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Synchronous Stream of DataSynchronous Stream of Data

Token (of data)
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Synchronous CircuitSynchronous Circuit
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Ordinary Synchronous SystemOrdinary Synchronous System
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Changing latencies changes behavior
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Synchronous Elastic Synchronous Elastic 
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Changing latencies does NOT change behavior 
=  time elasticity
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Elasticity?
Elasticity refers to elasticity of time, i.e. tolerance to changElasticity refers to elasticity of time, i.e. tolerance to changes in es in 
timing parameters, not properties of materialstiming parameters, not properties of materials

Luca Carloni et al. in the first systematic study of such systemLuca Carloni et al. in the first systematic study of such systems s 
called them Latency Insensitive Systemscalled them Latency Insensitive Systems
Other used names: Other used names: 
–– Latency tolerant systemsLatency tolerant systems
–– Synchronous emulation of asynchronous systems Synchronous emulation of asynchronous systems 
–– Synchronous handshake circuitsSynchronous handshake circuits

We use term We use term ““synchronous elasticsynchronous elastic”” to link to asynchronous elastic to link to asynchronous elastic 
systems that have been developed before systems that have been developed before 

e.g., David Mullere.g., David Muller’’s pipelines of late 1950ss pipelines of late 1950s
Ivan SutherlandIvan Sutherland’’s micros micro--pipelines 1989pipelines 1989

Tolerate the variability of input data arrival and computation dTolerate the variability of input data arrival and computation delayselays

Asynchronous elastic tolerate changes in continuous timeAsynchronous elastic tolerate changes in continuous time
Synchronous elastic Synchronous elastic -- in discrete timein discrete time
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WhyWhy

ScalableScalable

Modular (Plug & Play) Modular (Plug & Play) 

Better energyBetter energy--delay tradedelay trade--offs offs 
(design for typical case instead of worst case) (design for typical case instead of worst case) 

New microNew micro--architectural opportunities architectural opportunities 
in digital designin digital design

Not asynchronous: use existing design Not asynchronous: use existing design 
experience, CAD tools and flows... but have experience, CAD tools and flows... but have 
some advantages of asynchronoussome advantages of asynchronous

11



How to Design Synchronous Elastic SystemsHow to Design Synchronous Elastic Systems

Example of the implementation:Example of the implementation:
SELF = Synchronous Elastic FlowSELF = Synchronous Elastic Flow

Others are possibleOthers are possible
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Pipelined communicationPipelined communication
sender receiver

DataData

What if the sender does not always send valid data?
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The Valid bitThe Valid bit
sender receiver

Data Data

Valid Valid

What if the receiver is not always ready ?
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The Stop bitThe Stop bit
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The Stop bitThe Stop bit
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The Stop bitThe Stop bit
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The Stop bitThe Stop bit
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The Stop bitThe Stop bit
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Cyclic structuresCyclic structures
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Combinational cycle

Data

Valid

Stop

One can build circuits with combinational cycles (constructive cycles by Berry), 
but synthesis and timing tools do not like them



Example: pipelined linear communication chain Example: pipelined linear communication chain 
with transparent latcheswith transparent latches

sender receiver
H L H L

½ cycle ½ cycle

Master and slave latches with independent control
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Shorthand notation Shorthand notation 
(clock lines not shown)(clock lines not shown)
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SELF (linear communication)SELF (linear communication)
sender receiver
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SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

00

00

33



SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

11

11

34



SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

11

11

Data

Valid

Stop

35



SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

11

11

Data

Valid

Stop

36



SELFSELF
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Elastic channel and its protocol Elastic channel and its protocol 

Idle Retry

Transfer

Valid * not Stop

not Valid Valid * Stop

SenderSender ReceiverReceiver
Data

Valid

Stop
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Elastic channel protocolElastic channel protocol

SenderSender ReceiverReceiver

DataData

ValidValid

StopStop

DataData

ValidValid

StopStop

* D D * C C C B * A* D D * C C C B * A

0 1 1 0 1 1 1 1 0 10 1 1 0 1 1 1 1 0 1

0 0 1 0 0 1 1 0 0 00 0 1 0 0 1 1 0 0 0

TransferTransfer
RetryRetry
IdleIdle
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Basic VS blockBasic VS block

