
Partially-Ordered Event-Triggered Systems (POETS)

Steve Furber1, Andrew Brown2

1: School of Computer Science, University of Manchester, M13 9PL

2: Department of Electronics & Computer Science, University of Southampton, SO17 1BJ

Abstract: Event-triggered computing systems have long formed the basis of re-

al-time embedded systems in industrial plant control, automotive and aerospace

system, to name but a few. Each of these application domains comes with its

own challenges, but - generalising wildly - there are numerically few inputs and

the timing constraints are such that the system can be realised with typically a

few cores. Within the last decade, technology has moved on to the point where

"the core" - once a central and important component in any computing system -

has become as commoditised as the transistor did forty years ago. They have

become negligibly cheap, and this change of value has brought with it a change

of design perspective: In the past, complex data structures had to be constructed

to allow a machine to operate efficiently on large numbers of "problem compo-

nents", and if the resource was insufficient, multiple cores would be bought into

play, their interactions choreographed explicitly by expert software architects. It

is now possible to create systems where the atomic elements of a datastructure

are spread evenly and thinly over a huge number of small, simple cores, and the

necessary computations executed by cores local to the data, rather than moving

the data to the cores. In this paper we discuss realisations of this idea: the

SpiNNaker engine, a custom system designed to simulate the behaviour of a bil-

lion mammalian neurons in real time - a feat made possible by a bespoke com-

munications infrastructure, asynchronously and independently transporting tiny

packets of information; we then go on to generalise the concept and describe the

POETS computing system, which allows a far greater range of application do-

mains to be addressed than does SpiNNaker.

The model

Introduction

Here we begin to develop a formal system model that can be used to describe the

operation of biological neural systems (such as the brain) and computational models

of such systems.

This work is motivated by a desire to find useful ways to think about information

processing in the brain, and by a desire to produce a formal semantics that can under-

pin reliable operation of event-based machines.

We introduce three models at different levels of abstraction, progressing from the

biology of neural systems down to the details of the SpiNNaker machine.

155 x 238 mm

Partially-Ordered Event-Triggered Systems 131

A hybrid-system model

The system is a set of dynamical processes P = {Pi} that communicate purely

though event communications using a set of event channels E = {Ej}.

Each dynamical process evolves in time under the influence of received events, so

Pi = pi(t, E), where pi is a function that may have internal state and t is time. Typically

Pi will depend on a subset of the event channels, not all of them.

Each event channel carries events that are either generated by a process, or come

from the environment, to all the other processes that depend on them. So for an inter-

nal event channel Ei = ei(Pj) for some j. Normally an “event” is a pure asynchronous

event that carries no information other than that is has occurred, so it can be thought

of as a time series of identical impulses:

 
k

ki ttE)( ,

where tk are the times the events occur on this channel. Sometimes it might prove

useful to be able to modulate the size of the impulse.

We can consider the event channel to be instantaneous, so that events arrive at all

of their destinations at the same time that they are generated by their source process,

though causality allows us to view this as “after” they are generated, albeit by a van-

ishingly small delay. Likewise, if an incoming event causes a process to generate an

outgoing event this causality is captured by the output being “after” the input.
The outputs from the model are simply a subset of the total set of events, E.

Biological neurons

Biological neurons are complex living cells that have a cell body (the soma), a sin-

gle output (the axon) that carries action potentials, and a complex multi-branched

input structure (dendrites) that collect inputs. The axon from one neuron couples to

the dendrite of another through a synapse, which is a complex adaptive component in

its own right.

Action potentials are sustained and propagated by electro-chemical processes in

the axon that allow them to be viewed as pure asynchronous events.

Long axons incur significant delays, but these can be rolled into the transmitting

and/or receiving process. Where there are different delays from a single source to

different targets, for example a short delay to proximal targets and a long delay to

distal targets, the hybrid-system model allows this to be captured either by different

delays in the receiving process or by the source transmitting separate events with

different source delays, or some combination of these.

We therefore claim that the hybrid-system model captures the essential features of

biological neurons that exchange information principally through action potentials.

Action potentials are not the whole story, however. Some neurons produce chemi-

cal messages, for example dopamine, that modulate the activity of other neurons with-

in a physical region. Some neurons make analogue dendritic connections with their

neighbours. These phenomena are outside the hybrid-system model, but we hope that

their principal effects can be captured through back-channel processes of some sort.

155 x 238 mm

132 Steve Furber and Andrew Brown

In addition, biological systems do not have static connectivity – they develop and

grow, gaining and losing neurons and connections to their “event channels”. These
happen slowly relative to the real-time information flow, and such dynamic topology

changes many be modelled through back-channel processes.

