Synchronous Elastic Systems

Mike Kishinevsky and Jordi Cortadella

Intel Universitat Politecnica
Strategic CAD Labs de Catalunya
Hillsboro, USA Barcelona, Spain

Contributors to SELF research

1 Performance analysis: Jorge Julvez

1 Theory of elastic machines:
Sava Krstic and John O’Leary

1 Micro-architectural pipelining:
Timothy Kam, Marc Galceran Oms

1 Optimization:
Dmitry Bufistov, Josep Carmona

1 Bill Grundmann

Agenda

Basics of elastic systems

Early evaluation and
performance analysis

Applications of elastic systems

V. Demo of SELF compiler

Synchronous Stream of Data

Clock cycle =« -

. [7

4

’ |

2

1

0

Token (of data)

Synchronous Elastic Stream

. [7

4

1]

Clockcycle ==+ 2

Clockcycle=== 5 4 3 2

1

1

0

e [7] 14

Bubble (no data) ——

Token

Synchronous Circuit

Latency = 0

4|1
):n_’. ..‘8
02

Synchronous Elastic Circuit

Latency =0

11102

Ordinary Synchronous System

L]

L Bl

Changing latencies changes behavior

(intel”

Synchronous Elastic
(characteristic property)

Changing latencies does NOT change behavior

) = time elasticity

Elasticity?

Elasticity refers to elasticity of time, i.e. tolerance to changes in
timing parameters, not properties of materials

Luca Carloni et al. in the first systematic study of such systems
called them Latency Insensitive Systems

Other used names:
— Latency tolerant systems
— Synchronous emulation of asynchronous systems
— Synchronous handshake circuits

We use term “synchronous elastic” to link to asynchronous elastic
systems that have been developed before

e.g., David Muller’s pipelines of late 1950s
lvan Sutherland’s micro-pipelines 1989
Tolerate the variability of input data arrival and computation delays

Asynchronous elastic tolerate changes in continuous time
Synchronous elastic - in discrete time

10

Why

Scalable
Modular (Plug & Play)

Better energy-delay trade-offs
(design for typical case instead of worst case)

New micro-architectural opportunities
In digital design

Not asynchronous: use existing design
experience, CAD tools and flows... but have
some advantages of asynchronous

11

How to Design Synchronous Elastic Systems

1 Example of the implementation:
SELF = Synchronous Elastic Flow

1 Others are possible

12

Pipelined communication

sender receiver

What if the sender does not always send valid data?

The Valid bit

sender receiver

The Stop bit

sender receiver

The Stop bit

sender receiver

The Stop bit

sender receiver

The Stop bit

sender receiver

1 (
Back-pressure

The Stop bit

sender receiver

Long combinational path

Cyclic structures

Data

[, ’;

One can build circuits with combinational cycles (constructive cycles by Berry),
but synthesis and timing tools do not like them

(intel”) 20

Example: pipelined linear communication chain
with transparent latches

sender receiver

H L H L

— —p
Y2 cycle V2 cycle

Master and slave latches with independent control

(intel” 1

Shorthand notation
(clock lines not shown)

22

SELF (linear communication)

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

SELF

sender receiver

Sender

Elastic channel and its protocol

not Valid Valid * Stop

Idle Retry

Receiver

51

Elastic channel protocol

Sender Receiver

Data
\/& IJJfJIO llO 1 ‘J - Valid
0010011000

S0P SIOP

Transter
Retry

52

Basic VS block

Vi-l

Si-1

VS block + data-path latch = elastic HALF-buffer (EHB)
EHB + EHB = elastic buffer with capacity 2

(intel” 53

Control specification of the EB

54

Two implementations

55

Elastic buffer keeps data while stop is in flight

EBs = FIFOs with two parameters:
1 Forward latency

W2R1 1 Capacity
Backward latency for stop
propagation assumed (but need
not be) equal to fwd latency
W1R2

Typical case: (1,2) -
1 cycle forward latency
with capacity of 2

1 Replaces “normal” registers
1 Decoupling buffers

W1R1 Cannot be done with
Single Edge Flops

without double pumping
I . Can use latches inside
:i/ntela) Master-Slave as shown before

56

W1R1

Join

57

(Lazy) Fork

58

Eager Fork

59

Eager fork (another implementation)