EnEnii

VVii

EnEnii

VVii--1
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VVii--1

VS
VVii1 1

SSii--1 SSi SSii--1 SSi1 i 1 i

VS block + data-path latch = elastic HALF-buffer (EHB)
EHB + EHB = elastic buffer with capacity 2



Control specification of the EB
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Two implementations 
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Elastic buffer keeps data while stop is in flightElastic buffer keeps data while stop is in flight

W1R1

W2R1

W1R2
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W2R2

W1R1 Cannot be done with
Single Edge Flops
without double pumping

Can use latches inside 
Master-Slave as shown before

EBs = FIFOs with two parameters:
Forward latency
Capacity

Backward latency for stop 
propagation assumed (but need 
not be) equal to fwd latency

Typical case: (1,2) -
1 cycle forward latency 
with capacity of 2

Replaces “normal” registers
Decoupling buffers



JoinJoin
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(Lazy) Fork(Lazy) Fork

V V1

S1

V2S S2
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Eager ForkEager Fork

S1

^̂

^̂

V1
V

V2

S
S2
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Eager fork (another implementation)Eager fork (another implementation)

VS

VS VS

VSVS
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Variable Latency Units Variable Latency Units 
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[0 - k]
cycles

[0 - k]
cycles

V/S V/S

donego clear



Coarse grain control
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ElasticizationElasticization

Synchronous Elastic
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CLKCLK
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Elastic control layer
Generation of gated clocks
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Equivalence 
Synchronous: stream of data

D: a b c d e d f g h i j D: a b c d e d f g h i j ……

SELF: elastic stream of data

D: a * b * * c d e * d f * g h * * i j D: a * b * * c d e * d f * g h * * i j ……
V: 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 V: 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 ……
S: 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 S: 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 ……

Transfer sub-stream = original stream
Called: transfer equivalence, flow equivalence, or latency equivalence
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Marked Graph modelsMarked Graph models
of elastic systemsof elastic systems
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Modelling elastic control with Petri netsModelling elastic control with Petri nets
datadata--tokentokenbubblebubble

datadata--tokentoken

bubblebubble
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Modelling elastic control with Petri netsModelling elastic control with Petri nets

bubblebubble datadata--tokentoken2 data2 data--tokenstokens

72
Hiding internal transitions of elastic buffers



Modelling elastic control with Marked GraphsModelling elastic control with Marked Graphs
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Modelling elastic control with Marked GraphsModelling elastic control with Marked Graphs

Forward Forward 
(Valid or Request)(Valid or Request)

Backward Backward 
(Stop or Acknowledgement)(Stop or Acknowledgement)
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Elastic control with Timed Marked Graphs.Elastic control with Timed Marked Graphs.
Continuous time = asynchronousContinuous time = asynchronous

75

d=250ps d=151ps

Delays in time units

250 151



Elastic control with Timed Marked Graphs.Elastic control with Timed Marked Graphs.
Discrete time = synchronous elasticDiscrete time = synchronous elastic
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d=1 d=1

Latencies in clock cycles

1 1



Elastic control with Timed Marked Graphs.Elastic control with Timed Marked Graphs.
Discrete time. MultiDiscrete time. Multi--cycle operationcycle operation
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d=2 d=1

2 1



Elastic control with Timed Marked Graphs.Elastic control with Timed Marked Graphs.
Discrete time. Variable latency operationDiscrete time. Variable latency operation

d   {1,2} d=1

{1,2} 1

e.g. discrete probabilistic distribution: 
average latency 0.8*1 + 0.2*2 = 1.2

∈
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Modeling forks and joinsModeling forks and joins

d=1

1
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Modelling combinational elastic blocksModelling combinational elastic blocks

d=1 d=0

1 0
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Elastic Marked GraphsElastic Marked Graphs

An Elastic Marked Graph (EMG) is a Timed MG such that 
for any arc a there exists a complementary arc a’
satisfying the following condition 
•a = a’• and  •a’ = a•

