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Synchronous Elastic Stream

. [7

4

1]

Clockcycle ==+ 2

Clockcycle=== 5 4 3 2

1

1

0

e [ 7] 14

Bubble (no data) ——

Token




Synchronous Circuit

Latency = 0

4|1
):n_’. ..‘8
02




Synchronous Elastic Circuit

Latency =0

11102




Ordinary Synchronous System
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Changing latencies changes behavior
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Synchronous Elastic
(characteristic property)

Changing latencies does NOT change behavior

) = time elasticity



Elasticity?

Elasticity refers to elasticity of time, i.e. tolerance to changes in
timing parameters, not properties of materials

Luca Carloni et al. in the first systematic study of such systems
called them Latency Insensitive Systems

Other used names:
— Latency tolerant systems
— Synchronous emulation of asynchronous systems
— Synchronous handshake circuits

We use term “synchronous elastic” to link to asynchronous elastic
systems that have been developed before

e.g., David Muller’s pipelines of late 1950s
lvan Sutherland’s micro-pipelines 1989
Tolerate the variability of input data arrival and computation delays

Asynchronous elastic tolerate changes in continuous time
Synchronous elastic - in discrete time
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Why

Scalable
Modular (Plug & Play)

Better energy-delay trade-offs
(design for typical case instead of worst case)

New micro-architectural opportunities
In digital design

Not asynchronous: use existing design
experience, CAD tools and flows... but have
some advantages of asynchronous
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How to Design Synchronous Elastic Systems

1 Example of the implementation:
SELF = Synchronous Elastic Flow

1 Others are possible
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Pipelined communication

sender receiver

What if the sender does not always send valid data?




The Valid bit

sender receiver




The Stop bit

sender receiver




The Stop bit

sender receiver




The Stop bit

sender receiver




The Stop bit

sender receiver
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Back-pressure



The Stop bit

sender receiver

Long combinational path



Cyclic structures

Data

[, ’;

One can build circuits with combinational cycles (constructive cycles by Berry),
but synthesis and timing tools do not like them
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Example: pipelined linear communication chain
with transparent latches

sender receiver

H L H L

— —p
Y2 cycle V2 cycle

Master and slave latches with independent control
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Shorthand notation
(clock lines not shown)
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SELF (linear communication)

sender receiver
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Sender

Elastic channel and its protocol

not Valid Valid * Stop

Idle Retry

Receiver
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Elastic channel protocol
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Basic VS block

Vi-l

Si-1

VS block + data-path latch = elastic HALF-buffer (EHB)
EHB + EHB = elastic buffer with capacity 2
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Control specification of the EB
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Two implementations
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Elastic buffer keeps data while stop is in flight

EBs = FIFOs with two parameters:
1 Forward latency

W2R1 1 Capacity
Backward latency for stop
propagation assumed (but need
not be) equal to fwd latency
W1R2

Typical case: (1,2) -
1 cycle forward latency
with capacity of 2

1 Replaces “normal” registers
1 Decoupling buffers

W1R1 Cannot be done with
Single Edge Flops

without double pumping
I . Can use latches inside
:i/ntela) Master-Slave as shown before
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Join
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(Lazy) Fork
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Eager Fork
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Eager fork (another implementation)
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Variable Latency Units
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Coarse grain control




Elasticization

Synchronous ‘

Elastic
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Equivalence

Synchronous: stream of data

D:abcdedfghij .-

SELF: elastic stream of data

D:'a b % ¢ de *k df *
V: 1 0L 101 1 11111
S: 000100001001

Transfer sub-stream = original stream

Called: transfer equivalence, flow equivalence, or latency equivalence
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Marked Graph models
of elastic systems
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Modelling elastic control with Petri nets

bubble data-token
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Modelling elastic control with Petri nets

bubble 2 data-tokens data-token

I<2>_<g>_<g>l

Hiding internal transitions of elastic buffers
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Modelling elastic control with Marked Graphs




