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Abstract. This presents an overview of the significant achievements in
Asynchronous Logic over the last quarter of a century at the University of
Manchester. Including the Amulet (and subsequent) asynchronous Mi-
croprocessors, the synthesis tools Balsa and Teak, the MARBLE and
Chain on-chip Interconnects, together with research arising from exter-
nal collaborations with the University of Newcastle.

1 Pre-history - an Overview by Steve Furber

The Amulet story begins in 1989. Through the 1980s I (SBF) worked at Acorn
Computers Ltd in Cambridge, UK, where I was a designer of the BBC Microcom-
puter and the ARM (then “Acorn RISC Machine”) 32-bit RISC microprocessor.
We didn’t publish much, but one paper we published was on the ARM3 - the
first ARM with an on-chip cache - at VLSI’89 in Munich [7]. At that conference
I was struck by a paper [14] presented by Craig Mudge, then CEO of Austek Mi-
crosystems Ltd based in Adelaide. This was my first exposure to asynchronous
design, and of course Mudge’s paper cited Ivan Sutherland’s Turing Award paper
[19] which really sold the concept to me.

Over the following year I doodled some ideas on the possible design of an
asynchronous version of the ARM based on Sutherland’s micropipelines ap-
proach. This was around the time the EU launched the OMI - Open Micropro-
cessor systems Initiative - which was in part stimulated by input from Acorn.
When I accepted the ICL Chair at Manchester, to which I moved on 1st August
1990, Acorn was generous in allowing me to take with me to Manchester a part
of an early OMI project that I had been involved in developing at Acorn - the
OMI-MAP project. OMI-MAP provided the early funding that got the Amulet
(asynchronous ARM) research off the ground at Manchester. The University
allocated a lectureship appointment linked to my chair, to which Jim Garside
was appointed, and OMI-MAP funded the appointment of Nigel Paver and Paul
Day as post-docs. In addition, existing academic staff joined in - Doug Edwards,
Linda Brackenbury and Viv Woods, bringing in additional perspectives and new
funding, all of which enabled the Amulet group to grow to critical mass.

Why “Amulet”? Well, in searching for a group or project name you have
to start somewhere, and writing down keywords on a whiteboard is one way
to start. “Asynchronous”, “Manchester University”,“Low-Energy Technology”?
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The name stuck and worked well, even though the acronym expansion did not
see much light-of-day!

2 Amulet Processor Series

Before engineers had learned the “correct way” to build digital circuits - by
inventing a global clock to slow everything down - there was considerable exper-
imentation with different design styles. However to attempt anything complex
in a clockless circuit was clearly a bad idea. Was it even possible to challenge
the decades of synchronous development with such a radical alternative?

Few people had tried asynchronous VLSI, largely because the two terms are
from different eras; asynchronous digital circuits largely predated VLSI. How-
ever, conventional devices were exhibiting some worrying trends, particularly
increasing power consumption in parallel with the rise of mobile computing de-
vices and shedding the clock seemed like a way to lose one of the major drains
on a battery, particularly as the clock waggled continuously but did no actual
computing.

Requiring a demonstrator, a microprocessor seemed an appropriate size. Re-
garding an architecture, a custom ISA was already being addressed at Caltech
[13] so cloning a commercial ISA seemed to pose some additional - and well-
defined - challenges. Respecting Steve Furber’s background, and arguably influ-
enced by already being a low-power champion - the demonstrator ended up as
an ARM.

Thus was born Amulet 1, an attempt to produce an ARM7 including ev-
erything but the clock. With respect to the literature, particularly Sutherland’s
’Micropipelines’ paper [19] this was done using transition (two-phase) signalling
and lots of “exotic” standard cells such as a variety of Muller C-elements [15].
Time elapsed and the the device appeared, made largely ’by hand’ on a 1 µm
2LM process. Happily it was functional and could run standard ARM code with
various asynchronous features such as varying execution speed as the supply
voltage was changed. Rather less happily it did this at about half the speed of a
contemporary ARM7, despite managing a ’CPI’ figure of 0.0. On the plus side,
energetically it was at least comparable with the synchronous circuit; as a minus
the transition signalling proved extremely painful to interface to.

Somewhat undaunted, Amulet 2 followed, hopefully incorporating the lessons
learnt. This involved going “four phase” to simplify the circuit design and in-
corporating more features - notably a cache memory (operating asynchronously,
of course) on chip. This achieved its objectives in that when the chip arrived it
worked and was a lot easier to use. It was also somewhat faster; unfortunately
so were the contemporary synchronous ARMs though which meant it was still
about half their speed. However there was another interesting observation made
which was that the lack of temporal coherence reduced the electromagnetic noise
emitted by the system.

