Impact of Process and Temperature Variations on Network-on-Chip Design Exploration

Bin Li, Li-Shiuan Peh, Priyadarsan Patra*

Princeton University {binl, peh}@princeton.edu *Intel Corporation priyadarsan.patra@intel.com

April 9,2008

Process and Temperature Variations

- Process variation has higher impact on sub-100 nm CMOS
 - Transistor dimension variation : Sub-wavelength lithography
 - Transistor characteristic variation: Dopant density fluctuation etc
- **Temperature variations: caused by workload variation**

Power 4 Server Chip floorplan

Chip thermal profile

[IBM research, Austin]

Impact on Power Consumption

Need to consider process variation for leakage Need to consider within-die temperature variation for leakage

Current Approaches

Current Approaches

Network-on-Chip (NoC) for CMP

Outline

□ Introduction and Motivation

- □ Methodology and Tool Development
- □ Case Study
- Conclusions and Future Work

Leverage Polaris Toolchain for Variations

Polaris: ORION Power Model

New ORION Model (Process and Temperature Aware)

Outline

□ Introduction and Motivation

- Methodology and Tool Development
- □ Case Study
- Conclusions and Future Work

Experimental setup

□ Technology

- 64-node chip
- 65nm technology
- Supply voltage : 1.2V
- Frequency: 3.8GHz
- Threshold voltage:
 - □ mean=0.25 V
 - \Box standard deviation= 6%
 - Die size:14.4mm x 14.4mm x 0.6mm

Design Space Explored

Effects of Process and Temperature Variations on Power

Effects of Process and Temperature Variations on EDPPF

15 EDPPF: Energy-Delay Product Per Flit

Other Aspects not Covered

Sensitivity analysis

- Only consider temperature variation
- Only consider process variation
- □ Mean x standard-deviation metrics

Conclusions

- Early design stage tool that accounts for process and temperature variations
- Process and temperature variation strongly impacts power
 - Influence design choices
 - Need to be considered together

Future Work

- □ Study how within die process variations affect the network power consumption
- Studying process and temperature variation effects on network operating frequency

Thank you !

