
Analysis and Optimization of
Global Interconnects

Sachin Sapatnekar
ECE Department

University of Minnesota
Minneapolis, MN, USA

sachin@umn.edu

Acknowledgements

Many slides borrowed from
• Chuck Alpert, IBM
• Jiang Hu, Texas A&M
• Prashant Saxena, Synopsys

2

Outline of the talk

• Interconnect delay metrics

• Interconnects and scaling theory

• Synthesis of signal interconnects

• Noise and congestion issues

3

Simple delay metrics

4

Interconnect modeling

• Precise model requires transmission line analysis

• Break up wire into segments

• Each segment can be modeled as
L-model π-model T-model

• Other issues (crosstalk etc.) modeled using coupling caps
• Interconnect extraction

– Most precise with a 3-D field solver (takes a long time!)
– Other faster approximate techniques useful for design

analysis/optimization (R per square, C per unit area, 2.5-D models)

R(+sL)
C C/2 C/2

R(+sL)

C
R/2(+sL/2) R/2(+sL/2)

dx

5

Gate delay models

• Traditionally: assume that the gate drives a capacitor
– Build macromodels for individual gates

• Delay = f(widths, transition times, loads)
• Example: K-factor equations
• Similar idea used in standard cell characterization:

Delay = f (transition times, load)
– Table lookup models: storage/accuracy tradeoff (e.g. .lib format)
– Fast circuit simulation – used in many delay calculators

• More recently: effective capacitances, current source/voltage
source models

6

RC delay calculations

• Delays can be calculated easily
• For example: RC driven by a step excitation

Response V(t) = (1 - e-t/RC)
Time constant = RC

Time constants for more complicated circuits?

C

R
V(t)

7

Elmore delay for an RC tree

∑ ∑
∈ ∈

=
)()(

,
kPathi idownstreamj

jikD CRT

Ra

Rb

Rc

Rd

Re

Ca

Cb

Cc

Cd

Ce
Root

– Elmore Delay to node e
= Ra.(Ca+Cb+Cc+Cd+Ce) + Rb.(Cb+Cd + Ce) + Re.Ce

8

Incrementally calculating the Elmore delay

A B C
R1 R2

C1 C2

22211)()(CRCCRCADelay ++=−

9

Model order reduction methods

• Elmore delay: RC transfer function
H(s) ≈ a0

b0 + b1 s
• Can approximate RC circuit transfer function as

a0 + a1 s + ... + an-1 sn-1

b0 + b1 s + ... + bn-1 sn-1 + bn sn

– Response approximated as a sum of exponentials
– Useful for interconnect simulation
– Other variants: PVL, PRIMA, etc.
– Handles linear systems, but drivers may be nonlinear

e(t)

e’(t) t

ttd

10

Effective capacitance model

• Includes the effects of gate nonlinearities
• Gate driving RC interconnect

– Determine waveform at gate output; analyze interconnect as a linear
system after that

• Possible model for waveform at x
– Gate driving total capacitance of net?

• Gives erroneous results due to resistive shielding
– Actual effective capacitance < total wiring capacitance
– Techniques exist for determining Ceffective, or modeling the gate using

a voltage/current source

x
x

C1

R

C2

11

Computing Ceff: Overall flow

Cnew=Ctot

Ceff=Cnew Ceff

Compute Thevenin model at Ceff

No

12

Cnew

Match charge
To get Cnew

Ceff=Cnew?

Compute
delay,slew

yes

[C. Kashyap]

Current source model

• Represents the transistor I-V curve as a function of input slew
and output load

• Linear Thevenin driver

• CCSM (Synopsys), ECSM (Cadence)

±

delay = f(slew,Cload)

rd

Vout

Iout = f(slew,Cload)

[Amin, DAC06] 13

Wire tapering and layer assignment

• Elmore delay

Root

– Wires near the root must have low resistances
– Wires near the leaves must have low capacitances
– Wider wires near root, narrower near leaves

• In practice: # of wire widths limited to two or three
• Same principle applies to layer assignment

∑ ∑
∈ ∈

=
)()(

,
kPathi idownstreamj

jikD CRT

Simple buffer insertion problem

Given: Source and sink locations, sink capacitances
and RATs, a buffer type, source delay rules, unit
wire resistance and capacitance

Buffer RAT4RAT3

s0

RAT2

RAT1

15

Simple buffer insertion problem

Find: Buffer locations and a routing tree such that
slack at the source is minimized