Biological systems are also very noisy, but we can accommodate this by using

noisy processes.

An abstract computational model

We cannot compute a continuous process exactly as in the hybrid-system model, so

for efficiency it is important to approximate the process in some way. Most neuron

models are some form of system of differential equations, so it is common practice to

compute these using a form of integration over discrete time-steps.

For real-time modeling, the integration can be implemented by introducing an ad-

ditional “time-step” event, Et. Now time is just another, regular (e.g. 1ms) event, from

an external source, and t can be removed from the model.

We can, at least in principle if our computer is sufficiently fast, ignore the time

taken for a process to handle an event. Each event is handled as it arrives, and each

process is simply a set of rules defining how that process’s state is changed by every
possible input event. Thus:

ijiiiji IEjjSpSEP  :)],([

where Si is the state of Pi and Ii is the set of events, now including Et, that are in-

puts to Pi. This is the event-triggered aspect of POETS.

It is clear that a process is active only in response to an input event, and therefore

any output events it generates must also occur at the same time as (though causally

after) an input event. Note that this does not preclude an internal time delay between a

neural input and the output it causes: the input can change the state of the process,

which then progresses through several time-step events before producing an output.

But the output will eventually be produced in response to, and at the same time as, a

time-step event. As the only representation of time in the system is the time-step

event, time is discretized.

Since the time-step event, Et, connects to many (if not all) processes, there may be

many events generated just after it. These events, from different processes, have no

implicit order. This gives rise to the partially-ordered aspect of POETS. Each pro-

cess to which some of these concurrent events are inputs will impose an arbitrary

order on their reception (at notionally the same time), and as a consequence the sys-

tem behaviour is non-deterministic at this point.

A SpiNNaker computational model

SpiNNaker is a massively-parallel system with an interconnect fabric designed

specifically to convey events generated by a program running on one processor to all

of the processors to which that event is an input. The SpiNNaker fabric must initially

be configured to put the necessary connections in place, but once so configured the

155 x 238 mm

Partially-Ordered Event-Triggered Systems 133

hardware looks after the event connections. Processors then receive events intended

for them and issue events with no knowledge of where they are destined to go.

Unfortunately the processors on SpiNNaker aren’t infinitely fast, so a process

takes a finite time to complete its response to an input event. While it is running an-

other event may arrive, demanding pre-emption. The time-step event may not be syn-

chronized across the machine (although near synchronization is possible using a tech-

nique such as fire-fly synchronization).

A further complication is that SpiNNaker processors keep some of their state in

off-chip SDRAM, access to which incurs high latency costs. In general we aim to

hide this latency by exploiting a DMA subsystems attached to each processor to han-

dle SDRAM transfers while the processor gets on with other stuff.

These (and other) niceties apart, SpiNNaker aims to implement the abstract com-

putational model as faithfully as it can, subject to all of the constraints of the physical

system, delivering a reasonably efficient solution, and minimizing energy consump-

tion.

SpiNNaker models may attempt to implement the abstract computational model

faithfully, in which case they will aim to synchronize the (notional) 1ms time-step

across the machine and complete all the work in every 1ms to stay in lock-step across

the machine. In this case the peak process load must complete within the 1ms for

correct operation. Alternatively, they may adopt an asynchronous model where there

is no attempt to align a 1ms period in one process with that in another, in which case

the average process load must complete within 1ms for correct operation.

Spiking neurons on SpiNNaker

Each processor on a SpiNNaker machine handles one process, where each process

models a number of neurons. As incoming events from other processes are very simi-

lar they are handled by one event handler. The simplest model of a SpiNNaker pro-

cess then handles two event types:

1. Incoming neuron event: locate and process synaptic data, updating local neural

state accordingly.

2. Time-step event: perform integration step for all local neurons, possibly generat-

ing outgoing events.

As an implementation detail the neuron event handler will usually invoke a DMA

transfer to bring the synaptic connectivity data in from SDRAM, but as this is internal

to the process we hope to hide the DMA as much as possible from the application

code.

This model does not handle the important aspect of synaptic plasticity, but already

creates some interesting data consistency issues if a type 2 event occurs while the

(fairly long) event 1 process is running and pre-empts it. These data consistency is-

sues are avoided if no input is allowed to affect state that is used in the current time

step, which amounts to imposing a minimum axonal delay of 1ms.

In general a SpiNNaker implementation uses a very simple real-time kernel of

some sort, with drivers for the event communication system, DMA, etc. It includes

155 x 238 mm

134 Steve Furber and Andrew Brown

queue management, priority scheduling, buffer overflow procedures, and so on. This

notwithstanding, it maintains a strongly event-driven nature, spending any idle time in

a low-power wait-for-interrupt state.

