

An Efficient Implementation of Distributed Routing Algorithms in NoCs Authors: J. Flich, S. Rodrigo, and J. Duato

Parallel Architectures Group

Technical University of Valencia, Spain

......

Introduction

- System environment
- Description
- **Evaluation**
- [Further evaluations]
- Conclusions

Introduction

- Multi-core arquitectures are becoming mainstream for designing high performance processors
- Performance on single-core solutions is limited by power
- The trend is to integrate a large number of cores inside a chip
- Need for a high-performance on-chip interconnect (NoC) to communicate eficiently between all chip devices

Introduction (2)

- Area, power and delay are the main constraints when designing a NoC
- Some problems arise:
 - High integration scale -> communication reliability issues
 - Fabrication faults
- Those problems lead to an irregular topology still functional

Introduction (3)

- Virtualization of the chip is also possible thanks to the increasing number of cores
 - Efficient use of resources
 - Distributing system resources among different tasks
- So, the original 2D mesh is partitioned into different irregular topologies.

Introduction (4)

Introduction (5)

- To deal with irregular topologies, switches based on forwarding tables are preferred off-chip.
- However, on-chip, area, power and delay constraints are critical as memories do not scale in those terms.
- PROPOSAL: LBDR (Logic-Based Distributed Routing) is implemented to get rid of tables with a minimum logic to allow the use of any distributed routing algorithm.

Agenda

System environment

Description

Evaluation

[Further evaluations]

Conclusions

System environment

- For LBDR to be applied, some conditions must be fulfilled:
 - Messages routed with X and Y offsets, every switch must know its own coordinates
 - Every end node can communicate with other node through a minimal path
 - LBDR, on the other hand:
 - There is no restriction to be applied in systems with or without virtual channel requeriments.
 - Supports both wormhole and virtual cut-through switching

System environment (2)

- LBDR is applicable to any routing algorithm that enforces minimal paths for every source-destination pair:
 - A deterministic routing algorithm without cyclic dependencies can be represented by routing restrictions
 - A routing restriction forbids a packet to use two consecutive channels

System environment (3)

(a) 2D mesh

(b)"+" topology

(c) p topology

(d) q topology

(f) b topology

(g) non-minimal topology

(h) different regions

System environment (4)

Agenda

- System environment
- Description
- **Evaluation**
- [Further evaluations]
- Conclusions

Description

- LBDR uses two sets of bits:
 - Routing bits (Rxy), 2 per each output port
 - Connectivity bits (Cx), 1 per each output port
- The four output ports are labeled as N, E, W and S

Description (2)

Description (3)

Description (4)

- 1st part of logic:
 - S'=1, W'=1
 - N'=0, E'=0
- 2nd part of logic
 - S''=0 (Rsw=0)
 - W"=1 (Rws=1, W'=1, S'=1)
- Final
- W=1 (Cw=1) -> TO ARBITER

Description (5)

- 1st part of logic:
 - S'=1

3

AK .

- W'=0, N'=0, E'=0
- 2nd part of logic
 - S''=1 (S'=1, E'=0, W'=0)
 - Final
 - S=1 (Cs=1) -> TO ARBITER

Description (6)

- 1st part of logic:
 - S'=1

3

AL 161

- W'=0, N'=0, E'=0
- 2nd part of logic
 - S''=1 (S'=1, E'=0, W'=0)
 - Final
 - S=1 (Cs=1) -> TO ARBITER

Description (7)

- LBDR has visibility of one hop away -> LBDRe expands visibility to two hops away
- LBDRe adds four more bits per ouput port. It is a second set of routing bits (R2xy), meaning that y direction can be taken two hops away through the x direction

Description (8)

(*) For further details of the full logic, please refer to the paper

Description (9)

• Why LBDRe?

Description (10)

Description (11)

Agenda

- System environment
- Description

Evaluation

[Further evaluations]

Conclusions

Evaluation

- NOXIM Simulator
 - Wormhole switching
 - Input port buffer 4-flit long
 - Packets 32-flit long
 - 8x8 mesh with different irregular topologies
 - XY, UD and SRh routing algorithms

Evaluation (2)

Evaluation (3)

Agenda

Introduction

System environment

Description

Evaluation

[Further evaluations]

Conclusions

Further evaluations

- Study on impact on area, power and delay constraints
- Evaluations achieved with much more detail using Synopsys Design Compiler and 90nm technology library from TSMC
- Good expectations. Region-Based Routing(*), with much more logic implied than LBDR, gets better results than implemented tables

(*) Region-Based Routing: An Efficient Routing Mechanism to Tackle Unreliable Hardware in Network on Chips, NoCs 2007

Further evaluations (2)

- Minimum logic (*n* x *n* 2D mesh, d ports):
 - Table-based: *n* x *n* x d x d bits
 - RBR: 4 comparators, 4 registers log₂(N)/2 bits, 1 register d+1 bits, 1 register d bits
 - LBDR: 12 bits per switch (3 per output port), 2 comparators, 2 inverters and 5 gates

Agenda

Introduction

- System environment
- Description
- **Evaluation**
- [Further evaluations]

Conclusions

Conclusions

- LBDR (and LBDRe) allows for implementing most of the distributed routing algorithms in suitable topologies for NoCs.
- Future work:
 - Applicability on system/chip virtualization
 - Support non-minimal paths
 - Broadcast

Thank you.