Design of Bandwidth Aware and Congestion Avoiding Efficient Routing Algorithms for NoCs Platforms

<u>M. Palesi¹</u>, G. Longo¹, S. Signorino¹, R. Holsmark², S. Kumar², V. Catania¹

¹DIIT, University of Catania, Italy {mpalesi, vcatania}@diit.unict.it ²Jőnkőping University, Sweden {Rickard.Holsmark, Shashi.Kumar}@jth.hj.se

- Motivation
- Application specific scenario
- Bandwidth aware routing algorithm
- Experiments and Results
- Architectural implications
- Conclusions

Limitations of Current Routing Algorithms

- Efforts biased toward performance
- Side effects like congestion ignored
 - Estimation and control of congestion is difficult in general
 - Partially tackled by the selection function
- Designed only for specific network topologies

Application Specific Scenario

- Information available about
 - Tasks which communicate and tasks which do never communicate
 - ✓ After task mapping → Information about network nodes which communicate
 - Concurrent/non concurrent communications
 - Communication bandwidth requirement for different pais
- Many opportunities
 - Improving performance (e.g., maximize routing adaptivity)
 - Simplify the estimation/control of congestion
 - Design more effective selection policies

Channel Dependency Graph

Topology Graph

Channel Dependency Graph

Application Specific CDG

Application Specific CDG

APSRA Design Methodology

Bandwidth Variation: Multimedia Example

Contributions

Design APSRAs which

- are highly adaptive
 - ✓ Translates into high performance, in general
- uniformly distribute traffic over the network
- allow maintenance of load of links under a given bandwidth threshold

- Removing a dependency d
 - Removing all the paths which use d
- As soon as a path is removed
 - The fraction of bandwidth it transports must be redistributed between the remaining paths

- Removing a dependency d
 - Removing all the paths which use d
- As soon as a path is removed
 - The fraction of bandwidth it transports must be redistributed between the remaining paths

d due to Path 3

- Removing a dependency d
 - Removing all the paths which use d
- As soon as a path is removed
 - The fraction of bandwidth it transports must be redistributed between the remaining paths

- Removing a dependency d
 - Removing all the paths which use d
- As soon as a path is removed
 - The fraction of bandwidth it transports must be redistributed between the remaining paths

Strategy

Removing the dependency *d* which minimizes the overhead of bandwidth that should be allocated to the remaining paths that do not use *d*

$$\operatorname{cost}(d) = \sum_{c \in C} \frac{B(c) \times \left| PT^{2}(c, d) \right|}{\left| P(c) \right| \times \left(\left| P(c) \right| - \left| PT^{2}(c, d) \right| \right)}$$

2nd Phase

After *Phase 1* we have a routing function which is

- Deadlock free
- Provides more adaptivity to communications characterized by higher communication bandwidth
- But…
 - It is possible that the agregate bandwidth (AB) on some links exceeds the capacity of that link
- "Some" routing paths passing on that link, must be removed to reduce the AB on that link down to the link capacity

 $\forall \textit{ link I} \rightarrow AB(I) \leq Cap(I)$

Load Balancing Selection Function

The probability to select output channel / is proportional to the number of admissible paths starting from / and that can be used to reach the destination

Experimental Setup

- 8x8 mesh based NoC
- Buffer size 4-flits
- Simulation time 100,000 cycles
- Warmup time 20,000 cycles
- Traffic injection distribution
 - Poisson (for synthetic traffic scenarios)
 - → Self-similar (for MMS traffic)

Stdev Reduction

Percentage reduction of standard deviation of the aggregated bandwidth in network links

Aggregate bandwidth

Aggregate bandwidth per link for a 9x9 mesh-based NoC under *uniform* traffic

Delay Reduction

Average delay reduction obtained when APSRA-BW and APSRA-BWL are used taking APSRA as a baseline

Average Delay Variation

Average delay variation under uniform traffic for different ranges of communication bandwidth

Links Utilization

Links utilization under uniform traffic for APSRA and APSRA-BWL

Router Architecture

+5% overall area overhead

25

Conclusions

Bandwidth aware routing algorithm

- Highly adaptive
- Reduces the variation of load in the network links
- Ensures that the link bandwidth is not violated
- Evaluate the idea for irregular mesh topology