What can a formal model offer?

A validated formal model can answer various important questions about the SpiN-

Naker system. At the low level:

 Is the run-time software a robust implementation of the computational model?

And at the high level:

 Is system activity at a stable level, or will it grow uncontrollably (as in epilepsy)

or die away?

 How does the processing of neural information through successive layers “add
value”? For example, in vision we start from pixels, which are processed (in the
retina) into centre-surround signals. The primary part of the visual cortex is known

as V1, (Visual area one), which processes these signals into edge/–
corner/orientation, and up through further layers into “car” or “tiger”. (Both hemi-

spheres of the brain contain visual cortex, one for each visual field.) How can we

quantify the benefits of each layer, preferably in information-theoretic terms?

Generalising....

Changing the narrative perspective significantly and moving it back out, Moore's

Law has given us a doubling of logic density every eighteen months or so for over

four decades. It has enabled microelectronics to move from a narrow professional

niche into the hands and pockets of every consumer in the world. However, as process

geometries continue to shrink towards the scale of the atom, we face the emergence of

fundamental limits which the scaling of current methodology can no longer easily

overcome; increasingly, far ranging architectural - both hardware and software -

changes are required to utilise the potential of the technology. Four major challenges

can be identified:

● Power dissipation: it is already not possible to power all parts of a chip at the

same time (the dark-silicon problem). It has been demonstrated that multiple

small CPUs are correspondingly more power efficient than fewer large ones,

so the deployment of large cohorts of small CPUs is an obvious way forward.

● Reliability: As process geometries continue to shrink, issues of reliability and

robustness inevitably emerge. In a system of millions of cores (not unreasona-

ble today), it is unrealistic to expect 100% functionality 'out of the box'; equal-

ly, cores will inevitably fail over the lifetime of the system.

● Communication vs computation: A traditional argument against moving to

large numbers of cores is the relative cost of computation and communication.

A core can typically perform several thousand operations in the time taken to

155 x 238 mm

Partially-Ordered Event-Triggered Systems 135

get a single word out of memory and made available to a core. Ever deeper

caches and convoluted pipelines can help alleviate the problem, but with con-

ventional architectures, bottlenecks are still almost unavoidable.

● Programming: In the past, processor time (core hours) was a valuable re-

source, and much work went into understanding how to optimise the schedul-

ing of a workload on parallel machines. The automatic (high-level) parallelisa-

tion of general-purpose codes remains a 'holy grail' of computer science, but

fine-grain parallelisation is frequently signposted by the underlying mathemat-

ics. The problem has been in the past that solutions emerging naturally from a

numerical solution technique do not map well (cheaply) onto existing architec-

tures, partly because cores were relatively scarce, compared to the granularity

of a discrete solution. Today, processing is effectively a free resource: cores do

not have to be 'kept busy'.

These considerations form another set of constraints on a design space that is al-

ready extremely complex. However, they also open the way to new approaches: de-

sign space may become more convoluted, but it also gets bigger.

Whilst there is no way through Amdahl’s Law (The proportion of code that can-

not be parallelised will ultimately limit the advantages accrued from more proces-

sors), the Gustafson-Barsis Law does permit a way around it: (If you can have an

arbitrary number of processors, the total amount of work performed by the system

may be increased arbitrarily at no extra cost).

POETS technology exploits this and explicitly addresses all these points simulta-

neously.

What is POETS?

POETS - Partial Ordered Event Triggered Systems - technology is based on the

idea of an extremely large number of small cores, embedded in a fast, hardware, par-

allel communications infrastructure - the core mesh. Inter-core communication is

effected by small, fixed size, hardware data packets (a few bytes) - aka messages.

This proposal describes research to investigate and prototype a software methodol-

ogy and associated hardware platform to realise the potential of this architecture.

The physical implementation of such a system imposes a fixed and finite topology

on the core graph, but a thin (hardware) layer on top of the cores allows the user to

virtualise an arbitrary connectivity graph on top of the physical one. Once this is

done, the mapping of problem domain to processor mesh follows naturally.

For example, a surprising number of industrial problems map naturally and ulti-

mately to solution of the matrix equation [A]x = [B], and the efficient solution of this

prima facie simple problem for large (say, rank 1000) and ill-defined systems is still

the subject of current research. Using POETS technology, each matrix element can

be mapped onto its own core: textbook solution techniques become possible because

element-element communication is truly (hardware) parallel across the entire matrix.

Traditionally, calculations of this type require polynomial time; POETS can perform

the calculation in linear time - a massive difference with large industrial problem sets.

155 x 238 mm

136 Steve Furber and Andrew Brown

Why now?

Because we can - ten years ago it was not possible.

