Network-on-Chip Symposium, April 2008

Low Power and Reliable Interconnection with Self-Corrected Green Coding Scheme for Network-on-Chip

Po-Tsang Huang, Wei-Li Fang, Yin-Ling Wang and Wei Hwang

Department of Electronics Engineering & Institute of Electronics, and Microelectronics and Information Systems Research Center, National Chiao-Tung University, HsinChu 300, Taiwan

- Low power joint bus/error correction coding concept
- Self-corrected green coding scheme
 - Triplication error correction coding stage
 - Green bus coding stage
- Simulation Results
- Conclusions

Motivation

100

10

0.1

Relative Delay

Network-on-chip : an effective solution to integrate multi-core system and a process independent interconnection architecture.

Physical design of NoC

Three critical issues for on-chip communication

- Delay coupling capacitances
- Power parasitic and coupling capacitances
- Reliability degrading due to noises
- Novel design techniques are proposed to overcome the crosstalk effect and further provides a reliability bound for on-chip interconnection.
 - Joint bus and error correction coding schemes

- Low power joint bus/error correction coding concept
- Self-corrected green coding scheme
 - Triplication error correction coding stage
 - Green bus coding stage
- Simulation Results
- Conclusions

A unified framework of coding in SoC

- Crosstalk avoidance codes (CAC)
 - Avoid specific code patterns or code transitions to reduce delay and power dissipation.
- Error control codes (ECC)
 - Detect and correct the error bits
- Linear crosstalk code (LXC)
 - Shielding link wires, duplicated bits

Serialization technique for link wires

K-to-N serialization

physical transfer unit (phit)

the data which is divided and transmitted through micro-network

```
Area Cost ↓ (1/N<sup>2</sup>) → Switch delay ↓
Crosstalk ↓, signal-to signal skew ↓
Signaling Rate ↑
-> predefined well-structured link
```

Self-corrected green coding scheme

- Self-corrected green coding scheme
 - triplication error correction coding stage, green bus coding stage
 - Shorter delay for ECC, more energy reduction and smaller area

- Low power joint bus/error correction coding concept
- Self-corrected green coding scheme
 - Triplication error correction coding stage
 - Green bus coding stage
- Simulation Results
- Conclusions

Triplication error correction coding stage

- The hamming distance of each set is equal to 3.
- A constant delay of a majority gate and much smaller than others
- Rapid correction ability by self-corrected mechanism in bit-level.

Word error probability of triplication

Error correction mechanisms

- Reducing supply voltage of channels without compromising the reliability of system.
- A Gaussian distributed noise voltage V_N with variance σ_N^2 is added to the signal waveform.

$$\varepsilon = Q\left(\frac{V_{dd}}{2\sigma_n}\right)$$
, $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-\frac{y^2}{2}} dy$

Word-error probability : $P_{\text{triplication}} \approx 3k\varepsilon^2 - 2k\varepsilon^3$ where k : the size of bit-width ε : bit-error probability

Green Bus Coding Stage

Green bus coding stageReducing coupling effect

Approximate Cyclic model

Triplication capacitance matrix

Five types of signal transitions

Static transitions

Triplication Power formula

• The power consumption can be derived as follow.

$$P = f * C_L * V_{DD}^2 * \alpha \quad \text{Type 2,5} \quad \text{Type 1}$$

$$\alpha = 3(r_1 + r_2 + r_3 + r_4 + r_5) + \lambda (r_1 \oplus r_2 + r_2 \oplus r_3 + r_3 \oplus r_4 + r_4 \oplus r_5)$$

$$+4\lambda (d_{12} + d_{23} + d_{34}) + d_{45})$$

 α is a modified switching activity with considering coupling capacitances.

- The meaning of $(r_i \oplus r_j)$ is that only one line is changing between two lines as type 1.
- For the term of (d_{ij}), it is about the two lines change in the opposite direction as type2 and type5 transitions.

Codeword of green bus coding

Dataword $X_{3} \sim X_{0}$	$\begin{array}{c} Codeword \\ C_4 \sim C_0 \end{array}$		
0 0 0 0	0 0 0 0 0		
0 0 0 1	0 0 0 0 1		
0 0 1 0	0 0 0 1 0		
0 0 1 1	0 0 0 1 1		
0 1 0 0	0 0 1 0 0		
0 1 0 1	1 0 0 0 0		
0 1 1 0	0 0 1 1 0		
0 1 1 1	0 0 1 1 1		
$1 \ 0 \ 0 \ 0$	0 1 0 0 0		
1 0 0 1	1 1 1 0 0		
1 0 1 0	1 1 1 1 1		
1 0 1 1	1 1 1 1 0		
1 1 0 0	0 1 1 0 0		
1 1 0 1	1 1 0 0 0		
1 1 1 0	0 1 1 1 0		
1 1 1 1	0 1 1 1 1		

Encoder/decoder for green bus coding

- More simple and effective
- Avoid forbidden overlap condition (FOC) and forbidden pattern condition (FPC) and reduce forbidden transition condition (FTC)

- Low power joint bus/error correction coding concept
- Self-corrected green coding scheme
 - Triplication error correction coding stage
 - Green bus coding stage
- Simulation Results
- Conclusions

Energy reduction to un-coded code

Simulation Condition :

- UMC 90nm CMOS technology
- The length of wires is set as 0.8mm of metal-4 with minimum width and spacing of 0.2um.

Voltage of specific error correction coding (k=8)

National Chiao-Tung University

Voltage of specific error correction coding (k=32)

National Chiao-Tung University

NoCS 2008 20

Summaries of different joint coding codec

- The proposed self-corrected green coding scheme has the smallest area overhead of codec.
- For the smallest delay, it is more suitable for the networkon-chip architecture.

Summaries of different joint coding schemes

Except for s-c green coding, DAP and DSAP, the critical delay of codec depends on the decoder, others are not appropriate for integrating into switch fabrics because of long critical delay.

Coding Scheme	Energy saving (1.2v)	Lowest supply voltage $(\varepsilon \approx 10^{-20})$	Energy saving (Lower Voltage)	Physical transfer unit size (wire)	Physical transfer unit size (Router)
Uncoded	0	1.2 v	0	8	8
Hamming	-51.08%	0.845 v	+26.38%	12	12
FTC-HC	-22.01%	0.845 v	+40.07%	21	21
FOC-HC	-33.17%	0.845 v	+34.82%	16	16
OLC-HC	+2.12%	0.845 v	+51.46%	34	34
BSC	+12.78%	0.850 v	+55.95%	17	17
DAP	+11.92%	0.850 v	+55.54%	17	8
DSAP	+13.86%	0.850 v	+56.46%	25	17
CADEC	-24.05%	0.695 v	+58.84%	25	25
S-C Green	+34.34%	0.836 v	+67.29%	30	10

- Low power joint bus/error correction coding concept
- Self-corrected green coding scheme
 - Triplication error correction coding stage
 - Green bus coding stage
- Simulation Results
- Conclusions

Conclusions

- Self-corrected green coding scheme is presented to construct reliable and low power interconnection for NoC.
- Triplication error correction stage
 - Rapid correction ability to reduce the physical transfer unit size
 - Self-corrected in bit level
- Green bus coding stage
 - More energy reduction by a joint triplication bus power model

Based on UMC 90um CMOS technology, compared to uncoded code, self-corrected green coding can achieve 34.4% and 67.3% energy saving at voltage 1.2v and 0.84v, respectively.

Network-on-Chip Symposium, April 2008

Thanks for your attention!

