
Synchronous Elastic Systems Synchronous Elastic Systems

Mike Kishinevsky and Jordi Cortadella Mike Kishinevsky and Jordi Cortadella
UniversitatUniversitat PolitecnicaPolitecnica

de de CatalunyaCatalunya
Barcelona, SpainBarcelona, Spain

IntelIntel
Strategic CAD LabsStrategic CAD Labs

Hillsboro, USAHillsboro, USA

Contributors to SELF research

Performance analysis: Jorge JPerformance analysis: Jorge Júúlvezlvez
Theory of elastic machines:
Sava Krstic and John O’Leary
Micro-architectural pipelining:
Timothy Kam, Marc Galceran Oms
Optimization:
Dmitry Bufistov, Josep Carmona
Bill Grundmann

2

AgendaAgenda

I.I. Basics of elastic systemsBasics of elastic systems

II.II. Early evaluation and Early evaluation and
performance analysisperformance analysis

III.III. Applications of elastic systemsApplications of elastic systems

IV.IV. Demo of SELF compilerDemo of SELF compiler

3

Synchronous Stream of DataSynchronous Stream of Data

Token (of data)

… 147
Clock cycle 012…

4

Synchronous Elastic StreamSynchronous Elastic Stream

… 147
012…Clock cycle

Token

4 17
012… 345Clock cycle…

Bubble (no data)

5

Synchronous CircuitSynchronous Circuit

+
… 147 … 348

201…

Latency = 0

6

Synchronous Elastic CircuitSynchronous Elastic Circuit

+
Latency = 0… 147 … 348

201…

+e
348…147…

201…
Latency can vary

7

Ordinary Synchronous SystemOrdinary Synchronous System

A C

DB

A C

DB

=

Changing latencies changes behavior

8

Synchronous Elastic Synchronous Elastic
(characteristic property)(characteristic property)

A C

DB

A C

DB ee

ee ee

ee

e

=

Changing latencies does NOT change behavior
= time elasticity

9

Elasticity?
Elasticity refers to elasticity of time, i.e. tolerance to changElasticity refers to elasticity of time, i.e. tolerance to changes in es in
timing parameters, not properties of materialstiming parameters, not properties of materials

Luca Carloni et al. in the first systematic study of such systemLuca Carloni et al. in the first systematic study of such systems s
called them Latency Insensitive Systemscalled them Latency Insensitive Systems
Other used names: Other used names:
–– Latency tolerant systemsLatency tolerant systems
–– Synchronous emulation of asynchronous systems Synchronous emulation of asynchronous systems
–– Synchronous handshake circuitsSynchronous handshake circuits

We use term We use term ““synchronous elasticsynchronous elastic”” to link to asynchronous elastic to link to asynchronous elastic
systems that have been developed before systems that have been developed before

e.g., David Mullere.g., David Muller’’s pipelines of late 1950ss pipelines of late 1950s
Ivan SutherlandIvan Sutherland’’s micros micro--pipelines 1989pipelines 1989

Tolerate the variability of input data arrival and computation dTolerate the variability of input data arrival and computation delayselays

Asynchronous elastic tolerate changes in continuous timeAsynchronous elastic tolerate changes in continuous time
Synchronous elastic Synchronous elastic -- in discrete timein discrete time

10

WhyWhy

ScalableScalable

Modular (Plug & Play) Modular (Plug & Play)

Better energyBetter energy--delay tradedelay trade--offs offs
(design for typical case instead of worst case) (design for typical case instead of worst case)

New microNew micro--architectural opportunities architectural opportunities
in digital designin digital design

Not asynchronous: use existing design Not asynchronous: use existing design
experience, CAD tools and flows... but have experience, CAD tools and flows... but have
some advantages of asynchronoussome advantages of asynchronous

11

How to Design Synchronous Elastic SystemsHow to Design Synchronous Elastic Systems

Example of the implementation:Example of the implementation:
SELF = Synchronous Elastic FlowSELF = Synchronous Elastic Flow

Others are possibleOthers are possible

12

Pipelined communicationPipelined communication
sender receiver

DataData

What if the sender does not always send valid data?

13

The Valid bitThe Valid bit
sender receiver

Data Data

Valid Valid

What if the receiver is not always ready ?