Initial number of tokens on a and a’ (M0(a)+M0(a’)) =
capacity of the corresponding elastic buffer

Similar forms of “pipelined” Petri Nets and Marked Graphs 
have been previously used for modeling pipelining in HW 
and SW (e.g. Patil 1974; Tsirlin, Rosenblum 1982)
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ReminderReminder: : PerformancePerformance analysisanalysis ofof MarkedMarked graphsgraphs

ThTh = operations / cycle = number of firings per time unit = operations / cycle = number of firings per time unit 

The throughput is given by the
minimum mean-weight cycle

Th=min(Th(A), Th(B), Th(C))=2/5

A B C

Th(A)=3/7

Th(B)=3/5

Th(C)=2/5

Efficient algorithms: (Karp 1978), (Dasdan,Gupta 1998)
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Early evaluationEarly evaluation

NaNaïïve solution: introduce choice places ve solution: introduce choice places 
–– issue tokens at choice node only into one (some) relevant pathissue tokens at choice node only into one (some) relevant path
–– problem: tokens can arrive to merge nodes outproblem: tokens can arrive to merge nodes out--ofof--order order 

later token can overpass the earlier onelater token can overpass the earlier one

Solution: change enabling rule Solution: change enabling rule 
–– early evaluationearly evaluation
–– issue negative tokens to input places without tokens, issue negative tokens to input places without tokens, 

i.e. keep the same firing rulei.e. keep the same firing rule
–– Add symmetric subAdd symmetric sub--channels with negative tokenschannels with negative tokens
–– Negative tokens kill positive tokens when meetNegative tokens kill positive tokens when meet

Two related problems: Two related problems: 
Early evaluation and Exceptions (how to kill a dataEarly evaluation and Exceptions (how to kill a data--token)token)
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ExamplesExamples ofof earlyearly evaluationevaluation

MULTIPLEXOR

a
b

c

s

if s = T then c := a   -- don’t wait for b
else c := b   -- don’t wait for a

T
F

MULTIPLIER

a
b

c if a = 0 then c := 0   -- don’t wait for b*
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Related workRelated work

Petri netsPetri nets
–– Extensions to model OR causalityExtensions to model OR causality

Kishinevsky et al. Change Diagrams [e.g. book of 1994]Kishinevsky et al. Change Diagrams [e.g. book of 1994]
Yakovlev et al. Causal Nets 1996Yakovlev et al. Causal Nets 1996

Asynchronous systemsAsynchronous systems
–– Reese et al 2002: Early evaluationReese et al 2002: Early evaluation
–– BrejBrej 2003: Early evaluation with anti2003: Early evaluation with anti--tokenstokens
–– AmpalanAmpalan & Singh 2006: & Singh 2006: preemptionpreemption using antiusing anti--tokenstokens
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Dual Marked GraphDual Marked Graph
Marking: Marking: Arcs (places) −> Z
(allow negative markings)
Some nodes are labeled as early-enabling

Enabling rules for a node:
– Positive enabling:  M(a) > 0 for every input arc
– Early enabling (for early enabling nodes): 

M(a) > 0 for some input arcs
– Negative enabling: M(a) < 0 for every output arc

Firing rule: the same as in regular MG
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Dual Marked GraphsDual Marked Graphs

Early enabling can be associated with an 
external guard that depends on data variables 
(e.g., a select signal of a multiplexor) 
Actual enabling guards are abstracted away 
(unless needed)
Anti-token generation: When an early enabled 
node fires, it generates anti-tokens in the 
predecessor arcs that had no tokens
Anti-token propagation counterflow: When 
negative enabled node fires, it propagates the 
anti-tokens from the successor to the 
predecessor arcs
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Dual Marked Graph modelDual Marked Graph model

-1

Enabled !

