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overview

transaction-based communication-centric debug

traditional debug architecture & flow and NOC architecture
– distributed shared memory (DSM)
– communication model

new debug architecture & flow and NOC architecture
– debug granularity, DCI, TPR, EDI, FSM, TAP, API

example

conclusions
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debug is…

error localisation when a chip does 
not work in its intended application

difficult due to limited visibility
of the internal behaviour

debugging first silicon uses
>50% of project time
unpredictable

negative impact on
– time to market
– brand image
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communication-centric debug

processor debug is mature
system debug complexity resides in the interactions between IP blocks
– multi-processor debug is a challenge

older interconnects serialised all transactions
– a unique global communication trace

latest interconnects allow split, pipelined, concurrent transactions
– no unique communication trace
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communication-centric debug

traditional processor-centric debug
focusses on control of the IP (computation)

interconnect is the locus of all IP interactions
we propose to focus debug on the interactions between IPs
through control of the interconnect (communication)

IPinterconnectIP

monitormonitor

debug control

monitor

IPinterconnectIP

monitor monitor

debug control
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transactions

transaction
request & response
valid/accept handshake
– signal groups
– data words (elements)

communication types
– peer-to-peer streaming
– distributed shared memory

master slave

master
slave 0x00-0x1F

slave 0x20-0xFF

cmd_valid
cmd_accept
cmd_read
cmd_addr

cmd_block_size
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communication & debug granularities

coarser
granularity

clock
cycle

message
element

(write or read
data element) 

(flit) message
(request or
response) 

transaction
(request and

response) 

channel
(request or
response 
between a
master and

1 slave) 

connection
(requests and

response channels
between a master
and all its slaves) 

finest grain that is
based on handshake

finest grain that is
based on transactions

required for
distributed shared memory



debug flow
Start
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conventional master network interface

NI shell FSM implements
– protocol (de)serialisation (s)
– distributed address map (d)
– request/response ordering (i)
– width conversion (not shown)
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NI kernel FSM implements
– per-channel QoS
– (de)packetisation
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conventional slave network interface

converse for slave shell

transactionsmessages
(peer-to-peer streaming data)

packets
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NI4
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NI 2
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debug architecture: monitors
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EDI distributed events from monitors to NI shells (and IP)
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EDI node FSM

wait send
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reset / 0 event / 1
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debug architecture: test point registers (TPR)
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debug behaviour is controlled by TPRs



test point registers (TPR)

control debug behaviour
– link monitors: which conditions to monitor
– NI shells: how to react to incoming events per channel

operate on test clock

W+2

Condition Triggered?Enablemonitor TPR 

W = width of data (and control) on monitored link.

Resp.
channels

Condition

Request
channels

Resp.
channels

IP_stop

10N+1

Resp.
channels

Continue

Request
channels

Quiescent?

Request
channels

Resp.
channels

Granularity

Request
channels

Resp.
channels

Enable

Request
channels

NI FSM TPR

N = Number of Request channels = Number of Response channels.
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s2

NI shell FSM

stop conditions (s2, s6)
– original_condition and stop_enable and (stop or stop_condition)

modified transitions (f2’, f6’, d7’)
– original_condition and not (stop_enable and (stop or stop_condition))

continue conditions (c2, c6, c7)
– original_condition and continue

protocol serialisation
can now be stopped 
& resumed
general recipe for
different protocols

idle

wdata
accpt

cmd
dec

cmd
accpt

read

reset

cmd
dec’

wdata
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PC

NI4

Router
R00

monitor EDI
node

Debug Control Interconnect (DCI) TAP
controller

EDI

Master
IP port

1

NI 1
accept
valid

request

FSM

IEEE
1149.1 TAP

Slave
IP port

2

Master
IP port 

2

NI 3
FSM

accept
valid

request

TP
R

FS
M

TPR

TPR

NI 2
FSM

FSM

TPR

TPR

Device under Debug (SOC) 

debugger
SW

debug architecture: debug control interconnect

Slave
IP port

1

TPRs are controlled by DCI (dedicated asynchronous scan chain)
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debug architecture: scan chains, clock control, etc.

Slave
IP port
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down/upload functional state using DDI (scan chains for structural test)
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debug architecture: software control API

the debug architecture is controlled
using IEEE1149.1 test access port from a PC running debug software

basically can down/upload system state, on the test clock
separate scan chains for debug control/status and functional state
– can modify debug state independently from functional state,

and during functional mode

“high-level” functions to get/set debug state
– reset
– set_bp_monitor <condition>
– set_bp_action <channel> <granularity> <condition>
– get_mon_status <monitor>
– get_ni_status <ni>
– continue: set continue bits in NI TPRs
– synchronise: down/upload entire SOC state
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example

while the system is running in functional mode
set breakpoint on value 378 in link monitor
make channel between master 1 & slave 2 sensitive to events (A)

M1 S1

M2 S2

A
NI_stop_enable
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example
while polling the monitor
after a number of transactions (B)
it triggers and the NI receives a stop event (C)
NI completes ongoing message & ignores next request (D)

C

B D

NI_stop_in

M1_cmd_valid
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example
after checking that there are no transactions in flight
program NI to single-step mode with message granularity (E)
and continue (F) 
the NI accepts a single write request (G)
and continue again (read request, H)

NI_stop_condition
NI_continue

M1_cmd_accept
G

E
F

H
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example
change debug granularity to word (data element) (I)
and continue 5 times
– one command and four data handshakes (J, K)

M1_cmd_acceptJ

K

I

M1_data_accept

NI_stop_granularity
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example
change debug sensitivity to EDI only (i.e. no single stepping) (L)
communication resumes at full speed after continue pulse (M)
all this time, the rest of the system could have been in functional mode

NI_continue

NI_stop_condition
L

M
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conclusions

debug scope 
– per channel (master-slave pair)
– per connection (master with all its slaves)

debug granularity
– data words (equivalently: valid/accept handshake)
– request/response
– transaction

all channels can be debugged or not, at any granularity, independently
required for distributed-shared memory debugging

debug architecture
– re-uses existing functional & test infrastructures (e.g. scan chains)
– simple programmable building blocks (monitors, TPRs)
– general recipe to modify functional NI shell FSM for debug
– very basic software API
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