ReNoC: A Network-on-Chip Architecture with Reconfigurable Topology

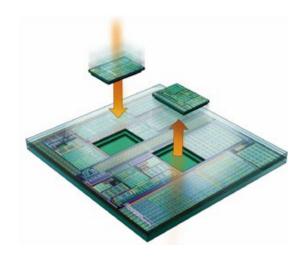
Mikkel B. Stensgaard and Jens Sparsø Technical University of Denmark

Technical University of Denmark

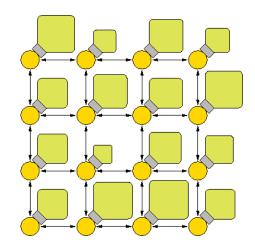
Outline

- Motivation
- ReNoC
 - Basic Concepts
 - Physical Architecture
 - Logical Topology
 - Generalization
- Evaluation
- Conclusion

Motivation


- System-on-Chips
 - Increasing ... Transistor count and complexity
 - Increasing ... Development time
 - Increasing ... Test time
 - Increasing ... Production costs

Pushes towards a general SoC platform

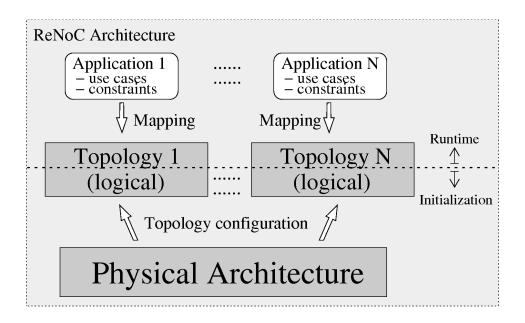

General SoC Platform

- FPGA like platform for SoC
 - Pre-tested
 - Large volumes
 - Shorter time-to-market
- Domain specific SoC platforms
 - No single platform can be used for everything
- Typical IP-Blocks
 - RAMs, CPUs, IOs, FPGAs
 - Other coarse grained blocks
- Communication infrastructure
 - Flexible NoC

Flexible NoC for Platform chip

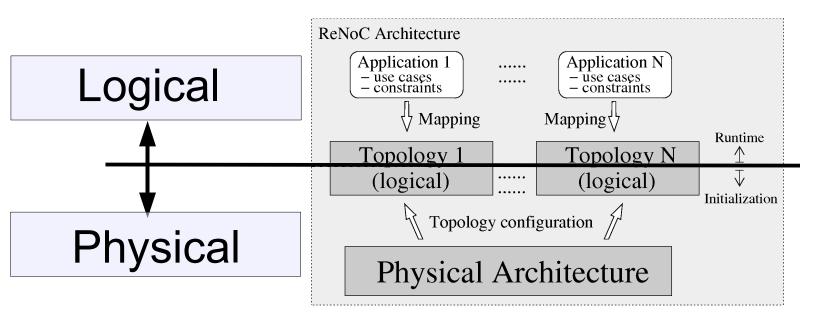
- Challenge
 - Flexibility
 - Support a wide range of communication scenarios
 - QoS and other advanced features
 - Energy and area efficient
- Current Solution: Packet-switched NoC
 - General topology (typically 2D mesh)
 - Only fraction of total capacity is ever used
 - Large part of chip area and power

- Application specific topologies
 - Much more power and area effective [Murali, Srinivasan]
 - Only possible for a single application

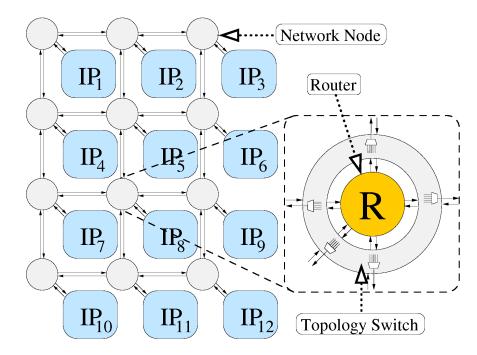

Switching Methods

- Packet-switching
 - (Packets routed individually)
 - Routing, buffering and arbitration is needed
 - + Links can be shared [Ætherial, Xpipes, and more]
- Physical circuit-switching
 - (Physical point-to-point connections)
 - + No routing, buffering and arbitration is needed
 - Links are dedicated (No sharing)
 ["An energy-efficient reconfigurable circuit-switched network-on-chip", Wolkotte et al]

