conversion (not shown)

cmd

rdata

wdata

port

port

port

req1

resp1

port

port

req1

resp1

port
narrowcast

(multi-slave master)
NI shell

NI kernel

s d

i

master
IP

FSM

per-channel
QoS

transactions messages
(peer-to-peer streaming data)

packets

NI kernel FSM implements
– per-channel QoS
– (de)packetisation

10

2008-04-08 NOCS

conventional slave network interface

converse for slave shell

transactionsmessages
(peer-to-peer streaming data)

packets

cmd

rdata

wdata

port

req1

resp1

port

port

req1

resp1

port

multi-master slave
NI shell

NI kernel

si

d

slave
IP

FSM

per-channel
QoS

port

port

11

2008-04-08 NOCS

NI4

Router
R00

Master
IP port

1

NI 1
accept
valid

request

FSM

Slave
IP port

2

Master
IP port

2

NI 3
FSM

accept
valid

request

NI 2
FSM

FSM

SOC architecture

Slave
IP port

1

12

2008-04-08 NOCS

NI 2

NI4

Router
R00

monitor

Master
IP port

1

NI 1
accept
valid

request

FSM

Slave
IP port

2

Master
IP port

2

NI 3
FSM

accept
valid

request

FSM

FSM

debug architecture: monitors

EDI
node EDI

FS
M

Slave
IP port

1

EDI distributed events from monitors to NI shells (and IP)

13

2008-04-08 NOCS

EDI node FSM

wait send

idlemore?

reset / 0 event / 1

- / 0

- / 0

event / 1event / 0

14

2008-04-08 NOCS

NI4

Router
R00

monitor EDI
node EDI

Master
IP port

1

NI 1
accept
valid

request

FSM

Slave
IP port

2

Master
IP port

2

NI 3
FSM

accept
valid

request

TP
R

FS
M

TPR

TPR

NI 2
FSM

FSM

TPR

TPR

debug architecture: test point registers (TPR)

Slave
IP port

1

debug behaviour is controlled by TPRs

test point registers (TPR)

control debug behaviour
– link monitors: which conditions to monitor
– NI shells: how to react to incoming events per channel

operate on test clock

W+2

Condition Triggered?Enablemonitor TPR

W = width of data (and control) on monitored link.

Resp.
channels

Condition

Request
channels

Resp.
channels

IP_stop

10N+1

Resp.
channels

Continue

Request
channels

Quiescent?

Request
channels

Resp.
channels

Granularity

Request
channels

Resp.
channels

Enable

Request
channels

NI FSM TPR

N = Number of Request channels = Number of Response channels.

2008-04-08 NOCS

16

2008-04-08 NOCS

s2

NI shell FSM

stop conditions (s2, s6)
– original_condition and stop_enable and (stop or stop_condition)

modified transitions (f2’, f6’, d7’)
– original_condition and not (stop_enable and (stop or stop_condition))

continue conditions (c2, c6, c7)
– original_condition and continue

protocol serialisation
can now be stopped
& resumed
general recipe for
different protocols

idle

wdata
accpt

cmd
dec

cmd
accpt

read

reset

cmd
dec’

wdata
accpt’

s6c6

c2
f2’

f1

f6’

f7’

f3

f5

f4

c7

NI
FSM

TPR

17

2008-04-08 NOCS

PC

NI4

Router
R00

monitor EDI
node

Debug Control Interconnect (DCI) TAP
controller

EDI

Master
IP port

1

NI 1
accept
valid

request

FSM

IEEE
1149.1 TAP

Slave
IP port

2

Master
IP port

2

NI 3
FSM

accept
valid

request

TP
R

FS
M

TPR

TPR

NI 2
FSM

FSM

TPR

TPR

Device under Debug (SOC)

debugger
SW

debug architecture: debug control interconnect

Slave
IP port

1

TPRs are controlled by DCI (dedicated asynchronous scan chain)

18

2008-04-08 NOCS

PC

NI4

Router
R00

monitor EDI
node

Debug Control Interconnect (DCI) TAP
controller

EDI

Master
IP port

1

NI 1
accept
valid

request

FSM

IEEE
1149.1 TAP

Slave
IP port

2

Master
IP port

2

NI 3
FSM

accept
valid

request

TP
R

FS
M

TPR

TPR

NI 2
FSM

FSM

TPR

TPR

Debug Data Interconnect (DDI)

Device under Debug (SOC)

debugger
SW

debug architecture: scan chains, clock control, etc.

Slave
IP port

1

down/upload functional state using DDI (scan chains for structural test)

19

2008-04-08 NOCS

debug architecture: software control API

the debug architecture is controlled
using IEEE1149.1 test access port from a PC running debug software

basically can down/upload system state, on the test clock
separate scan chains for debug control/status and functional state
– can modify debug state independently from functional state,

and during functional mode

“high-level” functions to get/set debug state
– reset
– set_bp_monitor <condition>
– set_bp_action <channel> <granularity> <condition>
– get_mon_status <monitor>
– get_ni_status <ni>
– continue: set continue bits in NI TPRs
– synchronise: down/upload entire SOC state

20

2008-04-08 NOCS

example

while the system is running in functional mode
set breakpoint on value 378 in link monitor
make channel between master 1 & slave 2 sensitive to events (A)

M1 S1

M2 S2

A
NI_stop_enable

21

2008-04-08 NOCS

example
while polling the monitor
after a number of transactions (B)
it triggers and the NI receives a stop event (C)
NI completes ongoing message & ignores next request (D)

C

B D

NI_stop_in

M1_cmd_valid

22

2008-04-08 NOCS

example
after checking that there are no transactions in flight
program NI to single-step mode with message granularity (E)
and continue (F)
the NI accepts a single write request (G)
and continue again (read request, H)

NI_stop_condition
NI_continue

M1_cmd_accept
G

E
F

H

23

2008-04-08 NOCS

example
change debug granularity to word (data element) (I)
and continue 5 times
– one command and four data handshakes (J, K)

M1_cmd_acceptJ

K

I

M1_data_accept

NI_stop_granularity

24

2008-04-08 NOCS

example
change debug sensitivity to EDI only (i.e. no single stepping) (L)
communication resumes at full speed after continue pulse (M)
all this time, the rest of the system could have been in functional mode

NI_continue

NI_stop_condition
L

M

25

2008-04-08 NOCS

conclusions

debug scope
– per channel (master-slave pair)
– per connection (master with all its slaves)

debug granularity
– data words (equivalently: valid/accept handshake)
– request/response
– transaction

all channels can be debugged or not, at any granularity, independently
required for distributed-shared memory debugging

debug architecture
– re-uses existing functional & test infrastructures (e.g. scan chains)
– simple programmable building blocks (monitors, TPRs)
– general recipe to modify functional NI shell FSM for debug
– very basic software API

	DebuggingDistributed-Shared-Memory Communication at Multiple Granularitiesin Networks on Chip
	overview
	debug is…
	communication-centric debug
	communication-centric debug
	transactions
	communication & debug granularities
	debug flow
	conventional master network interface
	conventional slave network interface
	SOC architecture
	debug architecture: monitors
	EDI node FSM
	debug architecture: test point registers (TPR)
	test point registers (TPR)
	NI shell FSM
	debug architecture: debug control interconnect
	debug architecture: scan chains, clock control, etc.
	debug architecture: software control API
	example
	example
	example
	example
	example
	conclusions