)},()({min)(0410 iii ssdelaysRATsq −= ≤≤

16

RAT2

RAT4RAT3

RAT1

s0

Slack example

RAT = 500
delay = 400

slack = -200
RAT = 400
delay = 600

RAT = 500
delay = 350

slack = +100
RAT = 400
delay = 300

17

Interconnects and Scaling Theory

A scaling primer

SS

GG

DD
• Ideal process scaling:

– Device geometries shrink by σ (= 0.7x)
• Device delay shrinks by σ

– Wire geometries shrink by σ
• Resistance: ρ l/(wσ.hσ) = R/σ2

• Coupling cap: ε (hσ) l /(Sσ) = same
• Capacitance to ground: similar
• In each process generation

R doubles, C and Cc unchanged

• But it doesn’t quite work that way
• h scales by less than σ to control R

h

w

l

S

lσ

hσ

Sσwσ

Block scaling

• Block area often stays same
– # cells, # nets doubles

• Wiring histogram shape (almost) invariant
– Global interconnect lengths don’t shrink
– Local interconnect lengths shrink by σ

A typical chip cross-section

• Wires become “fatter” as you
move to upper layers

• From one technology to the
next, wire aspect ratios
become more skewed

• R is controlled, at the
expense of coupling
capacitance

[Intel]

21

The role of interconnects

• Short interconnect
– Used to connect nearby cells, Rdriver >> Rinterconnect
– Minimize wire C, i.e., use short minwidth wires

• Medium to long-distance (“global”) interconnect
– Rdriver ≈ Rinterconnect
– Size wires to tradeoff area vs. delay
– Increasing width ⇒ Capacitance increases, Resistance decreases

Need to find acceptable tradeoff - wire sizing problem
• “Fat” wires

– Thicker cross-sections in higher metal layers
– Useful for reducing delays for global wires
– Inductance issues, sharing of limited resource

Interconnect delay scaling

• Delay of a wire of length l :
τint = (rl)(cl) = rcl2 (first order)

• Local interconnects :
τint : (r/σ2)(c)(lσ)2 = rcl2

– Local interconnect delay unchanged (but devices get faster)

• Global interconnects :
τint : (r/σ2)(c)(l)2 = (rcl2)/σ2

– Global interconnect delay doubles – unsustainable!
– Problem somewhat mitigated using buffers, using nonideal

scaling as outlined earlier

• Interconnect delay increasingly more dominant

ITRS projections

Source: ITRS, 2003Source: ITRS, 2003
0.1

1

10

100

250 180 130 90 65 45 32
Feature size (nm)Relative

delay

Gate delay (fanout 4)
Local interconnect (M1,2)
Global interconnect with repeaters
Global interconnect without repeaters

ITRS ILD Roadmap Evolution

1

2

3

4

5

0 1 2 3 4 5 6 7
Technology Node (µm)

Ef
fe

ct
iv

e
k

1997 ITRS
1999 ITRS
2003 ITRS

0.25 .045.0650.090.130.18

Industry
Actual Trend

Source: Chia Hong Jan, IEDM 2003
Interconnect Short Course

ITRS projections often a “best case scenario” projection

Buffer insertion

• Consider

Vs

• A buffer effectively isolates the downstream capacitance

25

Optimizing medium/long interconnects

• Delays of interconnects may become very large
• Wire sizing helps to control the delay
• Repeater insertion is another effective technique
• Effects of a buffer

– Isolates load capacitances of different “stages”
– Adds a delay

26

Cbuf

Subtree cap.
CL1

Subtree cap.
CL2

Cbuf

Downstream capacitance here is CL1+ Cbuf
(CL2 is isolated by the buffer)

Rdriver
Subtree cap.

CL1

Subtree cap.
CL2

Buffered global interconnects: Intuition

l

Interconnect delay = r.c.l2

Now, interconnect delay = Σ r.c.li
2 < r.c.l2 (where l = Σ lj)

since Σ (lj
2) < (Σ lj)2

(Of course, account for intrinsic buffer delay also)

l1 lnl3l2

More precise analysis: Optimal inter-buffer length

• First order (lumped parasitic, Elmore delay) analysis

• Assume N identical buffers with equal inter-buffer length l (L = Nl)

• For minimum delay,

() ()[]
() ()⎥⎦

⎤
⎢⎣
⎡ +++=

+++=

gddg

ggd

CR
l

cRrCrclL

clCrlclCRNT

1

0=
dl
dT

02 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

opt

gd

l
CR

rcL
rc
CR

l gd
opt =

L

Rd – On resistance of inverter
Cg – Gate input capacitance
r, c – Resistance, cap. per micron

