Adding Slow-Silent Virtual Channels for Low-Power On-Chip Networks

Hiroki Matsutani (Keio Univ, Japan)
Michihiro Koibuchi (NII, Japan)
Daihan Wang (Keio Univ, Japan)
Hideharu Amano (Keio Univ, Japan)

I am very sorry...

- My flight was canceled on April 6.
- I was waiting for rebooking at airport for seven hours, but I couldn't get a ticket. I got a fever.
- I arrived at Newcastle on April 7.
- I couldn't find my baggage; I wore only a shirt.
- My hotel reservation was canceled w/o asking;
 I didn't have a place to sleep...
- I went to another hotel to book a room in my shirt sleeves in the rain. The fever was gone up.
- Ms. Jerder kindly did her presentation on Apr 8.
- I would like thank her and ASYNC/NOCS program committee.

Adding Slow Silent Virtual Channels for Low-Power On-Chip Networks

Hiroki Matsutani (Keio Univ, Japan)
Michihiro Koibuchi (NII, Japan)
Daihan Wang (Keio Univ, Japan)
Hideharu Amano (Keio Univ, Japan)

Introduction: Area and power

- Due to the finger process technology,
 - Area constraint is relaxed
 - But power density becomes more serious
- Adding extra hardware resources (e.g., VCs)
 - We can get a performance margin; so
 - We can reduce voltage and frequency to reduce power

I ssues to be tackled in this presentation

- Adding extra hardware increases the leakage power
- How much resource is required to minimize total power

Outline: Slow-silent virtual channels

- Network-on-Chip (NoC)
- On-Chip Router

Architecture and its power consumption

- Slow-silent virtual channels
 - Voltage and frequency scaling
 - Run-time power gating of virtual channels
 - Adaptive VC activation
- Evaluations (1VC, 2VC, 3VC, and 4VC)
 - Throughput
 - Power consumption (with PG & voltage freq scaling)
 - How many VCs are required to minimize power

Network-on-Chip (NoC)

- Processor core
 - Largest component
 - Various low-power techniques are used
 - e.g., Standby current 11uA [Ishikawa,IEICE'05]
- On-chip router
 - Area is not so large
 - Always preparing (active) for packet injection

The next slides show "Router architecture" and "Its power"

On-Chip Router: Architecture

5-input 5-output router (data width is 64-bit)

HW amount is 34 kilo gates and 64% of area is used for FIFO

On-Chip Router: Pipeline

- A header flit goes through a router in 3 cycles
 - RC (Routing computation)
 - VSA (Virtual channel / Switch allocation)
 - ST (Switch traversal)

A packet consists of a header and 3 data flits

• E.g., Packet transfer from router A to C

On-Chip Router: Power consumption

- Place-and-routed with 90nm CMOS
- Post layout simulation at 200MHz

Power consumption of a router when *n* ports are used [mW]

A router consumes more power as the router processes more packets

On-Chip Router: Power consumption

Outline: Slow-silent virtual channels

- Network-on-Chip (NoC)
- On-Chip Router
 - Architecture and its power consumption
- Slow-silent virtual channels
 - Voltage and frequency scaling
 - Run-time power gating of virtual channels
 - Adaptive VC activation
- Evaluations (1VC, 2VC, 3VC, and 4VC)
 - Throughput
 - Power consumption (with PG & voltage freq scaling)
 - How many VCs are required to minimize power

Slow-Silent Virtual Channels

- Adding extra VCs
 - Performance improves

- We can reduce voltage

- Voltage & frequency scaling (VFS)
 - Set the reduced voltage and frequency
 - In response to the performance margin

$$f \propto \frac{(V - V_{th})^{\alpha}}{CV} P_{switching} = a \cdot C \cdot f \cdot V^2$$

- Problem
 - Adding extra VCs increases leakage power
 - It may overwhelm VFS

We focus on run-time power gating of VCs to reduce leakage

Power Gating of virtual channels

- Run-time power gating of virtual channels
 - No packets in a VC \rightarrow Sleep (turn off the power supply)
 - Packet arrives at the VC → Wakeup (turn on the power)

Power Gating of virtual channels

- Run-time power gating of virtual channels
 - No packets in a VC \rightarrow Sleep (turn off the power supply)
 - Packet arrives at the VC → Wakeup (turn on the power)