It was this last characteristic which was a tipping point in having a third
attempt at the architecture, named, unsurprisingly, Amulet3. This was done in
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parallel with Hagenuk GmbH for integration onto Draco - a Digital Radio Con-
troller. This time only half the chip (the Manchester half) was clockless but this
included the processor, memories, DMAC etc. all communicating across MAR-
BLE [2], an asynchronous bus. This was now to compete with the ARM9 and
more features - such as branch prediction and out-of-order, parallel execution -
were incorporated into the microarchitecture. The goal was to achieve a com-
mercially available system before the year 2000. The chip was manufactured in
time; unfortunately also in time for Hagenuk to go out of this business. However
the technical design was vindicated in that this would run at effectively the same
speed as an ARM9 manufactured on the same process. Honours on energy use
was about even; the EMI was startlingly low.

Amulet 4 may have addressed more sophisticated architectural issues such
as superscalar execution ... but it never happened. In the synchronous world
new techniques - such as gating the annoying, power-consuming clock - were
being adopted and it was becoming apparent that the potential advantages of
future asynchronous processors were unlikely to be great enough to cause a major
switch in the industry. However the chips did demonstrate that most, perhaps
all, synchronous microarchitecture can be duplicated competitively without a
clock.

3 SPA - A Synthesised Amulet

The Amulet processors followed the design style used in the early, synchronous
ARM hard macrocells - full-custom datapaths with standard cell control blocks.
A different approach was required for the next collaborative project, which inves-
tigated the ability of asynchronous systems to offer improved security through
increased resistance to non-invasive attacks on smartcards, such as power and
timing analysis. A new processor, based on a more secure asynchronous tech-
nology, was needed and there was no time to design it in the rather laborious,
full-custom style used previously. Balsa had proved its value in the Amulet3-
based DRACO chip and presented the group with the opportunity to produce
a synthesised, asynchronous, ARM-compatible core, named SPA [16]. In fact, a
complete asynchronous smartcard System-on-Chip, shown in figure 1, was syn-
thesised using Balsa. The only clock used in the system is the smartcard interface
clock, driven by the smartcard reader. All the components of the system-on-chip
were connected through CHAIN, the on-chip interconnect technology also devel-
oped at Manchester. Balsa was used to describe and synthesise the system-on-
chip, which incorporated synchronous memories with asynchronous wrappers.
Cadence CAD tools were used to implement the chip in TSMC 180nm technol-
ogy. The chip, shown in figure 2, occupied an area of approximately 33 mm2.
Prototypes were received from the manufacturer in October 2002 and, after a
connection in the memory wrapper was repaired using FIB technology, were
fully functional. SPA required a completely different design approach from the
Amulets. The strategy to make SPA robust against power and timing attacks was
to make sure that all operations consumed the same energy and took the same
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time, irrespective of the actual data. This went against a basic asynchronous
designer’s strategy to take advantage of average case performance. The only
sensible way to achieve this was to design the processor to operate in worst-case
time and energy consumption. SPA was a success from the point of view of se-
curity but was distinguished with the unenviable accolade of being the slowest
ARM ever.

4 Latch Controllers

Amulet1 was an implementation of the ARM based pretty faithfully on Suther-
land’s micropipelines style. However, we found the two-phase control pretty
messy and slow for complex control structures, so for Amulet2 we decided to
try four-phase micropipelines - a very similar bundled-data approach but with
return-to-zero (RTZ) signalling. After some early exploratory work [6] we decided
that the number of options in terms of the interleaving of the two handshakes was
too complex to do entirely by hand, so with a little help from Alex we adopted
an STG approach to devise a range of solutions with performance/complexity
trade-offs. The paper published in IEEE Trans.VLSI [8] remains Steve Furber’s
most cited paper of all time, with just under 300 citations to date pretty evenly
spread over the last 20 years! Further developments optimised the controllers
for pipelines using dynamic logic [10]. Steve pulled a lot of this together in the
unpublished (though still cited!) ”A small compendium of 4-phase micropipeline
latch control circuits”, which has kept Graham Birtwistle and Ken Stevens (con-
structively) amused for many years since exploring the outer limits of this space.

As our designs became more complex, the need to use formal tools to get
things right increased. On Amulet3 [9] we acknowledge extensive use of Alex’s
Petrify tool in the design. Although a wide range of latch controllers are used
in the design, the most terrifying aspect of it was the register reorder buffer.
Here Jim Garside came up with an initial circuit by hand, but no-one else could
understand it, so Steve used Petrify to verify Jim’s design. This turned out to
be non-trivial - specifying an STG with as much concurrency as Jim’s brain was
a very challenging and incremental process! But in the end, with a little help
from Alex, we got there. Petrify proved Jim’s design correct, and even managed
to remove one transistor from it!

