
Proving timing properties with the Leibnizian

time model

Alexei Iliasov

Newcastle University

Abstract. We present a novel approach to the description of real-time
requirements in Event-B, based on the relativistic time model of Got-
tfried Liebniz. The approach is surprisingly useful, and has led to some
significant results. We illustrate the approach with several modelling
recipes for the specification of real-time systems in Event-B.

1 Introduction

In the design and modelling of systems from user specifications, it is common to
find some proportion of the user requirements expressed in terms of real-time.
In work on business information systems, for example, real-time requirements
are a natural way to express high-level constraints on business processes [8]. In
scheduling or performance analysis, real-time is the natural language for stating
requirements.

We use the Event-B language [5] to explore an alternative model of time,
the Leibnizian model [11]. According to Leibniz, time is not a fundamental di-
mension, but is used to distinguish the changes in an observed entity. In the
Newtonian model time is an observable attribute of an entity, and may be used
to distinguish an entity in the past from an entity in the future, even if the
entities are otherwise identical. In the Leibnizian model, in which time is not
a directly observable attribute, these may only be distinguished if some other
observable attribute has changed. In other words, in the Leibnizian model, time-
related changes are transformations of the entity itself. If nothing changes, time
is not observed to pass, and therefore (to the observer) time does not pass.
The Newtonian model permits time to change without a change in the observed
entity.

The dichotomy of the Leibnizian model, in which two separate entities are
necessary in order to define the notion of time, suggests that all the time-related
properties may be isolated in the observer part leaving the part being observed
to deal with functional properties. This has important practical implications:
the formulation of timing constraints does not have to be notationally tied with
the description of behaviour so that existing methods, semantics and tools may
be employed in specifying functional properties.

This difference in time interpretation has significant consequences for the
definition of a timed semantics, and for the specification of timing constraints in
Event B. We present the semantic model briefly, using examples to illustrate the

155 x 238 mm

166 Alexei Iliasov

machine M
sees Context
variables v

invariant I(c, s, v)
initialisation SI(c, s, v

′)
events

e = any p where Ge(c, s, p, v) then Se(c, s, p, v, v
′) end

. . .

end

Fig. 1. Event-B model structure.

important points. We also give a series of “recipes” to show how the Leibnizian
time model could be used by a model developer to introduce time into Event-B
developments.

2 Background

An Event-B development starts with a compact, often trivial abstraction. The
cornerstone of the Event-B method is a stepwise development that facilitates
a gradual design of a complex system via a number of correctness-preserving
refinement steps. The general form of an Event-B model (or machine) is shown
in Fig. 1. A machine encapsulates a state space, defined by machine variables,
and provides transitions on the state, as described by machine events. Events
are characterised by a list of parameters p, a state predicate G called an event
guard, and a next-state relation S.

The invariant clause defines the properties of a system, expressed as state
predicates, that must be preserved during the system lifitem. The states defined
by an invariant are called the safe states of a system. A correct model is proven
to never leave its safe states. Data types s, constants c and relevant axioms are
defined in a separate component called a context, and included into a machine
with the sees clause.

The consistency of a machine as well as the correctness of refinement steps is
demonstrated by discharging relevant proof obligations which, collectively, define
the Event-B proof semantics [5]. The Rodin Platform [18], a tool supporting
Event-B, is an integrated environment that automatically generates necessary
proof obligations and providers a number of automated provers and solvers along
with an interactive proof environment.

An Event-B machine defines a state transition system. Let Ω = {v | I(c, s, v)}
be the (safe) states of a machine where v and I(c, s, v) are the variables and the
invariant of a machine. The relational form of an event e is [e]R ≡ {v 7→ v′ |
∃p · (Ge(c, s, p, v) ∧ Se(c, s, p, v, v

′))}.

Definition 1 (Event-B transition system). A machine defines a transition
system (Ω, f, ω0) where f : Ω→P(Ω) is defined as f = (

⋃
e[e]R); the set of initial

states ω0 ⊆ Ω is defined by the initialisation predicate SI : ω0 = {v′ | SI(c, s, v
′)}.

155 x 238 mm

Proving Timing Properties 167

3 Leibnizian Time

In this section we formally define some essential concepts of the Leibnizian time
model. We illustrate them with a timed specification of a lossless buffer, which
we return to throughout the paper. For brevity, we omit the theorem proofs.
Proofs and machine-checked models of the example are available at [3].

A fundamental concept is that of a process, which we define as a transition
system.

Definition 2 (Process). A process P is a tuple (αP, p, ιP) where αP is a pro-
cess alphabet, p ⊂ αP × αP is a transition relation and ιP is the set of initial
states.

Time only appears when we put together two processes and let them interact in
a certain way. The nature of the interaction is what intuitively may be regarded
as an observation of one process by another.

Definition 3 (Observation connection). An observation connection between
processes C and S is a relation ϕ ⊆ αS× αC.

A timed system is formed of pair of processes where one process, an observer,
is said to observe another process, a subject. In the definition above, C is an
observer and S is a subject.