14

The Stop bitThe Stop bit

0000000000

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

15

The Stop bitThe Stop bit

1111000000

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

16

The Stop bitThe Stop bit

1111110000

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

17

The Stop bitThe Stop bit

1111111111

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

BackBack--pressurepressure
18

The Stop bitThe Stop bit

1100000000

sender

Data

Valid

Stop

receiver

Data

Valid

Stop

Long combinational path

19

Cyclic structuresCyclic structures

20

Combinational cycle

Data

Valid

Stop

One can build circuits with combinational cycles (constructive cycles by Berry),
but synthesis and timing tools do not like them

Example: pipelined linear communication chain Example: pipelined linear communication chain
with transparent latcheswith transparent latches

sender receiver
H L H L

½ cycle ½ cycle

Master and slave latches with independent control

21

Shorthand notation Shorthand notation
(clock lines not shown)(clock lines not shown)

22

D Q

clk

…

En

En

SELF (linear communication)SELF (linear communication)
sender receiver

V V V V

S S S

En En En En

S

1 1

Data

Valid

Stop

Data

Valid

Stop

1 1

23

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

11

00

24

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

11

00

25

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

11

00

26

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

11

00

27

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

11

00

28

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

00

00

29

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

00

00

30

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

00

00

31

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

00

00

32

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

00

00

33

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

11

11

34

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

11

11

Data

Valid

Stop

35

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

11

11

Data

Valid

Stop

36

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

11

11

Data

Valid

Stop

37

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

11

11

Data

Valid

Stop

38

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

11

11

Data

Valid

Stop

39

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

11

11

Data

Valid

Stop

40

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

11

11

Data

Valid

Stop

41

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

11

11

Data

Valid

Stop

42

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

11

00

Data

Valid

Stop

43

SELFSELF
sender receiver

V V V V

S S S

En En En En

11

00
S

Data

Valid

Stop

Data

Valid

Stop

44

SELFSELF
sender receiver

V V V V

S S S

En En En En

11

00
S

Data

Valid

Stop

Data

Valid

Stop

45

SELFSELF
sender receiver

V V V V

S S S

En En En En

11

00
S

Data

Valid

Stop

Data

Valid

Stop

46

SELFSELF
sender receiver

V V V V

S S S

En En En En

11

00
S

Data

Valid

Stop

Data

Valid

Stop

47

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

11

00

48

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

11

00

49

SELFSELF
sender receiver

V V V V

S S S

En En En En

S

Data

Valid

Stop

Data

Valid

Stop

11

00

50

Elastic channel and its protocol Elastic channel and its protocol

Idle Retry

Transfer

Valid * not Stop

not Valid Valid * Stop

SenderSender ReceiverReceiver
Data

Valid

Stop

51

Elastic channel protocolElastic channel protocol

SenderSender ReceiverReceiver

DataData

ValidValid

StopStop

DataData

ValidValid

StopStop

* D D * C C C B * A* D D * C C C B * A

0 1 1 0 1 1 1 1 0 10 1 1 0 1 1 1 1 0 1

0 0 1 0 0 1 1 0 0 00 0 1 0 0 1 1 0 0 0

TransferTransfer
RetryRetry
IdleIdle

52

Basic VS blockBasic VS block

EnEnii

VVii

EnEnii

VVii--1

53

VVii--1

VS
VVii1 1

SSii--1 SSi SSii--1 SSi1 i 1 i

VS block + data-path latch = elastic HALF-buffer (EHB)
EHB + EHB = elastic buffer with capacity 2

Control specification of the EB

54

Two implementations

55

Elastic buffer keeps data while stop is in flightElastic buffer keeps data while stop is in flight

W1R1

W2R1

W1R2

56

W2R2

W1R1 Cannot be done with
Single Edge Flops
without double pumping

Can use latches inside
Master-Slave as shown before

EBs = FIFOs with two parameters:
Forward latency
Capacity

Backward latency for stop
propagation assumed (but need
not be) equal to fwd latency

Typical case: (1,2) -
1 cycle forward latency
with capacity of 2

Replaces “normal” registers
Decoupling buffers

JoinJoin

57

VS

+

V1

V2

S1

S2

V

S

VS

VS

(Lazy) Fork(Lazy) Fork

V V1

S1

V2S S2

58

Eager ForkEager Fork

S1

^̂

^̂

V1
V

V2

S
S2

59

Eager fork (another implementation)Eager fork (another implementation)