B

1 &

{m

Variable Latency Units

-k
I fb;-):>

* go| done clear

Coarse grain control

Elasticization

Synchronous ‘

Elastic

63

Instimction

IR

[T LT 1Y

¥

IRg. 10 .
IR)1.18 1]
Register - a
MEM/AWELE file W
. i
- u
B
11 S‘lg n 37
extend

IDVEX

pE=ipme

=

=

EX/MEM

Brarch

W
ALU

Dama
memory

MEMWE

¥

¥

¥

U=

IF/ID ID/EX EX/MEM MEM/WB

PC

Z — 0O <

Z — 0O <

tile

Register

IRL‘: 10
IRll..lS

W ELSAH. LR

[T LT 1Y

3
=2
e
3
:
:
:
=
=
g
:

¥
¥

¥

T [T] H 1]
e o | ! : :
= M Bramnch
gy u : = tak I I
; aken
e - - | : = Fera? - : :
I ! : I
: Re.. I : :
I ! : I
: IR].]. | ?ﬁ ! :
Instioction| TR . Register "" : o : :
A Mmemory 1 MEM/RHLE file 1 g > 5 L S . :
| i w [| || |
I a :
I - I L I - " :
| | %) | Memory I
| ! . | " I
I ! 0!] I
I ; ; : I I
L lp | Sign 3=, ! = !
1 extend 1 : |
I ! : I
I ' ; :]

Register

tile

Eizn
ar.tend

16

W ELSAH. LR

Instimction

[T LT 1Y

Equivalence

Synchronous: stream of data

D:abcdedfghij .-

SELF: elastic stream of data

D:'a b % ¢ de *k df *
V: 1 0L 101 1 11111
S: 000100001001

Transfer sub-stream = original stream

Called: transfer equivalence, flow equivalence, or latency equivalence

(intel”

69

Marked Graph models
of elastic systems

70

Modelling elastic control with Petri nets

bubble data-token

5 \ :/ 5
data-token
O o O @ O
@ O © Qo O

bubble

@00

71

Modelling elastic control with Petri nets

bubble 2 data-tokens data-token

I<2>_<g>_<g>l

Hiding internal transitions of elastic buffers

(intel” 79

Modelling elastic control with Marked Graphs

Modelling elastic control with Marked Graphs

Forward
(Valid or Request)

.
.
.............
.......
......
.........
..........
.................
IIIIIIIIIIII

Backward
(intel‘” (Stop or Acknowledgement)

Elastic control with Timed Marked Graphs.
Continuous time = asynchronous

\

y * T,
o, * ‘e
..... ““‘ '....
|||||

/

Delays in time units

L
.
A
L
L
.
.
““
Py
ann®

L4 “
....
4, *
L] .
.....
......

Elastic control with Timed Marked Graphs.
Discrete time = synchronous elastic

\ /

Latencies in clock cycles

L4 . .
.............
......
......
......
......
...............
lllllllllllllll
..........

Elastic control with Timed Marked Graphs.
Discrete time. Multi-cycle operation

Elastic control with Timed Marked Graphs.
Discrete time. Variable latency operation

e.g. discrete probabilistic distribution:
average latency 0.8*1 + 0.2"2 =1.2

. L] \d
.............
......
......
......
........
.............

Modeling forks and joins

- -

(intel'”) 79

Modelling combinational elastic blocks

(intela) 80

Elastic Marked Graphs

1 An Elastic Marked Graph (EMG) is a Timed MG such that
for any arc a there exists a complementary arc a’
satisfying the following condition

a=a’* and «a’ = a-

1 |nitial number of tokens on a and a’ (Mo(a)+Mo(a’)) =
capacity of the corresponding elastic buffer

1 Similar forms of “pipelined” Petri Nets and Marked Graphs
have been previously used for modeling pipelining in HW
and SW (e.g. Patil 1974; Tsirlin, Rosenblum 1982)

(intel”

81

Reminder: Performance analysis of Marked graphs

Th = operations / cycle = number of firings per time unit

The throughput is given by the Th=min(Th(A), Th(B), Th(C))=2/5
minimum mean-weight cycle ’ ’

o % i Th(A)=3/7

AL B C Th(B)=3/5

Th(C)=2/5

Efficient algorithms: (Karp 1978), (Dasdan,Gupta 1998)

(intel”))

Early evaluation

Naive solution: introduce choice places
— issue tokens at choice node only into one (some) relevant path