In 1965 Gordon Moore published his famous prediction: that the number of transis-

tors on a chip would double every 18 months or so. This is not a law, just a market

prediction, yet it has become a self-fulfilling prophecy that has guided industry for

decades. However, it is an exponential prediction, and no exponential is sustainable

indefinitely in nature.

Moore's Law is coming to an end, gradually, not because of any one particular

show-stopping physical limit, but because of a host of effects, each one in isolation

probably capable of resolution, but taken together present an insuperable barrier: it

simply isn't worth it any more.

But: if we focus on the last few years of this line, and recalibrate the axes in terms

of cores/chip instead of transistors/chip, we see the beginnings of a new law: the

number of cores/chip is increasing by some multiple/year. Yes, it is an exponent, and

so it won't last, but while it does, we should exploit it.

POETS fits into the landscape described above in innovative ways:

● Power dissipation: POETS is an event-driven system. Cores carry out small

calculations in response to the arrival of a message, based on a state subset

held in local memories. These calculations may/may not result in the emission

of further messages, which are immediately swept up by the communication

infrastructure and delivered asynchronously, via hardware, to their target core.

The target core is woken (by the hardware delivering the message), acts upon

it - as above - and returns to quiescence, awaiting another stimulus. POETS is

intrinsically energy frugal - you only power calculations when you perform

calculations. The design intention is that for a significant portion of time, each

core is asleep. This is a programming model of immense power and enormous

potential, and is completely orthogonal to conventional architectures.

● Reliability: POETS architecture is intrinsically resilient in the face of hard-

ware failure for two reasons: (1) one way of thinking about a POETS core is to

view it as an asynchronous finite state machine. Like its conventional counter-

part, there is no reason why its state transition graph cannot be disjoint -

POETS cores can multi-task at an event level, and so can run inconspicuous

system integrity checks in parallel with anything else, allowing possible recov-

ery and/or graceful performance degradation in the face of core or communica-

tion fabric failure. (2) is rather more subtle, and not applicable to all problem

domains. The dominant use intention of the system is that a fine-grained math-

ematical model is mapped to the core mesh for subsequent processing - usually

but not always some kind of simulation. Failure of a core (or part of the com-

munication fabric) therefore has the effect of compromising the simulation

model (specifically the state subset held in the failed area), rather than the al-

gorithm, which is distributed over the entire system. For a certain subset of

problems (notably relaxation-based simulations), this perturbation is minimal,

localised and does not propagate.

155 x 238 mm

Partially-Ordered Event-Triggered Systems 137

● Communication vs computation: POETS sidesteps this tension by 'embed-

ding' the cores in a hardware communications fabric (which is truly parallel)

and in which the messages are small and of fixed size (a few bytes). (This is

one of the core outcomes of the SpiNNaker project.) With POETS machines,

the burden of high-level message choreography is completely removed (there

are none): systems trade cores against complexity in both compute and com-

munications.

● Programming: This is the area where the largest research challenges lie. Our

work with SpiNNaker has demonstrated the validity of the POETS concepts,

but the use cases to date have all been hand-crafted. The challenge here is to

find a way in which domain-specific specialists - who neither know nor care

about the underpinning technology - can use the system to attack large, indus-

trially important problems, focussing on the problem, without the distraction of

the solution technique and details.

Taken together, these attributes represent a significant sea-change in the way in

which large, industrially relevant problem sets may be attacked. POETS is not a gen-

eral-purpose architecture, but nor is it a corner-case; it is elegantly suited to a wide

variety of industrial problems:

● Finite difference and finite element problems

● Computational chemistry

● Particle & field

● Image processing

● Neural synthesis and simulation (Human Brain Project)

● Drug screening

● Discrete system simulation

In fact, anything where the underlying mathematics naturally formulates as a large

graph with large numbers of small, parallel interactions, and no overarching synchro-

nisation requirement.

For some - not all - industrial problems, POETS architectures are capable of

delivering orders of magnitude speed increases.

What needs to be done?

Our work with SpiNNaker delivered the first large-scale existence proof of the

power of this concept. If we are to exploit this hitherto underexplored and unconven-

tional computing technology, there is still much research to be done. For nearly every

step of the development trajectory to date, almost every tool and technique that a con-

ventional software developer takes for granted has had to be re-engineered from

scratch. Conventional support tools do not work with this system. We need standard-

ised input formalisms, we need command, control, internal visibility and debug tools,

we need to know where the limits are of an instance of the architecture, and how dif-

ficult and expensive it is to move these limits.

155 x 238 mm

138 Steve Furber and Andrew Brown

Why should we bother?