VS

VS VS

VSVS

60

Variable Latency Units Variable Latency Units

61

[0 - k]
cycles

[0 - k]
cycles

V/S V/S

donego clear

Coarse grain control

62

ElasticizationElasticization

Synchronous Elastic

63

CLKCLK

64

CLKCLK

PC

IF/ID ID/EX MEM/WBEX/MEM

JJ
OO
II
NN

JJ
OO
II
NN

FF
OO
RR
KK

FORKFORK

65

66

V

S

CLKCLK

V

S

V

S

V

S

V

S

J
O
I
N

J
O
I
N

F
O
R
K

FORK

67

1

0

CLKCLK

1

0

1

0

1

0

1

0

J
O
I
N

J
O
I
N

F
O
R
K

FORK 0

0

68

1

0

1

0

1

0

1

0

1

0

Elastic control layer
Generation of gated clocks

CLKCLK

Equivalence
Synchronous: stream of data

D: a b c d e d f g h i j D: a b c d e d f g h i j ……

SELF: elastic stream of data

D: a * b * * c d e * d f * g h * * i j D: a * b * * c d e * d f * g h * * i j ……
V: 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 V: 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 ……
S: 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 S: 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 ……

Transfer sub-stream = original stream
Called: transfer equivalence, flow equivalence, or latency equivalence

69

Marked Graph modelsMarked Graph models
of elastic systemsof elastic systems

70

Modelling elastic control with Petri netsModelling elastic control with Petri nets
datadata--tokentokenbubblebubble

datadata--tokentoken

bubblebubble

71

Modelling elastic control with Petri netsModelling elastic control with Petri nets

bubblebubble datadata--tokentoken2 data2 data--tokenstokens

72
Hiding internal transitions of elastic buffers

Modelling elastic control with Marked GraphsModelling elastic control with Marked Graphs

73

Modelling elastic control with Marked GraphsModelling elastic control with Marked Graphs

Forward Forward
(Valid or Request)(Valid or Request)

Backward Backward
(Stop or Acknowledgement)(Stop or Acknowledgement)

74

Elastic control with Timed Marked Graphs.Elastic control with Timed Marked Graphs.
Continuous time = asynchronousContinuous time = asynchronous

75

d=250ps d=151ps

Delays in time units

250 151

Elastic control with Timed Marked Graphs.Elastic control with Timed Marked Graphs.
Discrete time = synchronous elasticDiscrete time = synchronous elastic

76

d=1 d=1

Latencies in clock cycles

1 1

Elastic control with Timed Marked Graphs.Elastic control with Timed Marked Graphs.
Discrete time. MultiDiscrete time. Multi--cycle operationcycle operation

77

d=2 d=1

2 1

Elastic control with Timed Marked Graphs.Elastic control with Timed Marked Graphs.
Discrete time. Variable latency operationDiscrete time. Variable latency operation

d {1,2} d=1

{1,2} 1

e.g. discrete probabilistic distribution:
average latency 0.8*1 + 0.2*2 = 1.2

∈

78

Modeling forks and joinsModeling forks and joins

d=1

1

79

Modelling combinational elastic blocksModelling combinational elastic blocks

d=1 d=0

1 0

80

Elastic Marked GraphsElastic Marked Graphs

An Elastic Marked Graph (EMG) is a Timed MG such that
for any arc a there exists a complementary arc a’
satisfying the following condition
•a = a’• and •a’ = a•

Initial number of tokens on a and a’ (M0(a)+M0(a’)) =
capacity of the corresponding elastic buffer

Similar forms of “pipelined” Petri Nets and Marked Graphs
have been previously used for modeling pipelining in HW
and SW (e.g. Patil 1974; Tsirlin, Rosenblum 1982)

81

ReminderReminder: : PerformancePerformance analysisanalysis ofof MarkedMarked graphsgraphs

ThTh = operations / cycle = number of firings per time unit = operations / cycle = number of firings per time unit

The throughput is given by the
minimum mean-weight cycle

Th=min(Th(A), Th(B), Th(C))=2/5

A B C

Th(A)=3/7

Th(B)=3/5

Th(C)=2/5

Efficient algorithms: (Karp 1978), (Dasdan,Gupta 1998)
82

Early evaluationEarly evaluation

NaNaïïve solution: introduce choice places ve solution: introduce choice places
–– issue tokens at choice node only into one (some) relevant pathissue tokens at choice node only into one (some) relevant path
–– problem: tokens can arrive to merge nodes outproblem: tokens can arrive to merge nodes out--ofof--order order

later token can overpass the earlier onelater token can overpass the earlier one

Solution: change enabling rule Solution: change enabling rule
–– early evaluationearly evaluation
–– issue negative tokens to input places without tokens, issue negative tokens to input places without tokens,

i.e. keep the same firing rulei.e. keep the same firing rule
–– Add symmetric subAdd symmetric sub--channels with negative tokenschannels with negative tokens
–– Negative tokens kill positive tokens when meetNegative tokens kill positive tokens when meet