Definition 4 (Timed system). An observer process C, a subject process S and
an observation connection ϕ define a timed system C · ϕ · S.

The first technique we give extends an untimed Event-B model to a timed system,
by defining a timed observer in an associated context. We illustrate this technique
in Example 1.

Recipe 1 (Event-B timed system) An timed Event-B system C · ϕ · S is a
pair of a machine S and context C of the following form.

machine S

sees C

variables v

invariant I(V)
initialisation R(v′)
events

Ei = any pi where

Gi(pi, v)
then

Si(pi, v, v
′)

end

end

context C

sets αC

constants c, ϕ, ιC

axioms

ιC ⊆ αC

c ⊆ αC× αC

ϕ ⊆ {v | I(v)} × αC

. . .

end

155 x 238 mm

168 Alexei Iliasov

Subject S is an arbitrary Event-B machine defining a vector of variables v. Set
{v | I(v)} defines the possible states of the machine. Observer C is axiomatically
defined in a context. The context defines a sort αC, a transition relation c and
an observation connection ϕ which relates states from set {v | I(v)} to observer
states. Further axioms and theorems may added, to more precisely characterise
the observer model. �

Example 1 (Buffer). A lossy buffer with the capacity to store one element of
type V is defined by machine BUF, as shown below.

machine BUF

sees def ,C0

variables b

invariant b ∈ V

initialisation b :∈ V

events

wr = any v where

v ∈ V 1
then

b := v

end

rd = begin b := nil end

end

context C0

ιC0 = V

c ⊆ V × V \ (V 1× V 1)
ϕ = V ⊳ id

end

The constant nil ∈ V and sets V 1 = V \ {nil}, V 1 6= ∅ are defined in context
def . Event wr updates the value of the stored element; event rd consumes a
buffered element and sets the buffer contents to nil to indicate that the buffer
is now empty. The events are always enabled and thus BUF permits arbitrary
interleavings of the operations. Such operations may be implemented by unsyn-
chronised concurrent activities. The write operation may happen arbitrary often
thus potentially overwriting a previous value before it is read.

A lossless buffer is defined with the following timed Event-B system.

C0 · ϕ · BUF

The observation model rules out the possibility of event wr writing into a non-
empty buffer. We shall substantiate this claim in Example 2. �

An interpretation of a timed system gives a precise meaning to the phe-
nomenon of observation. Essentially, an observation prohibits behaviours that
an observer does not expect to see.

Definition 5 (Interpretation of a timed system). Given a timed system
C · ϕ · S where S = (αS, s, ιS) and C = (αC, c, ιC), its interpretation is a process

I(C · ϕ · S) ≡ (ϕ, τ(C · ϕ · S), (ιS× ιC) ∩ ϕ)

155 x 238 mm

Proving Timing Properties 169

where transition relation τ(C · ϕ · S) ⊆ (αS × αC) × (αS × αC) is such that a
mapping (u 7→ t) 7→ (u′ 7→ t′) ∈ (αS× αC)× (αS× αC) belongs to τ(C · ϕ · S) if
and only if the following properties hold

(a) u 7→ u′ ∈ s (a transition of a subject process)
(b) t 7→ t′ ∈ c (a transition of an observer process)
(c) u 7→ t, u′ 7→ t′ ∈ ϕ (subject and observer transitions are linked via the

observation connection)

One could say that an observer is a historian with a preconceived idea about
subject process behaviour. An observer would not tolerate a subject that does
not follow a certain plan or timetable. Note the use of ϕ ⊆ αS×αC to define the
alphabet of a timed system interpretation. Whenever we speak about a timed
system we always imply, unless specifically indicated otherwise, that the timed
system permits an interpretation.

It is essential to note that (despite the nomenclature) the observer is an
integral part of the timed system, and does not have a merely passive role. The
observer characterises the timing constraints that the developer wishes to impose
on an otherwise untimed system, and permits only interpretations that conform
to these constraints.

Recipe 2 (Consistency) It may happen that a proof of liveness and timing
properties is merely a consequence of an incompatibility between the observer
and the subject process. This incompatibility results in a vacuous interpretation
of a timed system that defines no common state transitions. To avoid this prob-
lem, it is sufficient to exhibit an initialisation of the timed system. For a timed
system C · ϕ · S one needs to prove that

∃x, y · x 7→ y ∈ ιS× ιC ∧ x 7→ y ∈ ϕ (1)

Condition 1 is called the consistency proof obligation of a timed system. �

The consistency condition holds for the system in Example 1; one possible
witness is mapping nil 7→ nil.

We give now the condition under which an event may be safely removed from
a timed system without affecting the overall behaviour.