… …

l
Rd

Cg

Optimal interconnect delay

• Substituting lopt back into the interconnect delay expression:

() ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++= gd

opt
dgoptopt CR

l
cRrCrclLT 1

()[]cRrCrcCRLT dggdopt ++= 2
Delay grows linearly with L (instead of quadratically)

Buffer-to-buffer spacing reduces in successive technology nodes
rc
CR

l gd
opt =

d

dσ
Dumb shrink

Smart shrink

Critical inter-buffer lengths

• Study based on exhaustive
SPICE simulation and projected
process files (Saxena et al. TCAD’04)

• Optimally-sized uniformly for
min delay
– Min distance at which inserting a

buffer speeds up the line

• “Ideally shrunk” circuit
requires additional buffers
(0.7x vs 0.57x)

90nm 65nm 45nm 32nm

M 3
M 60

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Relative
critical
inter-
buffer
length

0.57x0.57x

586.0=σσ
In line with scaling In line with scaling

theory:theory:

Buffer planning needed!

Past Present/Future
31

Buffer block planning

32

Buffer block planning

33

Critical sequential lengths

• Optimized for max distance
in one clock period

• Assumes:
– 2x frequency scaling
– Ignores setup, hold, skew

• Even with 1.4x (“Moore”)
frequency scaling, critical seq.
lengths shrink at ~0.62x

• “Ideally shrunk” circuit requires
much new wire pipelining

(0.7x vs 0.43x / 0.62x)

90nm 65nm 45nm 32nm

M3
M60

1
2
3
4
5
6
7

Relative
critical

seq.
length

0.43x0.43x

Architectural impact

• Example processor floorplan shown below

• Layout decisions affect # clock cycles required to convey a
signal
– Architectural decisions must be made hand-in-hand with layout

35

Longer term solution: architectural changes

• Simplify interconnection complexity architecturally
– Modify wiring histogram shape (i.e. Rent’s parameters) of design

• An example: multi-core microprocessors
– Goes counter to traditional approach of increased integration through block

size scaling

w

ire
s

wirelength

36

Synthesis of Signal Interconnects

Signal interconnect synthesis

• Interconnect topology generation
• Interconnect delay optimization
• Noise optimization
• Bus design
• Congestion considerations

Van Ginneken’s classic algorithm

• Optimal for multi-sink nets
• Quadratic runtime
• Bottom-up from sinks to source
• Generate list of candidates at each node
• At source, pick the best candidate in list

39

Key assumptions

• Given routing tree
• Given potential insertion points

40

Generating candidates

(1)

(2)

(3)

41

Pruning candidates

(3)

(a) (b)

Both (a) and (b) “look” the same to the source.
Throw out the one with the worst slack

(4)

42

Candidate example (continued)

(4)

(5)

43

Candidate example (continued)

After pruning

(5)

At driver, compute which candidate maximizes
slack. Result is optimal.

44

Merging branches

Right
Candidates

Left
Candidates

45

Pruning merged branches

Critical

With pruning

46

Combining the Options

• Draw a plot of all (Ck, Dk) pairs for both children m and n
(assuming a binary tree)

1 3 4 5 6 72 1 3 4 5 6 72

D(m)

D(n)

C(m)

C(n)

D(combined)

C(combined)

Van Ginneken example

(20,400)
Wire
C=10,d=150

(30,250)
(5, 220)

Buffer
C=5, d=30

48

(20,400)

Wire
C=15,d=200
C=15,d=120

Buffer
C=5, d=50
C=5, d=30

(30,250)
(5, 220)

(45, 50)
(5, 0)
(20,100)
(5, 70)

(20,400)

Van Ginneken example (continued)

(30,250)
(5, 220)

(45, 50)
(5, 0)
(20,100)
(5, 70)

(20,400)

(5,0) is inferior to (5,70). (45,50) is inferior to (20,100)

(30,250)
(5, 220)

(20,100)
(5, 70)(30,10)

(15, -10)

Wire C=10

(20,400)

Pick solution with largest slack, follow arrows to get solution

49

Van Ginneken recap

• Generate candidates from sinks to source

• Quadratic runtime
– Adding a buffer adds only one new candidate

– Merging branches additive, not multiplicative

• Optimal for Elmore delay model

50

Extensions

• Multiple buffer types
• Inverters
• Polarity constraints
• Controlling buffer resources
• Capacitance constraints
• Blockage recognition
• Wire sizing