Two related problems: Two related problems:
Early evaluation and Exceptions (how to kill a dataEarly evaluation and Exceptions (how to kill a data--token)token)

83

ExamplesExamples ofof earlyearly evaluationevaluation

MULTIPLEXOR

a
b

c

s

if s = T then c := a -- don’t wait for b
else c := b -- don’t wait for a

T
F

MULTIPLIER

a
b

c if a = 0 then c := 0 -- don’t wait for b*

84

Related workRelated work

Petri netsPetri nets
–– Extensions to model OR causalityExtensions to model OR causality

Kishinevsky et al. Change Diagrams [e.g. book of 1994]Kishinevsky et al. Change Diagrams [e.g. book of 1994]
Yakovlev et al. Causal Nets 1996Yakovlev et al. Causal Nets 1996

Asynchronous systemsAsynchronous systems
–– Reese et al 2002: Early evaluationReese et al 2002: Early evaluation
–– BrejBrej 2003: Early evaluation with anti2003: Early evaluation with anti--tokenstokens
–– AmpalanAmpalan & Singh 2006: & Singh 2006: preemptionpreemption using antiusing anti--tokenstokens

85

Dual Marked GraphDual Marked Graph
Marking: Marking: Arcs (places) −> Z
(allow negative markings)
Some nodes are labeled as early-enabling

Enabling rules for a node:
– Positive enabling: M(a) > 0 for every input arc
– Early enabling (for early enabling nodes):

M(a) > 0 for some input arcs
– Negative enabling: M(a) < 0 for every output arc

Firing rule: the same as in regular MG

86

Dual Marked GraphsDual Marked Graphs

Early enabling can be associated with an
external guard that depends on data variables
(e.g., a select signal of a multiplexor)
Actual enabling guards are abstracted away
(unless needed)
Anti-token generation: When an early enabled
node fires, it generates anti-tokens in the
predecessor arcs that had no tokens
Anti-token propagation counterflow: When
negative enabled node fires, it propagates the
anti-tokens from the successor to the
predecessor arcs

87

Dual Marked Graph modelDual Marked Graph model

-1

Enabled !

-1

-1

-1

-1

88

Passive antiPassive anti--tokentoken
Passive DMG = version of DMG without negative enablingPassive DMG = version of DMG without negative enabling
Negative tokens can only be generated due to early Negative tokens can only be generated due to early
enabling, but cannot propagateenabling, but cannot propagate
Let Let DD be a strongly connected DMG such that all cycles be a strongly connected DMG such that all cycles
have positive cumulative markinghave positive cumulative marking
Let Let DDpp be a corresponding passive DMGbe a corresponding passive DMG. .

If environment (consumers) never generate negative If environment (consumers) never generate negative
tokens, then tokens, then
throughput (throughput (DD) = throughput () = throughput (DDpp))

–– If capacity of input places for early enabling transitions is unIf capacity of input places for early enabling transitions is unlimited, limited,
then active antithen active anti--tokens do not improve performancetokens do not improve performance

–– Active antiActive anti--tokens reduce activity in the datatokens reduce activity in the data--path path
(good for power reduction)(good for power reduction)

89

Properties of Properties of DMGsDMGs
Firing invariant: Let node n be simultaneously positive (early) and
negative enabled in marking M.
Let M1 be the result of firing n from M due to positive (early) enabling.
Let M2 be the result of firing n from M due to negative enabling.
Then, M1 = M2

Token preservation. Let c be a cycle of a strongly connected DMG with
initial marking M0.
For every reachable marking M : M(c) = M0(c)

Liveness. A strongly connected passive DMG is live iff for every cycle c:
M(c) > 0.
– For DMGs this is a sufficient condition of liveness
– It is also a necessary condition for positive liveness

Repetitive behavior. In a SC DMG: a firing sequence s from M leads to
the same marking iff every node fires in s the same number of times

DMGs have properties similar to regular MGs

90

Implementing early enablingImplementing early enabling

91

How to implement antiHow to implement anti--tokens ?tokens ?