	Packet-switching	Circuit-switching
Size	-	+
Energy	-	+
Flexible	+	-


Reconfigurable NoC (ReNoC)

- Topology can be configured by application
 - Application specific topology
 - Minimize amount of packet-switching
- Best from packet- and circuit-switching
 - Energy efficiency from circuit-switching
 - Flexibility from packet-switching


Reconfigurable NoC (ReNoC)

- Topology can be configured by application
 - Application specific topology
 - Minimize amount of packet-switching
- Best from packet- and circuit-switching
 - Energy efficiency from circuit-switching
 - Flexibility from packet-switching

Physical Architecture

- Links
- Network nodes
 - Topology switch
 - Router
- Can use any existing router
 - Quality-of-Service
 - Virtual Channels
 - Clocked or Clockless

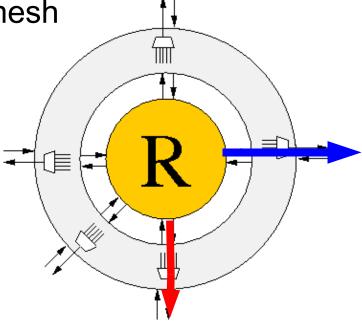
Simple physical architecture:

Topology Switches

- Inserted as a layer between routers and links
- Goal: Minimal area and energy overhead
 - Infrequent configuration
 - Non-full connectivity

Example: Topology switch for 2D mesh

- 5 links/IP-block
- 5 router ports
- Full connectivity →10x10 switch

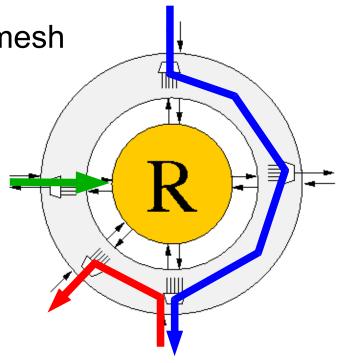


Topology Switches

- Inserted as a layer between routers and links
- Goal: Minimal area and energy overhead
 - Infrequent configuration
 - Non-full connectivity

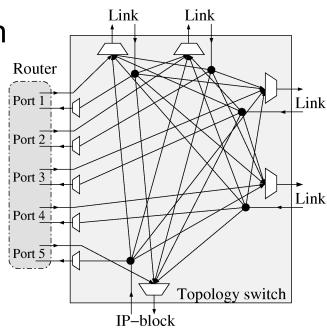
Example: Topology switch for 2D mesh

Router port → corresponding link

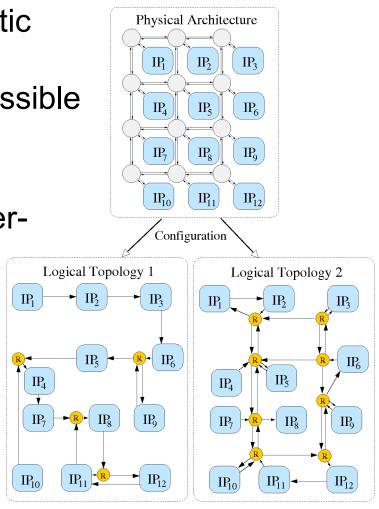


Topology Switches

- Inserted as a layer between routers and links
- Goal: Minimal area and energy overhead
 - Infrequent configuration
 - Non-full connectivity