5 AntiTokens and Wagging Logic

While working in the optimisation of dual-rail self-timed logic, Charles Brej
formulated the idea of “anti-tokens” [5]. To fully exploit the benefits of‘ “early-
evaluation” (or “Or-causality”) anti-tokens are sent in the opposite direction to
the flow of data to destroy data that is no longer required. The concept was
subsequently adopted by Cortadella et al for use in Elastic Systems.

Charles also developed the “Wagging-Logic” style where logic-blocks are
replicated (into slices) and each successive datum are applied to successive blocks
in a round-robin fashion. This allows the return-to-zero phase of a slice to be
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overlapped with the data-phase of the succeeding slice. By extending the concept
to the units of a Microprocessor, data forwarding occurs between slices, reducing
the interlocking penalty and maximising the throughput of independent instruc-
tions. This design style cumulated in the Utopium, an 11-way wagging 8051
microcontroller. Sceptical comments from reviewers were etched into the top
layer metal (figure 3)!

Fig. 3. Utopium Die Plot

6 Balsa and Teak

As part of the EU funded project, EXACT, we were introduced to Tangram,
developed by Philips Research Labs, wihich was a CSP-based tool using hand-
shake circuits to synthesise complex asynchronous hardware. it was clear that
Tangram was likely to be extremely useful for the design of the systems that
the Amulet group might be interested in building. However, it had a number of
disadvantages: the language was unfamiliar to most engineers; more importantly,
it was proprietary software and was not possible to experiment with language
extensions and optimisations and it was not clear if Manchester would be able
to use it after the end of EXACT project and. Doug Edwards, who led the
Manchester effort on EXACT, persuaded Andrew Bardsley, then a final year
student, to become interested in the idea. Andrew produced a prototype for his
prize-winning project and then produced a complete working system, Balsa [4],
for his M.Phil.

Balsa was used to design the DMA controller for Amulet3. This was a matter
of necessity: for various reasons, it would not have been possible for a hand-
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designed controller to meet the tape-out deadline; the design that Andrew pro-
duced in short order was a convincing proof of the effectiveness and reliability of
the tool. Balsa was then used to successfully design a complete processor - SPA
by an engineer, Peter Riocreux, who had no previous experience of the Balsa
paradigm. SPA has a reputation of being slow, but this is in part due to the
design requirements of the processor.

Although there were good reasons for SPA’s performance, strenuous efforts
were made by Andrew and Luis Tarazona to improve the speed of Balsa gen-
erated circuits resulting in an improvement of more than an order of magni-
tude. Nevertheless, performance could not match that achieved by a conven-
tional synchronous implementation. Attention was directed towards generating
data-driven circuits rather than the control-driven circuits of Balsa. Sam Tay-
lor’s system, based on Balsa, gave promising results, but unfortunately existing
circuit descriptions could not be automatically translated into his new language.

Andrew then began developing Teak which is capable of transforming the
timeless concurrent specifications in the CSP-based Balsa language into a data-
driven network. The Teak generated dataflows enjoy a set of architectural prop-
erties in communication and computation including slack elasticity, distributed
control and data-driven behaviour which pave the way for further optimisations
such as retiming and re-synthesis. These all make Teak a practical EDA frame-
work in the asynchronous domain suitable for exploring fine-grained elasticity
toward tackling the energy issue in large-scale SoCs

Recently eTeak has been introduced to enable the synchronous designers to
exploit the powerful properties of the Teak networks including scalability. eTeak
adopts a synchronous library (specifically the synchronous elastic protocol) to
introduce a common timing discipline to the asynchronous dataflows of Teak [12].
This way clocked commercial EDA is employable for retiming and resynthesis in
the synchronous domain. Latest explorations toward automatic GALS synthesis
leverage these advantages, particularly retiming of eTeak circuits, to study the
impact of the fine-grained partitioning on performance.

Balsa research has had many points of intersection with Alex Yakovlev’s
group at Newcastle, from STG specification of handshake circuit to collaboration
on funded research projects such as GAELS, SEDATE, VERDAD. It has been
used as a teaching and research tool in many institutions globally.