51

Multiple buffer types

(1)

(2)

Time complexity increases from O(n2) to O(n2B2)
where B is the number of different buffer types

52

Inverters

(1)

(2)

• Maintain a “+” and a “-” list of candidates
• Only merge branches with same polarity
• Throw out negative candidates at source

53

Polarity constraints

• Some sinks are positive, some negative
• Put negative sinks into “-” list

“-” list

“-” list “+” list

54

Controlling buffering resources

Before, maintain list of capacitance slack pairs

(C1, q1), (C2, q2), (C3, q3) (C4, q4), (C5, q5)
(C6, q6), (C7, q7), (C8, q8) (C9, q9)

Now, store an array of lists, indexed by # of buffers

3
2
1
0

(C1, q1, 3), (C2, q2, 3), (C3, q3, 3)
(C4, q4, 2), (C5, q5, 2)
(C6, q6, 1), (C7, q7, 1), (C8, q8, 1)
(C9, q9, 0)

Prune candidates with inferior cap, slack, and #buffers

55

Buffering resource trade-off

-4000

-3000

-2000

-1000

0

1000

0 1 2 3 4 5 6 7

of Buffers

Sl
ac

k
(p

s)

56

Blockage recognition

Delete insertion points that
run over blockages

57

Other extensions

• Modeling effective capacitance
• Higher-order interconnect delay
• Slew constraints
• Noise constraints

58

π-models

• Van Ginneken candidate: (Cap, slack)

Cn

R

Cf
C

Replace Cap with π-model (Cn, R, Cf)
Total capacitance preserved: Cn + Cf = C
R represents degree of resistive shielding

59

Computing gate delay

• When inserting buffer, compute effective
capacitance from π-model

Ceff

Use effective instead of lumped
capacitance in gate delay equation
Optimality no longer guaranteed

60

Higher-order interconnect delay

• Moment matching with first 3 moments
• Previously: candidate (π-model, slack)
• Now: candidate (π-model, m1, m2, m3)
• Given moments, compute slack on the fly
• Bottom-up, efficient moment computation
• Problem: guess slew rate

61

Slew constraints

• When inserting buffer, compute slews to gates driven by
buffer

• If slew exceeds target, prune candidate
• Difficulty: unknown gate input slew

Slew 300 ps

Slew 350 ps?

62

Timing-driven Steiner approaches

• BRBC
• Prim-Dijkstra
• P-Tree
• A-Tree (RSA)
• SERT
• MVERT

63

Rectilinear Steiner arborescence

• Assume all sinks in first quadrant
• Iteratively

– Find sink pair p and q maximimizing min(xp, xq) + min (yp, yq)
– Remove p and q from consideration
– Replace with r = min(xp, xq), min (yp, yq)
– Connect p and q to r

64

RSA example

1

3

4

2
5

6

65

RSA diagonal line sweep

1
2

3
4

5

6

66

Prim-Dijkstra algorithm

Prim’s
MST

Dijkstra’s
SPT

Trade-off

67

Prim’s and Dijkstra’s algorithms

• d(i,j): length of the edge (i, j)
• p(j): length of the path from source to j
• Prim: d(i,j) Dijkstra: d(i,j) + p(j)

p(j)

d(i,j)

68

The Prim-Dijkstra trade-off

• Prim: add edge minimizing d(i,j)
• Dijkstra: add edge minimizing p(i) + d(i,j)
• Trade-off: c(p(i)) + d(i,j) for 0 <= c <= 1
• When c=0, trade-off = Prim
• When c=1, trade-off = Dijkstra

69

Polarity problem

_+

++

_ +

_ _

_

_

_

70

A better solution?

_+

++

_ +

_ _

_

_

_

71

Buffer aware trees

(1)

(2)

(3)

72

C-Tree algorithm

• Cluster sinks by
– Polarity
– Manhattan distance
– Criticality

• Two-level tree
– Form tree for each cluster
– Form top-level tree

73

C-Tree example

74

Clustering distance metric

• pDist(i,j) = | polarity(i) – polarity(j)|
• sDist(i,j) = (|xi – xj| + |yi – yj|)/diam
• tDist(i,j) scaled between 0 and 1, 0 for equal criticalities, 1 for

opposite criticalities
• Final distance metric d(i,j) = pDist(i,j) + βsDist(i,j) + (1-β)tDist(i,j)

75

Clustering – Finding centers

3
2

R

1
4

76

Clustering – Group to centers

3

77

R

1

2

4

Net n8702

78

Don’t avoid all blockages!