— problem: tokens can arrive to merge nodes out-of-order
later token can overpass the earlier one

1 Solution: change enabling rule
— early evaluation

— issue negative tokens to input places without tokens,
i.e. keep the same firing rule

— Add symmetric sub-channels with negative tokens
— Negative tokens kill positive tokens when meet

1 Two related problems:
Early evaluation and Exceptions (how to kill a data-token)

(intel”

83

Examples of early evaluation

MULTIPLEXOR

s |
b S ifs=Tthenc:=a --don’twaitforb
F elsec:=b --don’t wait for a

— c L B —
b — ifa=0thenc:=0 --don’twaitforb

84

Related work

1 Petri nets

— Extensions to model OR causality
Kishinevsky et al. Change Diagrams [e.g. book of 1994]
Yakovlev et al. Causal Nets 1996

1 Asynchronous systems
— Reese et al 2002: Early evaluation
— Brej 2003: Early evaluation with anti-tokens
— Ampalan & Singh 2006: preemption using anti-tokens

Dual Marked Graph

1 Marking: Arcs (places) —> Z
(allow negative markings)

1 Some nodes are labeled as early-enabling

1 Enabling rules for a node:
— Positive enabling: M(a) > 0 for every input arc

— Early enabling (for early enabling nodes):
M(a) > O for some input arcs

— Negative enabling: M(a) < O for every output arc

1 Firing rule: the same as in regular MG

86

Dual Marked Graphs

1 Early enabling can be associated with an
external guard that depends on data variables
(e.g., a select signal of a multiplexor)

§ Actual enabling guards are abstracted away
(unless needed)

1 Anti-token generation: When an early enabled
node fires, it generates anti-tokens in the
predecessor arcs that had no tokens

1 Anti-token propagation counterflow: When
negative enabled node fires, it propagates the
anti-tokens from the successor to the
predecessor arcs

(intel”

87

Dual Marked Graph model

88

Passive anti-token

1 Passive DMG = version of DMG without negative enabling

1 Negative tokens can only be generated due to early
enabling, but cannot propagate

1 Let D be a strongly connected DMG such that all cycles
have positive cumulative marking

Let D, be a corresponding passive DMG.

If environment (consumers) never generate negative
tokens, then
throughput (D) = throughput (D,)

— |If capacity of input places for early enabling transitions is unlimited,
then active anti-tokens do not improve performance

— Active anti-tokens reduce activity in the data-path
(good for power reduction)

89

(intel”

Properties of DMGs

Firing invariant: Let node n be simultaneously positive (early) and
negative enabled in marking M.

Let M, be the result of firing n from M due to positive (early) enabling.
Let M, be the result of firing n from M due to negative enabling.
Then, M, = M,

Token preservation. Let ¢ be a cycle of a strongly connected DMG with
initial marking M,.
For every reachable marking M : M(c) = M,(c)

Liveness. A strongly connected passive DMG is live iff for every cycle c:
M(c) > 0.

— For DMGs this is a sufficient condition of liveness

— Itis also a necessary condition for positive liveness

Repetitive behavior. In a SC DMG: a firing sequence s from M leads to
the same marking iff every node fires in s the same number of times

DMGs have properties similar to regular MGs

90

Implementing early enabling

91

How to implement anti-tokens ?

Positive tokens

Negative tokens

92

How to implement anti-tokens ?

Positive tokens

+"ao

Negative tokens

93

How to implement anti-tokens ?

Valid* Valid*

Stop* Stop*

Valid— «—— «— Valid-
L

Stop—— — Stop-

94

Controller for elastic buffer

Data
|
IEn (=

<
wn iz |-

T>

@

wn i< |z

a

V

S

95

Dual controller for elastic buffer

= En

- .

D> D>
{(B—- (&

Oee Loce

Dual Join and Fork

&:;+

outl

intel.
97

Join with early evaluation

(intel” 08

Condition on Early Evaluation Function

Early evaluation function makes decision based on presence
of valid bits, not on their absence

Formally: EE is positive unate with respect to data input

Example: legal EE function for a data-path MUX
(s — select input)

99

(intel”

Passive anti-token (capacity one)

Bigger capacity can be achieved by “injecting”
anti-token up-down counters on elastic channels

100

Properties of elastic channels

i)
)
(Invariant ())
)

(Liveness

Invariants: mutually exclusive
Kill (V -) and Stop (S *)
Valid (V *) and retain of a kill (S)