Despite decades of attack, the general purpose parallelisation problem remains one

of the most elusive 'holy grails' of computer science. Inspired - possibly - by what we

achieved by simply ignoring difficult general problems in our past neural simulation

work, and focussing on the functionality we actually needed, our thesis here is that

POETS is incredibly well-suited to an unexpectedly wide range of important engi-

neering and physics problems, most of which are traditionally the domain of large,

extremely resource hungry supercomputers. Event-driven programming, using thou-

sands to millions of small, cheap, energy frugal cores is by far the best platform for

some massive engineering problems that traditionally consume millions - tending to

billions - of core-hours and watts, both of which translate directly into money. Pro-

ponents of exascale computing need event-driven machines if budgets are to re-

main sub-exascale.

The problem is not creating large cohorts of processors, but how they might be

productively used to perform or enable the sort of analyses that users of big compute

demand. The project focuses on the potential of the hardware architectural point on

the scale represented by the earlier SpiNNaker work. It will look at the areas of work

where the hardware architecture would be well suited, how those needs can be sup-

ported on this architecture by methods and tools, and how the architecture may be

further optimised, with the objective of providing the basis of knowledge to support

valuable commercial exploitation opportunities anticipated to emerge for commodity

HPC.

POETS is a different type of computing architecture; no mature tools or techniques

currently exist to exploit it fully, and physical implementations are not yet common-

place. However, this will change: the architecture is unusual but has the attraction of

being the choice of evolution - it is the architecture of all neural cortexes, including

our own brains. It is highly functional, extremely power efficient and very fault toler-

ant. Whilst it demonstrably can be programmed, research is needed to make it a

commodity capability on a par with the architectures found in almost every electronic

system today.

Aims of the research

The phrase "Technology Readiness Level (TRL)" has several definitions, not all of

which are mutually consistent, but in essence POETS is currently squarely at TRL 1:

the basic principles have been observed and reported. The goal at the project end is to

take the concept at least to TRL 4: (Validation of the concept in laboratory condi-

tions), preferably, with the assistance of the project partners, to TRL 5: (Validation of

the concept in a relevant domain-specific environment.)

The long-term strategy is to be in a position, at the end of the project, to be able to

approach tool vendors and specialist product providers with a solution technique -

cast in domain-specific terms that they are familiar with, demonstrating solutions to

real problems that they care about - and make a case for the commercial uptake of

the developed technology.

155 x 238 mm

Partially-Ordered Event-Triggered Systems 139

SpiNNaker and POETS:

SpiNNaker is a distributed multi-core system, consisting of a network of 65 000

nodes, (each containing 18 200MHz ARM9 cores), embedded in a bespoke (hard-

ware) message-passing infrastructure. The nodes are triangularly connected in a two-

dimensional (2D) planar mesh, the edges of which are identified with each other and

the whole plane wrapped onto the surface of a torus. Cores communicate via hard-

ware packets of 72 bits. Each node also contains a router unit to control all packet

movements, both inter- and intra-node. The design of SpiNNaker explicitly disregards

three of the central planks of computer architecture dogma:

1. There is no central synchronising system clock, and all the inter-node (and much

intra-node) communication is asynchronous.

2. There is no attempt made to enforce overall memory coherency. Each core has

its own private memory, which is not visible to any other core.

3. The message passing infrastructure is non-deterministic (and may, under certain

circumstances, be non-transitive).

SpiNNaker is designed for use as a neural simulator. At the level of abstraction uti-

lised by SpiNNaker, a neuron consists of a multi-input, multi-output unidirectional

discrete component, communicating with its peers via action potentials, modelled as

discrete events. A neural system or circuit is represented as a graph of neurons,

mapped onto the physical core mesh. A thin hardware layer (the routing system) ena-

bles transparent neuron-neuron communication over the underlying hardware - the

biological model does not 'see' the underlying electronics.

SpiNNaker is intended to simulate neural aggregates in real time: the biological in-

formation contained within a packet resides in the wallclock time of arrival; the 72

bits interact with the underlying routing system to ensure the right packet gets to the

right neuron model.

POETS: SpiNNaker is extremely good at the task for which it was designed: neu-

ral simulation. The idea of virtualising an abstract arbitrary graph and mapping it to

hardware via a thin, hardware, parallel routing layer is immensely powerful, and

opens the door to a large array of application domains. However, SpiNNaker is an

ASIC, and contains aspects - that we cannot change - that make it unsuitable for the

generalisations we wish to explore in POETS.

● In biology, the existence of a spike (packet) contains the only biological

data. It is here at this time, or it isn't; this is how mammalian neural systems

work. For more diverse applications, we need to be able to put more data in-

to a packet. To keep the speed advantage, the packet size must be small and

fixed size, but the bit length of SpiNNaker is crippling for other domains. A

few dozen bytes would be fine; 72 bits is not enough.