Positive tokens

Negative tokens

92

How to implement antiHow to implement anti--tokens ?tokens ?

Positive tokens

Negative tokens

93

How to implement antiHow to implement anti--tokens ?tokens ?

ValidValid++

94

ValidValid++ValidValid++

StopStop++

ValidValid––

StopStop––

+ StopStop++

ValidValid––

StopStop––

Controller for elastic bufferController for elastic buffer

V

S

V

S

Data

H

H

L

L

L

H

V

S

V

S

En En

95

Dual controller for elastic bufferDual controller for elastic buffer

S+

V+

V-

S-

S+

V+

V-

S-

En En

96

Dual Join and Fork

97

Join with early evaluation

98

Condition on Early Evaluation Function

Early evaluation function makes decision based on presence
of valid bits, not on their absence

Formally: EE is positive unate with respect to data input

Example: legal EE function for a data-path MUX
(s – select input)

99

Passive antiPassive anti--token (capacity one)token (capacity one)

Bigger capacity can be achieved by “injecting”
anti-token up-down counters on elastic channels

100

Properties of elastic channels

Invariants: mutually exclusive
Kill (V -) and Stop (S +)
Valid (V +) and retain of a kill (S -)

101

DLX DLX processorprocessor modelmodel withwith slowslow bypassbypass

Fetch

Bypass

Decode Execute Memory Write-back

α

1−α

β

1−β

ThTh = operations / cycle= operations / cycleThroughput:

102

Late evaluation

Th=0.5 Th = 0.7 (α=0.3; β=0.3)

Applying early evaluation on “Execution” and “Write-back”

ConclusionsConclusions

Early evaluation can increase performance Early evaluation can increase performance
beyond the min cycle ratiobeyond the min cycle ratio

The duality between positive and negative The duality between positive and negative
tokens suggests a clean and effective tokens suggests a clean and effective
implementationimplementation

Dual Marked Graphs is a formal model for Dual Marked Graphs is a formal model for
analytical analysis and optimization methodsanalytical analysis and optimization methods

103

Performance analysis Performance analysis
with early evaluationwith early evaluation

(joint work with Jorge J(joint work with Jorge Júúlvezlvez))

104

RevisitRevisit PerformancePerformance AnalysisAnalysis ofof MarkedMarked GraphsGraphs

The throughput can also be computed by means ofThe throughput can also be computed by means of
linear programminglinear programming

Average marking

∫∞→
=

t

pttp)d(mm
0

1lim ττ

pp
mth min=

Throughput

),min(21 pp mmth =

t1 t2

t3

p1 p2

[Campos, Chiola, Silva 1991]

105

RevisitRevisit PerformancePerformance AnalysisAnalysis ofof MarkedMarked GraphsGraphs

max th

106

a

b

c

p1 p2

p3 p4

p5

mp1 = 1 + tb – ta
mp2 = 0 + ta – tb
mp3 = 1 + td – ta
mp4 = 0 + ta – tc
mp5 = 1 + tc – td

ThTh = 0.5= 0.5

reachability

th ≤ mp2 // transition b
th ≤ mp4 // transition c
th ≤ mp5 // transition d
th ≤ min(mp1, mp3) // transition a

th constraints

d

GMG = MultiGMG = Multi--guarded Dual Marked Graphguarded Dual Marked Graph

Refinement of passive Refinement of passive DMGsDMGs
Every node has a set of guardsEvery node has a set of guards
Every guard is a set of input places (arcs)Every guard is a set of input places (arcs)

Example:Example:
t1 t3 t2

t4

p1 p2p3

G(t4)={{p1,p3},{p2,p3}}

107

EarlyEarly evaluationevaluation

α1-α

β 1-β

108

EarlyEarly evaluationevaluation

α1−α

β 1−β

α
β

0.600.600.540.540.490.490.460.460.440.440.430.431.01.0

0.540.540.510.510.480.480.460.460.440.440.430.430.80.8

0.490.490.480.480.470.470.450.450.440.440.430.430.60.6

0.450.450.450.450.450.450.440.440.440.440.430.430.40.4

0.430.430.430.430.420.420.420.420.420.420.420.420.20.2

0.400.400.400.400.400.400.400.400.400.400.400.400.00.0

1.01.00.80.80.60.60.40.40.20.20.00.0

0.600.600.540.540.490.490.460.460.440.440.430.431.01.0

0.540.540.510.510.480.480.460.460.440.440.430.430.80.8

0.490.490.480.480.470.470.450.450.440.440.430.430.60.6

0.450.450.450.450.450.450.440.440.440.440.430.430.40.4

0.430.430.430.430.420.420.420.420.420.420.420.420.20.2

0.400.400.400.400.400.400.400.400.400.400.400.400.00.0

1.01.00.80.80.60.60.40.40.20.20.00.0

109

(0.43)(0.43) (0.60)(0.60) (0.40)(0.40)