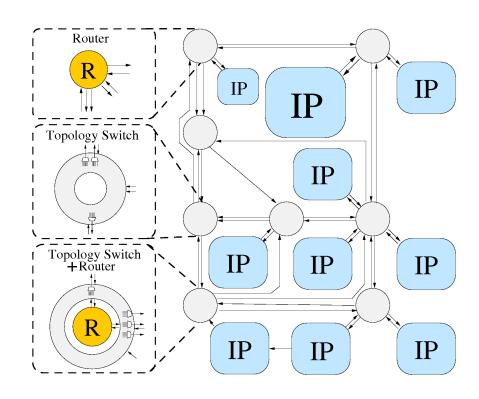

Example: Topology switch for 2D mesh

- Router port → corresponding link
- Link → Any other Link (Except itself)
- Link → Router port


Implementation

- Analogue to switch-boxes in FPGAs
- Efficient implementations
 - Pass-gates, tristate buffers, or multiplexers
- Configured using
 - Serial interface, separate network or network itself
- Example: Topology switch for 2D mesh
 - 5, 4-input multiplexers!

Logical Topology


- Application experience this as static topology
- Widely different topologies are possible
- Routers/links become a sharable resource
- Unused routers/links can be powerand clock-gated
- Logical links
 - Router to Router
 - IP-Block to IP-Block
 - IP-Block to Router
 - Local / long links

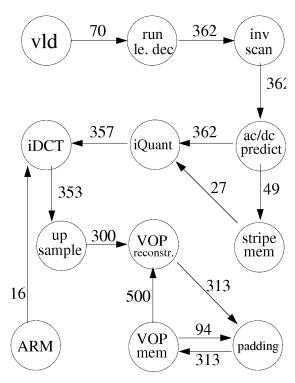
Generalization


Any Physical Topology

- Tree, Mesh, etc
- Heterogeneous
- Hierarchical
- Network Nodes
 - Router
 - Topology Switch
 - Topology Switch + Router
- Links
 - Uni- and bi-directional
 - Local and non-local
- Router
 - Less ports than number of links as it is a sharable resource

Evaluation

- Demonstrate ReNoC
- Evaluate overhead of Topology Switches
- (Configuration is not considered)
- Physical architecture:

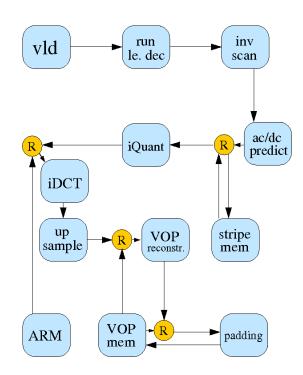


Application

Video Object Plane Decoder (VOPD) Application
 ["Mapping of MPEG-4 decoding on a flexible architecture platform", van der

["Mapping of MPEG-4 decoding on a flexible architecture platform", van der Tol and Jaspers]

Task graph:



(Bandwidth in Mbit/second)

Architectures

Static Mesh:

- 2D mesh topology without topology switches
- Used as reference
- ReNoC mesh:
 - ReNoC architecture configured as 2D mesh
 - Estimate overhead
- ReNoC specific:
 - ReNoC architecture configured with application specific topology
 - Estimate power savings

ReNoC specific:

Implementation

Router

- Simple, Low power router @ 100 MHz, single-cycle
- Source-routed, input buffered, 32 bit flits
- 2 Virtual Channels per input port (4 flits deep)
- Credit-based flow-control

Topology Switch

- Multiplexer based
- Configuration by registers

Technology

- 90nm, low-leakage cells,1 V
- Routers and topology switches were synthesized
- Power estimated using random-data at 20% utilization

Link

SPICE simulated

["A power and energy exploration of network-on-chip architectures", Banerjee et al]

Area/ Energy figures

Module	Area (mm²)	Enegy/packet (pJ)	Idle Power (uW)
5x5 Router	0,061	32	136
5x5 Topology Switch	0,007	0,6-0,8	-
Link	-	21	-

- Router vs. topology switch
 - ~9 times larger
 - ~45 times more energy / packet
 - +Idle power

Results

Architecture	Area (mm²)	Power (mW)	
Static mesh	0,53	4,56	
ReNoC mesh	0,58	4,69	
ReNoC specific	0,58	2,02	