Modelling elastic control with Marked Graphs
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Elastic control with Timed Marked Graphs.
Continuous time = asynchronous
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Elastic control with Timed Marked Graphs.
Discrete time = synchronous elastic
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Latencies in clock cycles
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Elastic control with Timed Marked Graphs.
Discrete time. Multi-cycle operation




Elastic control with Timed Marked Graphs.
Discrete time. Variable latency operation

e.g. discrete probabilistic distribution:
average latency 0.8*1 + 0.2"2 =1.2
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Modeling forks and joins

- -
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Modelling combinational elastic blocks
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Elastic Marked Graphs

1 An Elastic Marked Graph (EMG) is a Timed MG such that
for any arc a there exists a complementary arc a’
satisfying the following condition

a=a’* and «a’ = a-

1 |nitial number of tokens on a and a’ (Mo(a)+Mo(a’)) =
capacity of the corresponding elastic buffer

1 Similar forms of “pipelined” Petri Nets and Marked Graphs
have been previously used for modeling pipelining in HW
and SW (e.g. Patil 1974; Tsirlin, Rosenblum 1982)

(intel”
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Reminder: Performance analysis of Marked graphs

Th = operations / cycle = number of firings per time unit

The throughput is given by the Th=min(Th(A), Th(B), Th(C))=2/5
minimum mean-weight cycle ’ ’

o % i Th(A)=3/7

AL B C Th(B)=3/5

Th(C)=2/5

Efficient algorithms: (Karp 1978), (Dasdan,Gupta 1998)
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Early evaluation

# Naive solution: introduce choice places
— issue tokens at choice node only into one (some) relevant path

— problem: tokens can arrive to merge nodes out-of-order
later token can overpass the earlier one

1 Solution: change enabling rule
— early evaluation

— issue negative tokens to input places without tokens,
i.e. keep the same firing rule

— Add symmetric sub-channels with negative tokens
— Negative tokens kill positive tokens when meet

1 Two related problems:
Early evaluation and Exceptions (how to kill a data-token)

(intel”

83



Examples of early evaluation

MULTIPLEXOR

s |
b S ifs=Tthenc:=a --don’twaitforb
F elsec:=b --don’t wait for a

— c L B —
b — ifa=0thenc:=0 --don’twaitforb
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Related work

1 Petri nets

— Extensions to model OR causality
Kishinevsky et al. Change Diagrams [e.g. book of 1994]
Yakovlev et al. Causal Nets 1996

1 Asynchronous systems
— Reese et al 2002: Early evaluation
— Brej 2003: Early evaluation with anti-tokens
— Ampalan & Singh 2006: preemption using anti-tokens



Dual Marked Graph

1 Marking: Arcs (places) —> Z
(allow negative markings)

1 Some nodes are labeled as early-enabling

1 Enabling rules for a node:
— Positive enabling: M(a) > 0 for every input arc

— Early enabling (for early enabling nodes):
M(a) > O for some input arcs

— Negative enabling: M(a) < O for every output arc

1 Firing rule: the same as in regular MG
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Dual Marked Graphs

1 Early enabling can be associated with an
external guard that depends on data variables
(e.g., a select signal of a multiplexor)

§ Actual enabling guards are abstracted away
(unless needed)

1 Anti-token generation: When an early enabled
node fires, it generates anti-tokens in the
predecessor arcs that had no tokens

1 Anti-token propagation counterflow: When
negative enabled node fires, it propagates the
anti-tokens from the successor to the
predecessor arcs

(intel”
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Dual Marked Graph model

88



Passive anti-token

1 Passive DMG = version of DMG without negative enabling

1 Negative tokens can only be generated due to early
enabling, but cannot propagate

1 Let D be a strongly connected DMG such that all cycles
have positive cumulative marking

Let D, be a corresponding passive DMG.