LP LP formulationformulation forfor anan upperupper boundbound ofof a a
throughputthroughput (by (by exampleexample))

α

1-α

a

b

d c

p1 p2

p3 p4

p5

max th
mp1 = 1 + tb – ta
mp2 = 0 + ta – tb
mp3 = 1 + td – ta
mp4 = 0 + ta – tc
mp5 = 1 + tc – td

th ≤ mp2
th ≤ mp4
th ≤ mp5

th = α mp1 + (1-α) mp3

ThTh = (2 = (2 -- αα) / (3) / (3 -- αα))
110

Averaging cycle throughput or cycle times Averaging cycle throughput or cycle times
does not workdoes not work

ThTh = (2 = (2 -- αα) / (3) / (3 -- αα))

α

1-α

a

b

d c

p1 p2

p3 p4

p5

1/21/2

2/32/3

Averaging throughput of
individual cycles

ThTh’’ = = αα 1/2 + (11/2 + (1-- αα) 2/3 = (4) 2/3 = (4 -- αα) / 6) / 6

1/Th1/Th”” = 2= 2αα + (1+ (1-- αα) 3/2) 3/2 == (3 + (3 + αα) / 2) / 2
ThTh”” = 2/(3+ = 2/(3+ αα))

Averaging effective cycle times
of individual cycles

111

What can we do with
synchronous elastic systems?

112

Variable latency units

ALU
ALU

L = 1

L = 3

L = 2

L = 1

start done

113

adds

Benchmark
“Patricia”
from
Media Bench

Statistics
of operand
sizes

bits of adder used

1st operand 2n
d op

er
an

d

Si
gn

ific
an

t b
its

adds

12 bits of an adder
do 95% of additions

114

Power-delay for an adder

1 1.25 1.5

Compare
64 bits
VLA and
prefix adder

relative delay
115

Variable-latency cache hits

12-cycle miss L2-cache

2-way associative
32KB

2-cycle hit

1-cycle hit
suggested by Joel Emer for ASIM experimentsuggested by Joel Emer for ASIM experiment

L1-cache

116

Variable-latency cache hits

12-cycle miss L2-cache

Pseudo-associative
32KB

{1-2} cycle hit

1-cycle hitSequential access: if hit in first access L = 1, if not – L=2
Trade-off: faster, or larger, or less power cache

L1-cache

117

Variable-latency cache hits

12-cycle miss L2-cache

Pseudo-associative
64KB

{2-3} cycle hit

1-cycle hitSequential access: if hit in first access L = 1, if not – L=2
Trade-off: faster, or larger, or less power cache

L1-cache

118

Correct-by-construction pipelining

Transforms:
– bypass
– retiming
– elasticize
– early enabling
– insert buffers

and negative tokens
– size elastic buffer capacity

ID E1 E2RF

ID E1 E2RF 1
0

1
0

-1

SPEC

Correct-by-construction
IMP

[Joint work with Timothy Kam and Marc Galceran]

119

Tree topology NoC

R

R

RR

R

AGENT

AGENT

AGENT

AGENT

AGENT

AGENT

AGENT

[In collaboration with Ken Stevens, Charles Dike, Bill Grundmann] 120

Router node interface

B

RouterA

C

121

EHB

EHB

S

M

S

M

NoC Router

EHB M

S

A

Relative order of tokens
between agents is preserved

B

C

122

Switch and Merge

123

Correctness (short story)Correctness (short story)

Developed theory of elastic machines Developed theory of elastic machines
(for late evaluation)(for late evaluation)
Verify correctness of any elastic implementation = check Verify correctness of any elastic implementation = check
conformance with the definition of elastic machineconformance with the definition of elastic machine
All SELF controllers are verified for conformanceAll SELF controllers are verified for conformance
ElasticizationElasticization is correctis correct--byby--constructionconstruction

