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Process and Temperature Variations

L1 Process variation has higher impact on sub-100 nm CMQOS
W Transistor dimension variation : Sub-wavelength lithography
W Transistor characteristic variation: Dopant density fluctuation etc

L1 Temperature variations: caused by workload variation
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Impact on Power Consumption
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Current Approaches
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Current Approaches

the impact of variations
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Network-on-Chip (NoC) for CMP
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L_everage Polaris Toolchain for Variations
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Polaris: ORION Power Model
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New ORION Model (Process and Temperature Aware)
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Experimental setup

L1 Technology

M 64-node chip 0NN nnnonmn

W 65nm technology 00 o0n0nnon

W Supply voltage : 1.2V oI

B  Frequency: 3.8GHz Il ST

W Threshold voltage: a4 L a 00
[l mean=0.25V E E E E E E E
L1 standard deviation= 6% A

M Diesize:14.4mm x 14.4mm x 0.6mm
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Design Space Explored

Topology

2D mesh plain

2D mesh with express cup/ What is the optimal

on-chip network
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Effects of Process and Temperature Variations on Power
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Effects of Process and Temperature Variations on EDPPF
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Other Aspects not Covered

Sensitivity analysis
® Only consider temperature variation
® Only consider process variation

Mean X standard-deviation metrics
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Conclusions

Early design stage tool that accounts for process and
temperature variations

Process and temperature variation strongly impacts
power

W Influence design choices
™ Need to be considered together
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Future Work

Study how within die process variations affect the
network power consumption

Studying process and temperature variation effects on
network operating frequency
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Thank you !
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