101

DLX processor model with slow bypass

Bypass

o ©
Fetch @ Decode Execy Memory Write-back
/ \ —q 4}@_> /y@\
o1 ® o
Throughput: Th = operations / cycle
Late evaluation Applying early evaluation on “Execution” and “Write-back”
Th=0.5 Th =0.7 (0=0.3; p=0.3)

Conclusions

1 Early evaluation can increase performance
beyond the min cycle ratio

1 The duality between positive and negative
tokens suggests a clean and effective
Implementation

1 Dual Marked Graphs is a formal model for
analytical analysis and optimization methods

(intel” 103

Performance analysis
with early evaluation

(joint work with Jorge Julvez)

104

Revisit Performance Analysis of Marked Graphs

The throughput can also be computed by means of
linear programming

Average marking

? _I|m jm (n)dr

p1 () p2
e Throughput
th=minm
th =min(m_,m) p°

[Campos, Chiola, Silva 1991]

(intel” 105

Revisit Performance Analysis of Marked Graphs

max th

(

.

m, =1+t —t,
M,=0+t,—t
M=1+t—t,
My, =0+t —t,
M= 1+t —t

J

b
1

of Q\Da>Q o

P \Q P4

\D“@“D/

C Th=0.5

th< m_, //transition b

Y

th< m,, //transition c
th< m, //transition d
th < min(m,,, m_) // transition a

reachability

th constraints

106

GMG = Multi-guarded Dual Marked Graph

1 Refinement of passive DMGs
1 Every node has a set of guards
1 Every guard is a set of input places (arcs)

Example:
t1 t3 t2

= G(t4)={{p1,p3}.{p2,p3}}

107

Early evaluation

108

Early evaluation

00(02|04|06|08 /(1.0

0.40(0.40|0.4010.4010.40{0.40

0.42(0.42|0.42|0.42|0.43(0.43

0.43(0.44|0.44|0.45|0.45(0.45

0.43(0.4410.45|0.47|0.48|0.49

0.43(0.4410.46|0.48|0.51|0.54

0.43(0.4410.46|0.49|0.54|0.60

(0.43) (0.60) (0.40)

(intel”) 109

LP formulation for an upper bound of a

throughput (by example)
max th
b p N

/U mp2=0+ta_tb
oF P2 ﬁp3= T+t—-t,
o d

/ m, =0+t -t

m.=1+t —t
/I — == <
P:@® \Q P4 m

& Gh=@-0)/@E-D

110

Averaging cycle throughput or cycle times
does not work

Averaging throughput of
'\Q individual cycles
P
#ll Th'=a1/2+(1-0)2/3=(4-a)/6

Averaging effective cycle times
of individual cycles

AITh” = 2a + (1-a) 3/2= (3 + a) / 2

Th” = 2/(3+)

Th=(2-a)/(3-q)
@ 111

What can we do with
synchronous elastic systems?

112

ALU

Variable latency units

ALU

) =

start

done

113

| | Statistics
Benchmark] | | of operand

“Patricia”
from
Media Bench

12 bits of an adder

do 95% of additions 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33_
bits of adder used

Power-delay for an adder

Variable-latency cache hits

12-cycle miss L2-cache

L1-cache

suggested by Joel Emer for ASIM experiment

116

Variable-latency cache hits

12-cycle miss L2-cache

L1-cache

Sequential access: if hit in first access L = 1, if not — L=2
Trade-off: faster, or larger, or less power cache

117

Variable-latency cache hits

12-cycle miss L2-cache

L1-cache

Sequential access: if hit in first access L = 1, if not — L=2
Trade-off: faster, or larger, or less power cache

118

Correct-by-construction pipelining

Transforms: r |
i bypass ID ﬂRF " E1 " E2 SPEC
— retiming
—_ elaSt|C|Ze Correct-by-construction

i - @ IMP
— early enabling | =
— insert buffers ID RF P E1 [P E2

and negative tokens [L@

— size elastic buffer capacity

[Joint work with Timothy Kam and Marc Galceran]

(intel” 119

Tree topology NoC

R

AGENT

(intela) [In collaboration with Ken Stevens, Charles Dike, Bill Grundmann] 1,

Router node interface

121

NoC Router

Relative order of tokens
between agents is preserved

(intel”) 122

Switch and Merge

Sell = Vinl * (P1 + !Vin2) L _
Doutl Sel2 = Vin2 * (IP1 + !Vin1)