- ReNoC mesh vs. static mesh
 - Area increase: 10%
 - Power increase: 3%
- ReNoC specific vs. static mesh
 - Power decrease: 56%
 - Topology switches use 5% of power

(Note: Details can be found in article)

Discussion

- Presentation focused on main ideas
- Additional issues include
 - Configuration of topology switches
 - Slowest logical link determines clock-frequency
 - Clock-skew
 - Few router ports were used in evaluation
 - High-performance (pipelining)
- Routers with fewer ports might be a choice
 - Ports becomes a sharable resource
 - Smaller routers, but general 2D mesh not possible

Future Work

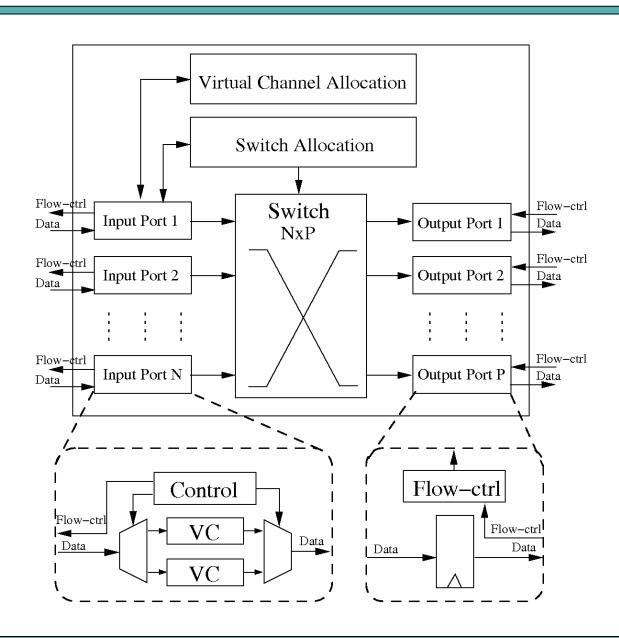
- Automatic generation of
 - Physical architectures
 - Logical topologies
- Topology switch implementations
- Configuration methods
 - Serial link
 - Separate network
 - Network itself

Conclusion

- ReNoC enables logical topology to be configured
 - Application Specific topologies
 - Exploit knowledge of communication
- Best from packet- and circuit-switching
 - Efficiency from circuit-switching
 - Flexibility from packet-switching
- Enables general SoC platforms

Thank you

Thank you


Results, detailed

	Area (mm ²)			Power consumption (mW)					
Architecture	Routers	Topology	Total	Routers	Topology	Links	Leakage Power	Idle	Total
		switches			switches		Power	Power	
Static mesh	0.53	-	0.53	2.39	-	0.84	0.08	1.25	4.56
ReNoC mesh	0.53	0.05	0.58	2.39	0.12	0.84	0.08	1.25	4.69
ReNoC specific	0.53	0.05	0.58	0.65	0.09	0.84	0.03	0.41	2.02

Characterization, detailed

Module	Area	Energy	Leakage	Idle
		per		power
		packet		
	(mm^2)	(pJ)	(μW)	(μW)
Link, 1mm	-	21		-
5x5 Router	0.061	32	8.6	136
Topology Switch	0.007	0.6/0.8	0.7	-
4x4 Router	0.047	31	6.7	109
Topology Switch	0.005	0.6/1.1	0.6	-
3x3 Router	0.032	30	4.7	82
Topology Switch	0.003	0.6/1.3	0.3	-

Router

Router Breakdown

Module	Area	Energy	Leakage	Idle
		per		power
		packet		
	(mm^2)	(pJ)	(μW)	(μW)
Input Port	8900	21.1	1.2	18.8
Virtual Channel	4300	16.4	0.6	8.7
Output Port	1350	5.7	0.15	6.3
5x5 Switch	3800	2.6	0.4	-
VC Allocator	5100	1.6	0.8	11.3
Switch Allocator	900	0.8	0.13	-