Theory for early evaluation and negative delays is more Theory for early evaluation and negative delays is more
challengingchallenging
–– Sketch of a theory, but no fully satisfactory compositional Sketch of a theory, but no fully satisfactory compositional

properties found yetproperties found yet
–– Verification done on concrete systems and controllersVerification done on concrete systems and controllers

124

SummarySummary

SELF gives a low cost implementation of elastic machines SELF gives a low cost implementation of elastic machines

Functionality is correct when latencies change Functionality is correct when latencies change

New microNew micro--architectural opportunitiesarchitectural opportunities

Compositional theory proving correctnessCompositional theory proving correctness

Early evaluation Early evaluation -- mechanism for performance and power mechanism for performance and power
optimizationoptimization

Optimization methods (that we did not discuss): Optimization methods (that we did not discuss):
Retiming and recycling, buffer optimization and pipeliningRetiming and recycling, buffer optimization and pipelining

Applications to design of Applications to design of NoCNoC link layerlink layer

125

See reference list for some relevant
publications

126

SELF compiler

FlowFlow
graphgraph

ParameterizedParameterized
library oflibrary of

controllerscontrollers

Control
generation

VerilogVerilog SMVSMV blifblif

Backend
synthesis

NuSMV SIS & ABCSimulator
Verification Logic

synthesis

NetlistNetlist ofof
distributeddistributed
controllerscontrollers

127

Performance

128

ExampleExample

ExampleExample

EvaluationEvaluation ThroughputThroughput
No early evaluationNo early evaluation 0.2770.277

Passive antiPassive anti--tokens M2 tokens M2 →→ WW 0.2800.280

Passive antiPassive anti--tokens F3 tokens F3 →→ WW 0.3870.387

Active antiActive anti--tokenstokens 0.4000.400

129

	Synchronous Elastic Systems
	Contributors to SELF research
	Agenda
	Synchronous Stream of Data
	Synchronous Elastic Stream
	Synchronous Circuit
	Synchronous Elastic Circuit
	Ordinary Synchronous System
	Synchronous Elastic (characteristic property)
	Elasticity?
	Why
	How to Design Synchronous Elastic Systems
	Pipelined communication
	The Valid bit
	The Stop bit
	The Stop bit
	The Stop bit
	The Stop bit
	The Stop bit
	Cyclic structures
	Example: pipelined linear communication chain with transparent latches
	Shorthand notation (clock lines not shown)
	SELF (linear communication)
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	SELF
	Elastic channel and its protocol
	Elastic channel protocol
	Basic VS block
	Control specification of the EB
	Two implementations
	Elastic buffer keeps data while stop is in flight
	Join
	(Lazy) Fork
	Eager Fork
	Eager fork (another implementation)
	Variable Latency Units
	Coarse grain control
	Elasticization
	Equivalence
	Marked Graph modelsof elastic systems
	Modelling elastic control with Petri nets
	Modelling elastic control with Petri nets
	Modelling elastic control with Marked Graphs
	Modeling forks and joins
	Elastic Marked Graphs
	Reminder: Performance analysis of Marked graphs
	Early evaluation
	Examples of early evaluation
	Related work
	Dual Marked Graph
	Dual Marked Graphs
	Dual Marked Graph model
	Passive anti-token
	Properties of DMGs
	Implementing early enabling
	How to implement anti-tokens ?
	How to implement anti-tokens ?
	How to implement anti-tokens ?
	Controller for elastic buffer
	Dual controller for elastic buffer
	Dual Join and Fork
	Join with early evaluation
	Condition on Early Evaluation Function
	Passive anti-token (capacity one)
	Properties of elastic channels
	DLX processor model with slow bypass
	Conclusions
	Performance analysis with early evaluation
	Revisit Performance Analysis of Marked Graphs
	GMG = Multi-guarded Dual Marked Graph
	Early evaluation
	Early evaluation
	LP formulation for an upper bound of a throughput (by example)
	Averaging cycle throughput or cycle times does not work
	What can we do with synchronous elastic systems?
	Variable latency units
	Power-delay for an adder
	Variable-latency cache hits
	Variable-latency cache hits
	Variable-latency cache hits
	Correct-by-construction pipelining
	Tree topology NoC
	Router node interface
	NoC Router
	Switch and Merge
	Correctness (short story)
	Summary
	
	SELF compiler
	Example
	Example