-1

-1

-1

-1
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Passive antiPassive anti--tokentoken
Passive DMG = version of DMG without negative enablingPassive DMG = version of DMG without negative enabling
Negative tokens can only be generated due to early Negative tokens can only be generated due to early 
enabling, but cannot propagateenabling, but cannot propagate
Let Let DD be a strongly connected DMG such that all cycles be a strongly connected DMG such that all cycles 
have positive cumulative markinghave positive cumulative marking
Let Let DDpp be a corresponding passive DMGbe a corresponding passive DMG. . 

If environment (consumers) never generate negative If environment (consumers) never generate negative 
tokens, then tokens, then 
throughput (throughput (DD) = throughput () = throughput (DDpp))

–– If capacity of input places for early enabling transitions is unIf capacity of input places for early enabling transitions is unlimited, limited, 
then active antithen active anti--tokens do not improve performancetokens do not improve performance

–– Active antiActive anti--tokens reduce activity in the datatokens reduce activity in the data--path path 
(good for power reduction)(good for power reduction)
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Properties of Properties of DMGsDMGs
Firing invariant: Let node n be simultaneously positive (early) and 
negative enabled in marking M. 
Let M1 be the result of firing n from M due to positive (early) enabling. 
Let M2 be the result of firing n from M due to negative enabling. 
Then, M1 = M2

Token preservation. Let  c be a cycle of a strongly connected DMG with 
initial marking M0. 
For every reachable marking M : M(c) = M0(c)

Liveness. A strongly connected passive DMG is live iff for every cycle c:
M(c) > 0. 
– For DMGs this is a sufficient condition of liveness
– It is also a necessary condition for positive liveness

Repetitive behavior. In a SC DMG: a firing sequence s from M leads to 
the same marking iff every node fires in s the same number of times

DMGs have properties similar to regular MGs
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Implementing early enablingImplementing early enabling
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How to implement antiHow to implement anti--tokens ?tokens ?

Positive tokens

Negative tokens
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How to implement antiHow to implement anti--tokens ?tokens ?

Positive tokens

Negative tokens
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How to implement antiHow to implement anti--tokens ?tokens ?

ValidValid++
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ValidValid++ValidValid++

StopStop++

ValidValid––

StopStop––

+ StopStop++

ValidValid––

StopStop––



Controller for elastic bufferController for elastic buffer

V

S

V

S

Data

H

H

L

L

L

H

V

S

V

S

En En
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Dual controller for elastic bufferDual controller for elastic buffer

S+

V+

V-

S-

S+

V+

V-

S-

En En

96



Dual Join and Fork
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Join with early evaluation
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Condition on Early Evaluation Function

Early evaluation function makes decision based on presence
of valid bits, not on their absence

Formally: EE is positive unate with respect to data input

Example: legal EE function for a data-path MUX 
(s – select input)
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Passive antiPassive anti--token (capacity one)token (capacity one)

Bigger capacity can be achieved by “injecting”
anti-token up-down counters on elastic channels
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Properties of elastic channels

Invariants:   mutually exclusive 
Kill (V -) and Stop (S +) 
Valid (V +) and retain of a kill (S -)
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DLX DLX processorprocessor modelmodel withwith slowslow bypassbypass

Fetch

Bypass

Decode Execute Memory Write-back

α

1−α

β

1−β

ThTh = operations / cycle= operations / cycleThroughput:

102

Late evaluation

Th=0.5 Th = 0.7   (α=0.3; β=0.3)

Applying early evaluation on “Execution” and “Write-back”



ConclusionsConclusions

Early evaluation can increase performance Early evaluation can increase performance 
beyond the min cycle ratiobeyond the min cycle ratio

The duality between positive and negative The duality between positive and negative 
tokens suggests a clean and effective tokens suggests a clean and effective 
implementationimplementation

Dual Marked Graphs is a formal model for Dual Marked Graphs is a formal model for 
analytical analysis and optimization methodsanalytical analysis and optimization methods
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Performance analysis Performance analysis 
with early evaluationwith early evaluation

(joint work with Jorge J(joint work with Jorge Júúlvezlvez))
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RevisitRevisit PerformancePerformance AnalysisAnalysis ofof MarkedMarked GraphsGraphs

The throughput can also be computed by means ofThe throughput can also be computed by means of
linear programminglinear programming