● Data exfiltration: SpiNNaker relies on gross neural activities for I/O - this is

how biological systems work. We need to be able to extract global state data

reliably.

● Global synchronisation: Biological systems do not support this behaviour -

155 x 238 mm

140 Steve Furber and Andrew Brown

neither does SpiNNaker. There exists a wide set of circumstances - in diverse

application areas - where this functionality is essential.

Event triggered computing - key points:

Architecture

● Extremely large numbers (1000000+) of extremely simple cores

● Short (a few bytes), uniform messages

● Hardware massively parallel communications network (on and off-chip)

Disadvantages

● Not a general purpose architecture

● Cannot port existing codebases

● No existing support toolsets

Advantages

● Massive speedups for certain classes of problem: O(nm) → O(k)
● Highly fault tolerant

● Low power: 25000 cores < 13A

Use cases

A large proportion of real engineering problems can be broken down to a discrete

graph, albeit one with sometimes millions of nodes. If we have millions of cores and a

fast communications infrastructure, we can trade cores off against computational

complexity, and exploit the near-perfect parallelism of the hardware interconnect. The

Use case portfolio suggests some of the industrial application areas for POETS tech-

nology.

155 x 238 mm

Partially-Ordered Event-Triggered Systems 141

Use case: Finite difference calculations

Consider the canonical finite difference

heat equation on a 2D square grid: each

grid point is represented by an individual

core, which holds the grid point state (tem-

perature) plus ghosts of the immediate

neighbouring states, and communicates only

with its direct neighbours by messages. On

receipt of a message - any message - a grid

point recomputes its state; if this has

changed, it broadcasts the new state value to

its neighbours. All the cores do this simul-

taneously (asynchronously), triggered by the arrival of messages. Pinning the opposite

corner temperatures and letting heat flow freely produces the obvious result.

The interesting point is the wallclock solution time as a function of grid size: the

algorithm, as cast, will continue to operate in constant time, using more and more

cores as the user increases the grid size, until it runs out of physical resource.

There is, obviously, no reason why we need restrict our analyses to a uniform grid:

2.2GHz desktop

200MHz 768 core SpiNNaker engine

155 x 238 mm

142 Steve Furber and Andrew Brown

Use case: Neuron synthesis

Large scale neural simulations - which underpin almost all of computational neuro-

science - require realistic models to simulate, and the generation of these models is

not trivial or computationally cheap. In biology, 1mm3 of neural matter contains

around 105 cell bodies, 4km of axons, 5.106 dendrites and 7.109 synapses. Each neu-

ron is represented as a space-filling tree, which does not intersect with itself or any

other neuron. Vasculature

- essential for accurate

modelling - approximately

doubles the complexity of

the space.

A popular way of ap-

proaching this problem is

to tile space (the universe)

with three-dimensional

cubes, populated with

'virtual neurites'. These

move about randomly,

condensing (and sticking)

onto a seed neuron when-

ever they touch one.

Using POETS methodolo-

gy, we can allocate each spa-

tial 3-cube to an individual

core, and handle the passage

of neurites and the growth of

neurons across cube bounda-

ries by passing messages. Run

0 below shows the universe

modelled by one POETS core;

run 5 by 32 x 32 x 32 (=

32768) cores. (Intermediate

data points are for 23, 43, 83

and 163 cores.) The figure

itself is a simulation, but nev-

ertheless the speedup trend is

clear and impressive.

155 x 238 mm

Partially-Ordered Event-Triggered Systems 143

Use case: Spatio-temporal simulation of stochastic biochemical processes

Biochemical processes are increasingly being modelled in-silico, where a low-level

description of chemical interactions is used to drive a simulation of higher-level bio-

logical activities; these models have been made possible by improved abilities to au-

tomatically extract individual molecular pathways.

Modelling the interactions within an entire cell is com-

putationally infeasible, due to the large number of mol-

ecules, and the huge number of interactions needed for

the cell to make enough progress to be interpreted at a

high level.

Approximations are used to interpret and capture

low-level processes as coarse behaviour, which have

recently allowed the creation of whole-cell models for

simple bacteria. However, there remains the question of

whether some important behaviour is only captured by

the low-level interactions, so there is still a need to perform high-fidelity simulations

of chemical processes which track individual molecules.

Current cell simulation techniques provide an efficient method for simulating sys-

tems with tens of thousands of reactants, but current compute systems are too slow to

come close to the speed needed to model all interactions within a cell. The spatial

nature of the problem, and the heavy reliance on local lightweight communication,

means that space can be discretised and each cube mapped onto a core:

● Loose temporal coupling: the notion of time within a simulated system is

intrinsically fuzzy, and only local causality matters.