79

Buffer bays

80

Blockage avoidance example

2-path1

2-path2

2-path3

81

Blockage avoidance example

2-path1

2-path2

2-path3

82

Blockage avoidance example

2-path1

2-path2

2-path3

83

Noise and Congestion Issues

84

Crosstalk

• Crosstalk is caused due to coupling between adjacent wires in a
layout
– Wires have capacitors to GND and between each other
– Ccoupling is of the same order of magnitude as Csubstrate

• Coupling can impact the circuit in two ways
– Increased noise
– Increased delays

• “Chicken-and-egg” problem: do not know coupling cap unless delays are
known; do not know delays unless coupling cap is known

• Typically solved by iteration using min-max timing windows

85

Intuition

• Miller capacitance: equivalent capacitor to ground

– In reality, equivalent coupling caps of < 0 and > 2Cc may be seen;
use of –C/C/3C has been proposed

Cc

0

2 Cc

Cc

Cc

Cc

aggressor

victim

aggressor

victim

aggressor

victim

[Only victim shown here]

86

Miller capacitors are an approximation!

• Real picture

Fanout gate acts as a low-pass filter! If the pulse is very sharp + occurs
after the transition, it may be filtered out

Aggressor

Victim (without noise)

Victim (with noise)

Induced noise

Aggressor

Victim

87

Parameters affecting coupling noise

• “Near end” vs. “Far end”

• RC model: Vfar end > Vnear end

GND

GND

Aggressor

Victim

GND

GND

Aggressor

VictimGND

88

Noise Optimization

• Spacing
• Track permutation

– Temporally non-adjacent signals made
spatially adjacent

• Shielding
• Downsizing aggressor driver
• Upsizing victim driver
• Buffering victim net
• Up-layering victim net
• Changing topology of victim net
• Splitting fanouts of victim net

A
V

Sh

Bus design

• Bundles of signals treated symmetrically
– Identical electrical/physical environment for each bit

• Abstraction of communication during early design
– Often integrated with floorplanning during µarch exploration

• Global busses often pre-designed prior to detailed block
implementation (esp. in microprocessors)

• Several speed-up techniques unique to busses
– Staggered repeaters, swizzling, interleaving of signals traveling in

opposite directions
– Relies on minimizing impact of coupling between adjacent bits

-Cc

-Cc

+Cc

+Cc

-Cc

-Cc

+Cc

+Cc

Congestion considerations

• Designs increasingly wire-limited
• Interconnect optimization: routing resource intensive

– Shielding, spacing, wide-wires, up-layering
• Congestion can cause detours (or even unroutable designs)
• Detours increase interconnect delay as well as interconnect

delay unpredictability
– Wire delay models during tech-mapping, placement are based on

shortest path routing
– Detours increase convergence problems because of poor upstream

wire delay modeling

Need to model actual layers, routes for critical
nets during placement

Impact on synthesis

• Wires cannot be ignored during synthesis
– Fanout based load models obsolete … but wireload models still very

inaccurate
– Fanouts often isolated by buffers

• Literal/gate count metrics often misleading
– Area is often wire-limited
– Area impact of wire-RC buffers

• Pre-layout gate sizing is wasted
• Dense encodings (vs. one-hot and other sparse encodings)

Buffering and placement

• # buffers needed on a net depends
on its routing

• Net routing depends on placement

• Buffer management for intra-block
vs global nets
– Too restrictive to treat global

routes/buffers as fixed obstructions

a b

a b

a

b

Full-chip assembly issues

What if we reduce block area to avoid wire effects?
Many of the new physical synthesis problems go away

BUT
blocks increases!

(and block assembly is the hardest part of chip design!)

• Flat assembly
(Fragmentation of paths across blocks)

OR
• Increased hierarchy

(Lack of visibility across hierarchy levels)

0

10

20

30

40

50

60

70

80

1 0.9 0.7 0.5 0.3

Block area shrink factor

%
ag

e
of

 re
pe

at
er

s

45nm
32nm

1 0.9 0.7 0.5 0.3

45nm

32nm0
5

10
15
20
25

30

35

40

N
or

m
al

iz
ed

 #
 B

lo
ck

s

Block area shrink factor

Integrated synthesis and placement

• Since design metrics depend heavily on layout, generate a layout
plan as early as possible