Link shutdown has been studied for on- & off-chip networks, but prior work uses SRAM buffers [Chen,ISLPED'03] [Soteriou,TPDS'07]

→We use small registered FIFOs for light-weight NoC routers

Power Gating: Various overheads

- Area overhead
 - Power switches
- Performance overhead
 - Wakeup delay
 - Pipeline stall is caused
- Frequent on/off should be avoided
- Power overhead
 - Driving power switches
 - Short sleeps adversely increases dynamic power
- → Frequent on/off should be avoided

Power Gating: Various overheads

- Area overhead
 - Power switches
- Performance overhead
 - Wakeup delay
 - Pipeline stall is caused

→ Frequent on/off should be avoided

- Power overhead
 - Driving power switches
 - Short sleeps adversely increases dynamic power
- Frequent on/off should be avoided

Control that gradually activates VCs in response to workload

Power Gating: VC activation policy

- Virtual channel (VC) level power gating
- Virtual-channel selection:
 - All packets use VC#0 when they are injected to NoC
 - VC number is increased when the packet conflicts

Power Gating: VC activation policy

- Virtual channel (VC) level power gating
- Virtual-channel selection:
 - All packets use VC#0 when they are injected to NoC
 - VC number is increased when the packet conflicts

High peak performance of VCs with the least leakage power

Power Gating: Routing design

- A virtual-channel layer
 - A virtual network consisting of VCs with the same VC#
- Deadlock-freedom [Duato, TPDS'93] [Koibuchi, ICPP'03]
 - Moving upper to lower layers $vc#0 \rightarrow vc#1 \rightarrow vc#2 \rightarrow vc#3$
 - Only bottom layer must guarantee deadlock-freedom

All VC layers except for the bottom can employ any routing, as far as the bottom guarantees deadlock-free by itself

Outline: Slow-silent virtual channels

- Network-on-Chip (NoC)
- On-Chip Router
 - Architecture and its power consumption
- Slow-silent virtual channels
 - Voltage and frequency scaling
 - Run-time power gating of virtual channels
 - Adaptive VC activation
- Evaluations (1VC, 2VC, 3VC, and 4VC)
 - Throughput
 - Power consumption (with PG & voltage freq scaling)
 - How many VCs are required to minimize power

Evaluations of slow-silent VCs

• Preliminary

- Leakage modeling of PG
- Breakeven point of PG

- Process technology
 - ASPLA 90nm CMOS
 - 1.00V (baseline)

- Evaluation items
 - Original throughput
 - Power consumption w/o PG and VFS
 - Power consumption w/ PG and VFS
- Which is the best?
 - 1VC, 2VC, 3VC, and 4VC

Simulation parameters

Topology	2-D Mesh (8x8)
Routing	DOR (XY routing)
Buffer size	4-flit(WH switching)
# of VCs	1VC, 2VC, 3VC, 4VC
Latency	3-cycle per 1-hop

Traffic patterns

 Unifrom + NPB traces
 (BT, SP, CG, MG, IS)

Preliminary: Leakage power modeling

- Power gating model [Hu,ISLPED'04]
 - *Eoverhead:* Power consumed for turning PS on/off
 - *Esaved:* Leakage power saving for an *N*-cycle sleep

How many cycles are required to sleep for compensating *Eoverhead*?

We calculate the breakeven point of PG based on the following parameters

Supply voltage	1.0 V	
Switching factor	0.12	
Leakage power	52 uW	Based on the post layout
Dynamic power (200MHz)	78 uW	simulation of on-chip
Dynamic power (500MHz)	194 uW	router (90nm CMOS)
Power switch size ratio	0.1	
Power switch cap ratio	0.5	

Preliminary: Leakage power modeling

- Power gating model [Hu,ISLPED'04]
 - *Eoverhead:* Power consumed for turning PS on/off
 - *Esaved:* Leakage power saving for N-cycle sleep

How many cycles are required to sleep for compensating *Eoverhead*?

Preliminary: Leakage power modeling

- Power gating model [Hu,ISLPED'04]
 - *Eoverhead:* Power consumed for turning PS on/off
 - *Esaved:* Leakage power saving for N-cycle sleep

How many cycles are required to sleep for compensating *Eoverhead*?