● Local fault tolerance: as long as molecules can propagate between local

volumes within a spatial region, the failure of one or two volumes within that

region is largely irrelevant.

● Scaling via spatial decomposition: due to the huge number of molecules

involved, the problem can be decomposed spatially until all available CPUs

are occupied, achieving good utilisation of all available CPUs.

As well as being a good fit for the architecture, stochastic chemical simulation also

presents some interesting challenges and research opportunities:

● Dynamic molecule balancing: during the simulation molecules naturally

migrate around the system, potentially requiring cores to negotiate the size of

the volume they manage.

● Dynamic rate balancing: the rate at which reactions within a volume occur

depends on the number and balance of local molecules, and "hot" areas will

eventually limit the rate of progress within the entire system.

Overall we can expect to see this application scaling linearly with the number of

cores in the system; where a traditional multi-core or GPU simulation becomes com-

munication limited, the intrinsic spatial communication capabilities of POETS means

the bottleneck is removed.

J. Shillcock, Langmuir

2012, 28, 541-547

155 x 238 mm

144 Steve Furber and Andrew Brown

Use case: Particle & field

Advances in conventional computer technol-

ogy have made it feasible to simulate the mutual

interactions of huge ensembles of particles, but

at a massive core-hour cost. By employing

sometimes innovative and sometimes brutal

approximations, it is possible, for example, to

model the migration of proteins through a cell

wall at the level of individual particles (where a

particle is a group of atoms - a sort of sub-

molecule). These computational experiments

push at the boundaries of what is possible today

- and the further introduction of long-range

forces into the experimental regime (for exam-

ple electrical charge) places many interesting

and useful studies out of range. The difficulty

here lies in the fact that non-trivial forces extend over many particle-particle separa-

tions, making the computational graph necessary to solve the system almost a clique.

Any attempt to parallelise such a system computationally rapidly becomes communi-

cation bound.

POETS, however, offers a (partial) solution to this. Whilst particle-particle anal-

yses will not map usefully onto a POETS system, an alternative representation, parti-

cle & field, does. In a particle & field analysis, space is tiled, and each core "owns"

a volume, managing the particles that inhabit that volume. Particles do not, however,

interact with each other, they interact with a global field (which may be multi-valued

in space):

Particles tell the field how to deform, and

the field tells the particles how to move.

The big difference - from POETS point of view - is that deformations in the field

can spread out from their source via core-core communication, and the intensity of the

field can be calculated locally (and simply) by the local core - no reference back to

the originator of the perturbation is necessary. Particles derive the force incident on

them from the local field: again, information that is to hand.

155 x 238 mm

Partially-Ordered Event-Triggered Systems 145

Use case: Industrial image processing

At their core, many industrial problems resolve to [A]x = [B] or similar. Whilst

matrix solution techniques are the stuff of undergraduate textbooks, industry is inter-

ested in matrices of massive ranks (thousands), which are often sparse and ill-

conditioned. Further, sequences of matrices that represent continuous processes are

often mutually inconsistent.

Mapping a core to each matrix element allows the inversion of matrix equations

in O(n) time, better than any low-thread solution on a conventional machine. This

opens the door to a host of real-time image based applications:

Medical: detailed non-invasive tomo-

graphic imaging of biological structures -

bones, brains, vascular systems; image-

guided surgery. The last requires the recon-

struction of images that are noisy and fast

moving (typically around 106 points/s),

where inaccuracy can easily cause death.

Measuring ionospheric weather: can de-

crease the error of GPS fixes by a meter. So

what? GPS guided ocean oil drilling costs

around 106 £m-1.

Inverse field problems: detection and loca-

tion of submerged cylindrical magnetohydrody-

namic anomalies

Production line quality control: mixing

efficiency, void detection, structural integrity

Endoscope

Aorta

C.N. Mitchell, University of Bath

W. Yang, University of Manchester

155 x 238 mm

146 Steve Furber and Andrew Brown

Use case: Drug screening

Computational chemistry has a long way

to go before the interactions of drugs and cells

can be modelled and simulated accurately

and usefully at a molecular level. The

difficulty arises from the sheer volume of

computation necessary to model the inter-

actions of the millions of atoms compris-

ing even the simplest biological drug-

relevant system.

The natural response of the simulation

engineer in this situation is to increase the

level of granularity of the system, modelling

at larger and larger resolutions, which exposes a di-

lemma: the higher the modelling level, the more tractable the total problem, but on the

other hand, by coarsening the level of modelling abstraction, interactions were dis-

carded that may turn out to be dominant in some unexpected way; and the ultimate

object of simulation is to illuminate interactions that were unexpected. The art of

modelling for simulation - in any discipline - consists of finding ways to capture rele-

vant interactions as simply as possible without compromising (too much) the repre-

sentation of reality embodied in the model.