• Evolve logic and its layout in tandem (“companion placement ”)
– Integrate logic synthesis / tech mapping with global placement
– Embed nodes spatially through recursive logic partitioning and

placement
– Long, critical wires and buffer needs identified early
– Wire loads obtained using embedding of nodes
– Hard to estimate area or delay of a Boolean node or FSM

• Pin positions can help
– Somewhat easier at tech mapping stage…

• Most industrial physical synthesis tools involve some integration
between tech mapping and placement

Congestion optimization

• Congested layouts harder to converge or
unroutable
– More delay from wires
– Detours make upstream wire delay models more

inaccurate
• Cannot model congestion by a single number

characterizing entire block
– Spatial map required

• Congestion can be addressed during
placement
– Congestion cost in objective function
– Post-placement remedies

• Recent work on congestion relief by modifying
netlist structure during tech mapping
– Congestion map generated bottom-up during

covering from partial maps propagated during
matching

Track requirement = 12

Track requirement = 20

AOI33

(Shelar, ISPD’05)

Congestion driven supply/signal codesign

• Interconnect resources increasingly scarce
– Global power and signal wires compete for routing resources

Power Wire Removal
+ Power Grid Sizing

Power
Grid

Macros
or Cells

Signal
Netlists

Global
Router

Congestion Map

Removal illustration

Critical wires: 1, 2, 4 and 6
Non-Critical wires: 3 and 5 Removal order: first 3 then 5

Optimal power grid of “ac3”

Conclusion

• Interconnects are the primary bottleneck in design today
• Many shifts in design methodology can be motivated by

interconnect-related problems (including async or NoCs)
• The objective of this tutorial was to

– explain why interconnects are important
– overview some fundamental algorithms in interconnect design
– outline issues that a designer must worry about

100

	Analysis and Optimization of Global Interconnects
	Acknowledgements
	Outline of the talk
	Simple delay metrics
	Interconnect modeling
	Gate delay models
	RC delay calculations
	Elmore delay for an RC tree
	Incrementally calculating the Elmore delay
	Model order reduction methods
	Effective capacitance model
	Computing Ceff: Overall flow
	Current source model
	Wire tapering and layer assignment
	Simple buffer insertion problem
	Simple buffer insertion problem
	Slack example
	Interconnects and Scaling Theory
	A scaling primer
	Block scaling
	A typical chip cross-section
	The role of interconnects
	Interconnect delay scaling
	ITRS projections
	Buffer insertion
	Optimizing medium/long interconnects
	Buffered global interconnects: Intuition
	More precise analysis: Optimal inter-buffer length
	Optimal interconnect delay
	Critical inter-buffer lengths
	Buffer planning needed!
	Buffer block planning
	Buffer block planning
	Critical sequential lengths
	Architectural impact
	Longer term solution: architectural changes
	Synthesis of Signal Interconnects
	Signal interconnect synthesis
	Van Ginneken’s classic algorithm
	Key assumptions
	Generating candidates
	Pruning candidates
	Candidate example (continued)
	Candidate example (continued)
	Merging branches
	Pruning merged branches
	Combining the Options
	Van Ginneken example
	Van Ginneken example (continued)
	Van Ginneken recap
	Extensions
	Multiple buffer types
	Inverters
	Polarity constraints
	Controlling buffering resources
	Buffering resource trade-off
	Blockage recognition
	Other extensions
	p-models
	Computing gate delay
	Higher-order interconnect delay
	Slew constraints
	Timing-driven Steiner approaches
	Rectilinear Steiner arborescence
	RSA example
	RSA diagonal line sweep
	Prim-Dijkstra algorithm
	Prim’s and Dijkstra’s algorithms
	The Prim-Dijkstra trade-off
	Polarity problem
	A better solution?
	Buffer aware trees
	C-Tree algorithm
	C-Tree example
	Clustering distance metric
	Clustering – Finding centers
	Clustering – Group to centers
	Net n8702
	Don’t avoid all blockages!
	Buffer bays
	Blockage avoidance example
	Blockage avoidance example
	Blockage avoidance example
	Noise and Congestion Issues
	Crosstalk
	Intuition
	Miller capacitors are an approximation!
	Parameters affecting coupling noise
	Noise Optimization
	Bus design
	Congestion considerations
	Impact on synthesis
	Buffering and placement
	Full-chip assembly issues
	Integrated synthesis and placement
	Congestion optimization
	Congestion driven supply/signal codesign
	Removal illustration
	Optimal power grid of “ac3”
	Conclusion