Average marking

∫∞→
=

t

pttp )d(mm
0

1lim ττ

pp
mth min=

Throughput

),min( 21 pp mmth =

t1 t2

t3

p1 p2

[Campos, Chiola, Silva 1991]
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RevisitRevisit PerformancePerformance AnalysisAnalysis ofof MarkedMarked GraphsGraphs

max th

106

a

b

c

p1 p2

p3 p4

p5

mp1 = 1 + tb – ta
mp2 = 0 + ta – tb
mp3 = 1 + td – ta
mp4 = 0 + ta – tc
mp5 = 1 + tc – td

ThTh = 0.5= 0.5

reachability

th ≤ mp2 // transition b
th ≤ mp4 // transition c
th ≤ mp5    // transition d
th ≤ min(mp1, mp3) // transition a

th constraints

d



GMG = MultiGMG = Multi--guarded Dual Marked Graphguarded Dual Marked Graph

Refinement of passive Refinement of passive DMGsDMGs
Every node has a set of guardsEvery node has a set of guards
Every guard is a set of input places (arcs)Every guard is a set of input places (arcs)

Example:Example:
t1 t3 t2

t4

p1 p2p3

G(t4)={{p1,p3},{p2,p3}}
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EarlyEarly evaluationevaluation

α1-α

β 1-β
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EarlyEarly evaluationevaluation

α1−α

β 1−β

α
β

0.600.600.540.540.490.490.460.460.440.440.430.431.01.0

0.540.540.510.510.480.480.460.460.440.440.430.430.80.8

0.490.490.480.480.470.470.450.450.440.440.430.430.60.6

0.450.450.450.450.450.450.440.440.440.440.430.430.40.4

0.430.430.430.430.420.420.420.420.420.420.420.420.20.2

0.400.400.400.400.400.400.400.400.400.400.400.400.00.0

1.01.00.80.80.60.60.40.40.20.20.00.0

0.600.600.540.540.490.490.460.460.440.440.430.431.01.0

0.540.540.510.510.480.480.460.460.440.440.430.430.80.8

0.490.490.480.480.470.470.450.450.440.440.430.430.60.6

0.450.450.450.450.450.450.440.440.440.440.430.430.40.4

0.430.430.430.430.420.420.420.420.420.420.420.420.20.2

0.400.400.400.400.400.400.400.400.400.400.400.400.00.0

1.01.00.80.80.60.60.40.40.20.20.00.0

109
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LP LP formulationformulation forfor anan upperupper boundbound ofof a a 
throughputthroughput (by (by exampleexample) ) 

α

1-α

a

b

d c

p1 p2

p3 p4

p5

max th
mp1 = 1 + tb – ta
mp2 = 0 + ta – tb
mp3 = 1 + td – ta
mp4 = 0 + ta – tc
mp5 = 1 + tc – td

th ≤ mp2
th ≤ mp4
th ≤ mp5

th = α mp1 + (1-α) mp3

ThTh = (2 = (2 -- αα) / (3 ) / (3 -- αα))
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Averaging cycle throughput or cycle times Averaging cycle throughput or cycle times 
does not workdoes not work

ThTh = (2 = (2 -- αα) / (3 ) / (3 -- αα))

α

1-α

a

b

d c

p1 p2

p3 p4

p5

1/21/2

2/32/3

Averaging throughput of 
individual cycles

ThTh’’ = = αα 1/2 + (11/2 + (1-- αα) 2/3 = (4 ) 2/3 = (4 -- αα) / 6 ) / 6 

1/Th1/Th”” = 2= 2αα + (1+ (1-- αα) 3/2) 3/2 == (3 + (3 + αα) / 2) / 2
ThTh”” = 2/(3+ = 2/(3+ αα))

Averaging effective cycle times 
of individual cycles
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What can we do with 
synchronous elastic systems?
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Variable latency units

ALU
ALU

L = 1

L = 3

L = 2

L = 1

start done
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# 
adds

Benchmark
“Patricia”
from 
Media Bench

Statistics
of operand
sizes

bits of adder used 

1st operand 2n
d op

er
an

d

Si
gn

ific
an

t b
its

# adds

12 bits of an adder
do 95% of additions
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Power-delay for an adder 