Drug discovery is the process through which potential new medicines are identi-

fied. It is traditionally slow and labour intensive, but remains a vital step in the identi-

fication of new medicines and treatments. A difficulty arises from the fact that even

the simplest drug interacts not only with its primary target (cell), but also with sec-

ondary structures - other proteins in other cells. These also interact with each other, in

complex ways, making the prediction of the impact of a specific pharmaceutical in-

tervention an almost impossible task, unless the system is modelled at infeasible lev-

els of granularity.

One attempt to overcome this bottleneck employs a radically different methodolo-

gy to represent a cell and its constituent proteins: a cell is represented by a graph. The

nodes of the graph are the proteins contained within the cell, and the edges of the

graph the known protein interactions. These edges may themselves be quite complex,

to model known adjuvant and chaperoning effects. In a similar manner, a potential

drug may be represented by a graph, modelling the effects of the drug on specific

proteins. The screening process then involves running a "cross-product" between the

biological cell library and the putative drug, analysing the effects by looking at the

topology of the affected cell graphs.

None of the steps in this process are particularly individually demanding, but again

the difficulties arise from the sheer size of the graphs: a cell graph can contain tens of

thousands of nodes. Mapping the model graph nodes onto POETS cores opens the

way to parallelising the graph-graph interactions, with a potentially dramatic impact

on computational throughput.

155 x 238 mm

Partially-Ordered Event-Triggered Systems 147

Use case: Discrete simulation

In 1979 - four years before the PC became available - a paper about discrete simu-

lation (K.M. Chandy and J. Misra, IEEE-T Software Engineering, SE-5 no 5 1976 440-452)

was published by the IEEE, where the authors stated in the abstract:

... We propose a distributed solution where processes communicate only through

messages with their neighbours; there are no shared variables and there is no central

process for message routing or process scheduling. Deadlock is avoided in this sys-

tem despite the absence of global control. Each process in the solution requires only a

limited amount of memory.....

They were talking abut POETS, thir-

ty-six years ago.

The match to the POETS technology

is quite remarkable; mapping one logi-

cal device to each core - something

unimaginable in 1979 - allows the simu-

lation of industrially relevant systems

today. The perennial problem of maintaining overall simulation causality is elegantly

overcome by the introduction of timing events that are broadcast along the same sig-

nal paths as contained in the circuit under simulation; thus the overhead is an approx-

imate doubling of the signal traffic, a negligible cost considering the speed gearing

from all the cores.

Further levels of sophistication are possible: where the circuit under simulation has

more devices than the POETS engine has cores - it can happen - we can map multiple

devices to a single core, and further, allow the POETS engine to dynamically modify

this mapping,

load-balancing

the simulation

on the fly.

155 x 238 mm

148 Steve Furber and Andrew Brown

Meteoblue AG, www.meteoblue.com

Use case: Weather modelling

Weather modelling involves predicting the interactions of wind, solar radiation,

ground conditions, pollution and a host of other features into a numerical model

whose state is capable of extrapolation into the future in a computational timeframe

that is faster than real time - there is little point in coming up with an accurate predic-

tion of tomorrows weather if it takes two days to do it.

Current methodologies decompose the atmosphere into a non-uniform (multi-scale)

grid, and solve the equations concerning the movement of air between grid cells, en-

suring continuity of pressure, temperature, density et al across the cell boundaries.

The atmosphere over the UK is divided into cells around 1.5 km on a side (giving a

UK - based cell count of around 6.107 cells); over Europe around 4 km on a side and

the rest of the world is modelled at a resolution of around 17 km.

The solution technique revolves around mapping the atmospheric cells onto the

available cores of whatever machine is being used to solve the system - there is a

tradeoff between cell size (accuracy - pushes the cell size down) and the inter-core

traffic load (speed - which pushes the cell size up). Much effort is required to find the

'sweet-spot', resulting in the best accuracy from the fastest cell configuration. (Much

effort is also expended in finding better models to represent the atmospheric behav-

iour, but POETS solves equations, it does not derive them.)

Using ever smaller cells -

and mapping only a handful of

these to each POETS core -

provides two-fold benefits: the

cell-cell traffic maps comforta-

bly onto the hardware routing

fabric of the engine (which in

any case in POETS engines is

hardware and fast); and the

equations governing the behav-

iour of the atmospheric model

can become much simpler, as

the range scale of the non-

linearities intrinsic to the phys-

ics become comparable to the

new, reduced cell resolution.

155 x 238 mm

Partially-Ordered Event-Triggered Systems 149