If environment (consumers) never generate negative
tokens, then
throughput (D) = throughput (D,)

— |If capacity of input places for early enabling transitions is unlimited,
then active anti-tokens do not improve performance

— Active anti-tokens reduce activity in the data-path
(good for power reduction)

89
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Properties of DMGs

Firing invariant: Let node n be simultaneously positive (early) and
negative enabled in marking M.

Let M, be the result of firing n from M due to positive (early) enabling.
Let M, be the result of firing n from M due to negative enabling.
Then, M, = M,

Token preservation. Let ¢ be a cycle of a strongly connected DMG with
initial marking M,.
For every reachable marking M : M(c) = M,(c)

Liveness. A strongly connected passive DMG is live iff for every cycle c:
M(c) > 0.

— For DMGs this is a sufficient condition of liveness

— Itis also a necessary condition for positive liveness

Repetitive behavior. In a SC DMG: a firing sequence s from M leads to
the same marking iff every node fires in s the same number of times

DMGs have properties similar to regular MGs
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Implementing early enabling
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How to implement anti-tokens ?

Positive tokens

Negative tokens
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How to implement anti-tokens ?

Positive tokens

+"ao

Negative tokens
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How to implement anti-tokens ?

Valid* Valid*

Stop* Stop*

Valid— «—— «— Valid-
L

Stop—— — Stop-
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Controller for elastic buffer
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Dual controller for elastic buffer
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Dual Join and Fork
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Join with early evaluation
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Condition on Early Evaluation Function

Early evaluation function makes decision based on presence
of valid bits, not on their absence

Formally: EE is positive unate with respect to data input

Example: legal EE function for a data-path MUX
(s — select input)
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Passive anti-token (capacity one)

Bigger capacity can be achieved by “injecting”
anti-token up-down counters on elastic channels
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Properties of elastic channels

i)
)
(Invariant ( ))
)

(Liveness

Invariants: mutually exclusive
Kill (V -) and Stop (S *)
Valid (V *) and retain of a kill (S )
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DLX processor model with slow bypass

Bypass

o ©
Fetch @ Decode Execy Memory Write-back
/ \ —q 4}@_> /y@\
o1 ® o
Throughput:  Th = operations / cycle
Late evaluation Applying early evaluation on “Execution” and “Write-back”
Th=0.5 Th =0.7 (0=0.3; p=0.3)




Conclusions

1 Early evaluation can increase performance
beyond the min cycle ratio

1 The duality between positive and negative
tokens suggests a clean and effective
Implementation

1 Dual Marked Graphs is a formal model for
analytical analysis and optimization methods
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Performance analysis
with early evaluation

(joint work with Jorge Julvez)
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Revisit Performance Analysis of Marked Graphs

The throughput can also be computed by means of
linear programming

Average marking

? _I|m jm (n)dr

p1 () p2
e Throughput
th=minm
th =min(m_,m ) p°

[Campos, Chiola, Silva 1991]
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Revisit Performance Analysis of Marked Graphs

max th

(

.

m, =1+t —t,
M,=0+t,—t
M=1+t—t,
My, =0+t —t,
M= 1+t —t

J

b
1

of Q\Da>Q o

P \Q P4

\D“@“D/

C Th=0.5

th< m_, //transition b

Y

th< m,, //transition c
th< m, //transition d
th < min(m,,, m_) // transition a

reachability

th constraints
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GMG = Multi-guarded Dual Marked Graph

1 Refinement of passive DMGs
1 Every node has a set of guards
1 Every guard is a set of input places (arcs)

Example:
t1 t3 t2

= G(t4)={{p1,p3}.{p2,p3}}
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Early evaluation
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Early evaluation

00(02|04|06|08 /(1.0

0.40(0.40|0.4010.4010.40{0.40

0.42(0.42|0.42|0.42|0.43(0.43

0.43(0.44|0.44|0.45|0.45(0.45

0.43(0.4410.45|0.47|0.48|0.49

0.43(0.4410.46|0.48|0.51|0.54

0.43(0.4410.46|0.49|0.54|0.60

(0.43)  (0.60) (0.40)
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LP formulation for an upper bound of a

throughput (by example)
max th
b p N

/U mp2=0+ta_tb
oF P2 ﬁp3= T+t—-t,
o d

/ m, =0+t -t

m.=1+t —t
/I — == <
P:@® \Q P4 m

& Gh=@-0)/@E-D
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Averaging cycle throughput or cycle times
does not work