Evaluations of slow-silent VCs

- Preliminary
 - Leakage modeling of PG
 - Breakeven point of PG
- Process technology
 - ASPLA 90nm CMOS
 - 1.00V (baseline)

- Evaluation items
 - Original throughput
 - Power consumption w/o PG and VFS
 - Power consumption w/ PG and VFS

Simulation parameters

Topology	2-D Mesh (8x8)
Routing	DOR (XY routing)
Buffer size	4-flit(WH switching)
# of VCs	1VC, 2VC, 3VC, 4VC
Latency	3-cycle per 1-hop

- Which is the best?
 1VC, 2VC, 3VC, and 4VC
- Traffic patterns

 Unifrom + NPB traces
 (BT, SP, CG, MG, IS)

Evaluations: Uniform (64-core) 1/4

Evaluations: Uniform (64-core) 2/4

Evaluations: Uniform (64-core) 3/4

Static voltage and frequency scaling

	Freq [MHz]	Voltage [V]
1VC	500.0	1.00
2VC	301.8	0.77
3VC	238.8	0.70
4VC	224.8	0.68

- 1) We re-characterized lowvoltage libraries (0.68-0.77V) by Cadence SignalStrom
- 2) We confirm our design works at these reduced voltages

Evaluations: Uniform (64-core) 4/4

The same results can be seen in all-to-all traffics (e.g., IS)

Evaluations: BT traffic (64-core) 1/4

Performance improvements of 3-VC and 4-VC are small

Evaluations: BT traffic (64-core) 2/4

Performance improvements of 3-VC and 4-VC are small

Evaluations: BT traffic (64-core) 3/4

 Freq [MHz]
 Voltage [V]

 1VC
 500.0
 1.00

 2VC
 350.1
 0.82

 3VC
 346.2
 0.82

 4VC
 346.1
 0.82

Almost the same

- 1) We re-characterized the lowvoltage library (0.82V) by Cadence SignalStrom
- 2) We confirm our design works at this reduced voltage

Evaluations: BT traffic (64-core) 4/4

How many VCs are best for LP?

- \rightarrow It depends on the traffic pattern of application
- All-to-all traffic
 - Uniform, IS traffic
 - 3 or 4VCs are better

- Neighboring traffic
 - BT, SP traffic
 - 2VCs are enough

Summary: Slow-silent virtual channels

- Slow-silent virtual channels
 - Adding extra VCs → Performance margin is available
 - We can reduce the freq and voltage
 - But adding extra VCs increases leakage power ...
- Run-time power gating of VCs
 - Adaptive VC activation
- How many VCs are required for minimizing power?
 - It depends on the traffic pattern of application
 - All-to-all traffic: 3 or 4 VCs are better
 - Neighboring traffic: 2 VCs are enough

Future work: Slow-silent fat trees

- Very "FAT" trees
 - Adding more trees & voltage frequency scaling
 - Run-time power gating
- There are a lot of types of Fat trees

How many trees are required to minimize power?

Thank you for your attention

Backup sides

Wakeup delay: Performance impact

- Wakeup delays in literatures
 - ALU: 2 cycle [Tschanz, JSSC'03]
 - FPMAC in Intel's 80-tile chip: 6 cycle [Vangal,ISSCC'07]
- Performance impact of wakeup delay (naïve mode)

Look-Ahead Sleep Control

[Matsutani, ASP-DAC'08]

- Look-ahead sleep control
 - To mitigate the wakeup delay and short-term sleeps
- Normal routing:
 - Router <u>i</u> calculates the output port of Router <u>i</u>
- Look-ahead routing:
 - Router <u>i</u> calculates the output port of Router <u>i+1</u>

Five-cycle margin until packet arrival

Look-ahead can eliminate a wakeup delay of less than 5-cycle

Look-ahead method: HW resources

- [Matsutani, ASP-DAC'08]
- Routing computation of next router
 - Just changing the routing function
 - Area overhead is very small

NRC stage: Next Routing Computation

- Wakeup signals are needed
 - Sender asserts "wakeup" signal to receiver
 - Wakeup signals becomes long
 - Negative impact of multi-cycle or repeater buffers

Wakeup signals to router 1

Buffer design: Registers or SRAMs

- It depends on buffer depth, not width
 - Depth > 32-flit → Buffers are designed with SRAMs
 - Otherwise → Buffers are designed with registers

