A Network of Time-Division Multiplexed Wiring for FPGAs

Rosemary Francis Simon Moore Robert Mullins

Motivation

- FPGAs are now home to complex Systems on-Chip
- ...but still optimised for single-core designs
- FPGA global wiring is simple in comparison with ASIC Networks-on-Chip
- Networks for FPGAs use lots of logic
- Hard blocks are limited by the soft IP blocks

Goals

- Use TDM components for effective soft NoC implementation
- Funnel data to high-speed hard blocks
 - Hard NoC
 - Multipliers
 - Block RAM
- Determine optimum TDM architecture
 - What are the costs?
 - Is it possible to design for global and local routing?

Hierarchy of interconnect

Architecture: Stratix vs TDM

Cluster of logic elements with latched inputs

Wire Sharing

 Many wires can be shared without a problem

Wire Sharing

- Many wires can be shared without a problem
- Other configurations require a more intelligent approach

Wire Sharing

- Many wires can be shared without a problem
- Other configurations require a more intelligent approach
- Signals can be delayed to allow more efficient wire use without rerouting

Our Scheduler

- Our scheduler
 - maps benchmarks from a Stratix FPGA to a TDM FPGA
 - resolved TDM conflicts after place and route
- Benchmarks
 - IP cores taken from the Altera University Suite
- Aim
 - To reduce the amount of wiring as far as possible using TDM wiring with realistic characteristics

Parameter selection (1 of 3)

Assume infinite time slots to reduce wiring
 Determine minimum number of TDM wires

Infinite number of time slots

Parameter selection (2 of 3)

- Assume infinite time slots to reduce wiring
 Determine minimum number of TDM wires
- Vary number of time slots
 - Determine optimum number of time slots
 - Investigate the effect this has on latency

Determine number of time slots

Number of time slots vs latency

Parameter selection (3 of 3)

- Assume infinite time slots to reduce wiring
 Determine minimum number of TDM wires
- Vary number of time slots

 Determine optimum number of time slots
 Investigate the effect this has on latency
- Using optimum number of time slots

 Re-evaluate optimum number of TDM wires

Limited resources

Architectural drawbacks

- Extra configuration SRAM
- High-speed interconnect clock
- Benchmarks run over three times slower
- New CAD tools needed

 Re-routing in space as well as time
 Optimise for TDM wiring at every stage

Conclusions

- Using TDM wiring we can reduce the number of wires whilst increasing the data rate within channels
 - 75% less wiring * 24 time slots * 3 times slower means 2 times channel data rate
- This will allow
 - the design of effective global interconnect
 - more efficient sharing of on-chip resources
 - simplification of multi-chip designs

Future Work

- Current scheduling algorithm gives

 Large wire reduction, large latency penalty
- We are investigating a better compromise

 Small wiring reduction, small latency penalties?
 - Recent new results show this is possible
- Area and power
 - Is the wiring reduction enough to justify the extra area and power costs?

Thanks for listening...

Rosemary.Francis@cl.cam.ac.uk