7 Asynchronous Interconnect

The Manchester AsynchRonous Bus for Low Energy (MARBLE) [2] was de-
veloped by John Bainbridge for use in the Amulet3H system. MARBLE was a
dual-channel pipelined bus with centralised arbitration and address decoding,
using an asynchronous four-phase bundled data protocol. The interfaces (fig-
ure 4) were specified using STG’s and speed-independent implementations were
synthesised using Newcastle University’s Petrify tool, except for two signalling
modules in which timing assumptions were unavoidable. John was awarded the
BCS Distinguished Dissertation award for his PhD based on MARBLE.
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Fig. 4. MARBLE Interface STGs

To overcome the limitations of a shared bus, MARBLE was re-implemented
as a packet-switched Network-on-Chip, using a Delay-Insensitive 1-of-4 data
encoding [3]. This was further developed in to the CHip Area INterconnect
(CHAIN) Network fabric [1] using a range of incomplete m-of-n codes designed
to minimise encoding and decoding overhead. The CHAIN Network became the
core of Silistix, which produced a range of AMBA and AXI compatible asyn-
chronous network-on-chip solutions.

8 SpiNNaker

In addition to leading the research into asynchronous systems, in the late 1990s
Steve Furber also became actively interested in how the brain functions. This
was to lead to the SpiNNaker project [11] which received its first funding in 2006
and has continued to the present time. SpiNNaker is based around a multi-core
processing chip [17] which has a novel routing system for small packets (40 or
72 bits) which represent the spikes emitted by real neurons when they fire. The
chips are designed to tile together to create a massively parallel compute engine
for simulating networks of spiking neurons. Currently, a 500,000 core machine
has been constructed, which consumes around 40kW when running flat out. It
is planned to extend this machine to 1 million cores.

It was clear from the outset that the design effort in making the SpiNNaker
chip required the use of as much pre-existing IP as possible. Our Amulet cores
were not readily process-portable so in collaboration with ARM we obtained
processor and memory controller IP (synchronous, of course) and from Silistix,
which was spun out from the group to commercialise the CHAIN system, we
obtained asynchronous networking IP. This meant that we could concentrate our
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efforts on the novel IP required for SpiNNaker which was based around a custom
router which facilitated efficient multicast routing of the small packets used to
represent neural spikes. The chip was built as a GALS system which meant that
we could harden the various synchronous IP blocks and obtain timing closure on
them relatively easily, while the GALS architecture meant that timing closure
at the top level was much easier than a fully synchronous system of similar size.

So while SpiNNaker generally uses synchronous IP there is a significant asyn-
chronous element to the design. The chip has two independent asynchronous
networks (figure 5). The System NoC is the main system bus for all of the cores,
on-chip peripherals and memories. It was generated using Silistix’s tools and
based around multiple 3-of-6 RTZ channels running in parallel to achieve the
necessary bandwidth, which is of the order of 1 Gbyte/s. Silistix provided syn-
chronous interface IP for this network which presented ARM AMBA interfaces
(AXI, AHB and APB) to the synchronous IP blocks. The second asynchronous
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Fig. 5. SpiNNaker asynchronous NoCs

network, the Communications NoC, is used to carry spike packets around the
chip both between cores and the router and between the router and the off-
chip packet interfaces which transport packets between chips. The Comms. NoC
links are single 3-of-6 RTZ channels as the bandwidth requirement for packets
is relatively modest. To carry packets from chip to chip, we convert 3-of-6 to an
asynchronous interface based on 2-of-7 NRZ signalling. This only requires 3 tran-
sitions (two data and acknowledge) to convey data as a 4-bit flit and provides a
very low-power interconnect, albeit at the cost of 8 pins per channel. The band-
width across these links is around 250 Mbit/s and significant design effort was
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expended in making them resistant to glitching (and therefore deadlock-free) as
they may span significant distances on a PCB [18].

Two chips were fabricated in a UMC 130nm process through Europractice.
A prototype (MPW) chip in 2009 was followed by the production chip in 2011.
The production chip figure 6 is approximately 10x10mm and houses 18 ARM968
processing cores each with 96 Kbytes of local RAM. The packet router is in the
centre of the die and there is also an SDRAM interface block at the left hand
side which interfaces to a 128 Mbyte LPDDR memory die which is housed in the
same package as the SpiNNaker die. As some of the on-chip asynchronous links
span considerable distances on the die, pipelined repeaters were inserted every
0.5mm to maintain throughput. The System NoC is laid out as a sea of gates
surrounding the router. Standard synchronous CAD tools were used throughout
the design with a minimum of manual intervention to maintain correct opera-
tion of the asynchronous components. An estimated 30 man-years went into the

Fig. 6. SpiNNaker chip die plot

design of the SpiNNaker chip, a figure which will soon seem insignificant when
the associated software effort is calculated!
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