Averaging throughput of
'\Q individual cycles
P
#ll Th'=a1/2+(1-0)2/3=(4-a)/6

Averaging effective cycle times
of individual cycles

AITh” = 2a + (1-a) 3/2= (3 + a) / 2

Th” = 2/(3+ )

Th=(2-a)/(3-q)
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What can we do with
synchronous elastic systems?
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ALU

Variable latency units

ALU

) =

start

done
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| | Statistics
Benchmark ] | | of operand

“Patricia”
from
Media Bench

12 bits of an adder

do 95% of additions 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33_
bits of adder used




Power-delay for an adder




Variable-latency cache hits

12-cycle miss L2-cache

L1-cache

suggested by Joel Emer for ASIM experiment
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Variable-latency cache hits

12-cycle miss L2-cache

L1-cache

Sequential access: if hit in first access L = 1, if not — L=2
Trade-off: faster, or larger, or less power cache
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Variable-latency cache hits

12-cycle miss L2-cache

L1-cache

Sequential access: if hit in first access L = 1, if not — L=2
Trade-off: faster, or larger, or less power cache
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Correct-by-construction pipelining

Transforms: r |
i bypass ID ﬂRF " E1 " E2 SPEC
— retiming
—_ elaSt|C|Ze Correct-by-construction

i - @ IMP
— early enabling | =
— insert buffers ID RF P E1 [P E2

and negative tokens [ L@

— size elastic buffer capacity

[Joint work with Timothy Kam and Marc Galceran]
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Tree topology NoC

R

AGENT

(intela) [In collaboration with Ken Stevens, Charles Dike, Bill Grundmann] 1,



Router node interface
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NoC Router

Relative order of tokens
between agents is preserved
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Switch and Merge

Sell = Vinl * (P1 + !Vin2) L _
Doutl Sel2 = Vin2 * (IP1 + !Vin1)

Dinl

Dout2 Dout h

Ll

Detect Direction

/

‘T}\ Vou L
-
f

Voutl

Sinl=Vin2*!P1+Sout Sout

o
Sin2=Vinl1*P1+Sout

Sout




Correctness (short story)

1 Developed theory of elastic machines
(for late evaluation)

1 Verify correctness of any elastic implementation = check
conformance with the definition of elastic machine

1 All SELF controllers are verified for conformance
1 Elasticization is correct-by-construction

1 Theory for early evaluation and negative delays is more
challenging

— Sketch of a theory, but no fully satisfactory compositional
properties found yet

— Verification done on concrete systems and controllers
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Summary

1 SELF gives a low cost implementation of elastic machines

1 Functionality is correct when latencies change

1 New micro-architectural opportunities

1 Compositional theory proving correctness

1 Early evaluation - mechanism for performance and power
optimization

1 Optimization methods (that we did not discuss):
Retiming and recycling, buffer optimization and pipelining

1 Applications to design of NoC link layer
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See reference list for some relevant
publications
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SELF compiler

Flow
graph
Netlist of
_ Control distributed «
Parameterized generation controllers
library: of
controllers / \\
Verilog SMV ol

Backend Eém SIS & ABC

Synth93|s Verification Logic

SUESE

Performance
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DATAPATH

Enable 207 Enable go] Enable Enable
signals done| signals |done| signals signals

——— | ack ack | —~——

h Ad A Ah AA

EB




(M1 —{ M2

_n._‘ . _,a-_

_n.‘_a- "

Evaluation
No early evaluation
Passive anti-tokens M2 - W

Passive anti-tokens F3 > W
Active anti-tokens

Throughput
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