Dinl

Dout2 Dout h

Ll

Detect Direction

/

‘T}\ Vou L
-
f

Voutl

Sinl=Vin2*!P1+Sout Sout

o
Sin2=Vinl1*P1+Sout

Sout

Correctness (short story)

1 Developed theory of elastic machines
(for late evaluation)

1 Verify correctness of any elastic implementation = check
conformance with the definition of elastic machine

1 All SELF controllers are verified for conformance
1 Elasticization is correct-by-construction

1 Theory for early evaluation and negative delays is more
challenging

— Sketch of a theory, but no fully satisfactory compositional
properties found yet

— Verification done on concrete systems and controllers

(intel” 124

Summary

1 SELF gives a low cost implementation of elastic machines

1 Functionality is correct when latencies change

1 New micro-architectural opportunities

1 Compositional theory proving correctness

1 Early evaluation - mechanism for performance and power
optimization

1 Optimization methods (that we did not discuss):
Retiming and recycling, buffer optimization and pipelining

1 Applications to design of NoC link layer

125

See reference list for some relevant
publications

126

SELF compiler

Flow
graph
Netlist of
_ Control distributed «
Parameterized generation controllers
library: of
controllers / \\
Verilog SMV ol

Backend Eém SIS & ABC

Synth93|s Verification Logic

SUESE

Performance

(intel”) 197

DATAPATH

Enable 207 Enable go] Enable Enable
signals done| signals |done| signals signals

——— | ack ack | —~——

h Ad A Ah AA

EB

(M1 —{ M2

n.‘ . _,a-_

_n.‘_a- "

Evaluation
No early evaluation
Passive anti-tokens M2 - W

Passive anti-tokens F3 > W
Active anti-tokens

Throughput

129

	Synchronous Elastic Systems
	Contributors to SELF research
	Agenda
	Synchronous Stream of Data
	Synchronous Elastic Stream
	Synchronous Circuit
	Synchronous Elastic Circuit
	Ordinary Synchronous System
	Synchronous Elastic (characteristic property)
	Elasticity?
	Why
	How to Design Synchronous Elastic Systems
	Pipelined communication
	The Valid bit
	The Stop bit
	The Stop bit
	The Stop bit
	The Stop bit
	The Stop bit
	Cyclic structures
	Example: pipelined linear communication chain with transparent latches
	Shorthand notation (clock lines not shown)
	SELF (linear communication)
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	Elastic channel and its protocol
	Elastic channel protocol
	Basic VS block
	Control specification of the EB
	Two implementations
	Elastic buffer keeps data while stop is in flight
	Join
	(Lazy) Fork
	Eager Fork
	Eager fork (another implementation)
	Variable Latency Units
	Coarse grain control
	Elasticization
	Equivalence
	Marked Graph modelsof elastic systems
	Modelling elastic control with Petri nets
	Modelling elastic control with Petri nets
	Modelling elastic control with Marked Graphs
	Modeling forks and joins
	Elastic Marked Graphs
	Reminder: Performance analysis of Marked graphs
	Early evaluation
	Examples of early evaluation
	Related work
	Dual Marked Graph
	Dual Marked Graphs
	Dual Marked Graph model
	Passive anti-token
	Properties of DMGs
	Implementing early enabling
	How to implement anti-tokens ?
	How to implement anti-tokens ?
	How to implement anti-tokens ?
	Controller for elastic buffer
	Dual controller for elastic buffer
	Dual Join and Fork
	Join with early evaluation
	Condition on Early Evaluation Function
	Passive anti-token (capacity one)
	Properties of elastic channels
	DLX processor model with slow bypass
	Conclusions
	Performance analysis with early evaluation
	Revisit Performance Analysis of Marked Graphs
	GMG = Multi-guarded Dual Marked Graph
	Early evaluation
	Early evaluation
	LP formulation for an upper bound of a throughput (by example)
	Averaging cycle throughput or cycle times does not work
	What can we do with synchronous elastic systems?
	Variable latency units
	Power-delay for an adder
	Variable-latency cache hits
	Variable-latency cache hits
	Variable-latency cache hits
	Correct-by-construction pipelining
	Tree topology NoC
	Router node interface
	NoC Router
	Switch and Merge
	Correctness (short story)
	Summary
	
	SELF compiler
	Example
	Example