1 1.25 1.5

Compare 
64 bits 
VLA and
prefix adder

relative delay        
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Variable-latency cache hits

12-cycle miss L2-cache

2-way associative 
32KB

2-cycle hit

1-cycle hit
suggested by Joel Emer for ASIM experimentsuggested by Joel Emer for ASIM experiment

L1-cache
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Variable-latency cache hits

12-cycle miss L2-cache

Pseudo-associative
32KB

{1-2} cycle hit

1-cycle hitSequential access: if hit in first access L = 1, if not – L=2
Trade-off: faster, or larger, or less power cache 

L1-cache
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Variable-latency cache hits

12-cycle miss L2-cache

Pseudo-associative
64KB

{2-3} cycle hit

1-cycle hitSequential access: if hit in first access L = 1, if not – L=2
Trade-off: faster, or larger, or less power cache 

L1-cache
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Correct-by-construction pipelining

Transforms:
– bypass
– retiming
– elasticize
– early enabling
– insert buffers 

and negative tokens
– size elastic buffer capacity

ID E1 E2RF

ID E1 E2RF 1
0

1
0

-1

SPEC

Correct-by-construction
IMP

[Joint work with Timothy Kam and Marc Galceran]
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Tree topology NoC

R

R

RR

R

AGENT

AGENT

AGENT

AGENT

AGENT

AGENT

AGENT

[In collaboration with Ken Stevens, Charles Dike, Bill Grundmann] 120



Router node interface

B

RouterA

C
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EHB

EHB

S

M

S

M

NoC Router

EHB M

S

A

Relative order of tokens 
between agents is preserved

B

C
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Switch and Merge
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Correctness (short story)Correctness (short story)

Developed theory of elastic machines Developed theory of elastic machines 
(for late evaluation)(for late evaluation)
Verify correctness of any elastic implementation = check Verify correctness of any elastic implementation = check 
conformance with the definition of elastic machineconformance with the definition of elastic machine
All SELF controllers are verified for conformanceAll SELF controllers are verified for conformance
ElasticizationElasticization is correctis correct--byby--constructionconstruction

Theory for early evaluation and negative delays is more Theory for early evaluation and negative delays is more 
challengingchallenging
–– Sketch of a theory,  but no fully satisfactory compositional Sketch of a theory,  but no fully satisfactory compositional 

properties found yetproperties found yet
–– Verification done on concrete systems and controllersVerification done on concrete systems and controllers
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SummarySummary

SELF gives a low cost implementation of elastic machines SELF gives a low cost implementation of elastic machines 

Functionality is correct when latencies change Functionality is correct when latencies change 

New microNew micro--architectural opportunitiesarchitectural opportunities

Compositional theory proving correctnessCompositional theory proving correctness

Early evaluation Early evaluation -- mechanism for performance and power mechanism for performance and power 
optimizationoptimization

Optimization methods (that we did not discuss): Optimization methods (that we did not discuss): 
Retiming and recycling, buffer optimization and pipeliningRetiming and recycling, buffer optimization and pipelining

Applications to design of Applications to design of NoCNoC link layerlink layer
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See reference list for some relevant 
publications
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SELF compiler

FlowFlow
graphgraph

ParameterizedParameterized
library oflibrary of

controllerscontrollers

Control
generation

VerilogVerilog SMVSMV blifblif

Backend 
synthesis

NuSMV SIS & ABCSimulator
Verification Logic

synthesis

NetlistNetlist ofof
distributeddistributed
controllerscontrollers
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Performance
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ExampleExample



ExampleExample

EvaluationEvaluation ThroughputThroughput
No early evaluationNo early evaluation 0.2770.277

Passive antiPassive anti--tokens M2 tokens M2 →→ WW 0.2800.280

Passive antiPassive anti--tokens F3 tokens F3 →→ WW 0.3870.387

Active antiActive anti--tokenstokens 0.4000.400
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