Recipe 3 (Relation empty) Consider a timed system C ·ϕ · S with Event-B
machine S defining some event Ei :

Ei = any pi where Gi(pi, v) then Si(pi, v, v
′) end

Let S′ be a machine identical to S except that Ei is suppressed:

Ei = any pi where ⊥ then Si(pi, v, v
′) end

Timed systems C·ϕ·S and C·ϕ·S′ are equivalent provided the following condition
is satisfied

155 x 238 mm

170 Alexei Iliasov

(ϕ[before(Ei)]× ϕ[after(Ei)]) ∩ c = ∅ (2)

where before(e) corresponds to the enabling states defined by an event guard
and after(e) is a set of possible new states computed by an event:

before(e) = {v | I(v) ∧ ∃pi ·Gi(pi, v)}
after(e) = {v′ | I(v) ∧ ∃pi · (Gi(pi, v) ∧ Si(pi, v, v

′))}

The technique allows one to prove that after removing event Ei the overall
timed system does not become less live since the Ei is already prevented from
occuring by an observer.

Example 2 (Buffer, contd.). We can apply the event removal technique to prove
that timed system C0 · ϕ · BUF from Example 1 does indeed define a lossless
buffer.

To make the buffer lossless, we need to rule out the posibility of event wr
writing into a non-empty buffer. That is, event wr should not happen when
b 6= nil. Event wr may be represented (via a trivial case of refinement) by the
following two events.

wr = refines wr any v where b = nil ∧ v ∈ V 1 then b := v end

owr = refines wr any v where b 6= nil ∧ v ∈ V 1 then b := v end

It is possible to prove that owr is not a part of the timed system C0 ·ϕ ·BUF by
showing that Condition 2 holds for owr :

(ϕ[before(owr)]× ϕ[after(owr)]) ∩ c = ∅

which expands to ϕ[{b | b ∈ V 1 ∧ (∃v · v ∈ V 1)}] × ϕ[{b′ | b ∈ V 1 ∧ (∃v · v ∈
V 1 ∧ b′ = v)}] ∩ c = ∅. Since V 1 is not empty we have that ∃v · v ∈ V 1 ⇔ ⊤
and also V 1 = {b | b ∈ V 1}. The condition simplifies to ϕ[V 1] × ϕ[V 1] ∩ c =
∅ ⇔ ϕ[V 1] × ϕ[V 1] ∩ (V × V \ (V 1 × V 1)) = ∅ ⇔ ⊤. Hence, we can replace
machine BUF in C0 · ϕ · BUF with the following machine BUF′:

machine BUF′

. . .

events

wr = any v where b = nil ∧ v ∈ V 1 then b := v end

rd = begin b := nil end

end

It is trivial to see that BUF′ defines a lossless buffer. Hence, C0 · ϕ · BUF is
also a lossless buffer. �

It is often advantageous to deal with an observer that is cooperative enough
to completely accept any execution of a subject process. Then one knows a
priori that something happens in a subject process for every possible point of
time defined by an observer.

155 x 238 mm

Proving Timing Properties 171

Definition 6 (Strictness). A timed system A = (αC, c, ιC) · ϕ · (αS, s, ιS) is
strict if for every u 7→ t ∈ αS×αC and t 7→ t′ ∈ c there exists some u′ such that
(u 7→ t) 7→ (u′ 7→ t′) ∈ τA and ιC ⊆ ϕ[ιS].

In a system with a strict observer, an observation connection is also a simulation
relation [3].

Example 3 (Buffer, contd.). Observer C0 permits a concise abstraction however
there is an even simpler observer that achieves the same effect. Notice that
C0 · ϕ · BUF defines three transitions classes: reading a value and setting buffer
to 0 (V +×{nil}); reading an empty buffer ({nil 7→ nil}); writing into an empty
buffer ({nil}×V +). We shall exploit this property and define a new observer C1

such that these three classes are the kernels of new observation connection ϕ1:

context C1

extends def
sets αC1

constants c1, ϕ1, ιC1,E,F
axioms

partition(αC1, {E,F})
ιC1 = {E,F}
c1 = {E 7→ E,E 7→ F,F 7→ E}
ϕ1 = V 1× {F} ∪ {nil}× {E}

end

It is not hard to see that event removal condition also holds for C1 · ϕ1 · BUF:
ϕ1[before(owr)]×ϕ1[after(owr)]∩ c1 = ∅⇔ ({F}×{F})∩ c1 = ∅⇔⊤. It is easy
to see that, unlike C0 · ϕ · BUF, system C1 · ϕ1 · BUF is strict. �

The fourth recipe allows a developer to show that a state which is possible in
the untimed process is ruled out by the timing constraints. We give the theory
of the technique and demonstrate it with a simple example.

Recipe 4 (Point empty) Consider a timed system C ·ϕ ·S and a subject state
w ∈ αS. If one can show that ϕ does not project w into anything at all in αC

then, by the Definition 5 of timed system interpretation, any state χ ∈ αC×αS

where prj2[{χ}] = {w} is not a state of C · ϕ · S.
Thus, a subject state not projected by ϕ is not reachable in a timed system.

A proof that assumes the existence of such a state may be discharged by deriving
a contradiction with the following rule.

∀W ·W ⊆ Ω ∧ ϕ[W] = ∅⇒⊥ (3)

where Ω = {v | I(v)} is the set of subject states. �

Example 4 (Mutex). In this example we describe a very simple mutual exclusion
algorithm that works due to a rigid scheduling of the involved threads. The state
of a thread p is defined by s(p) and is one of the following values: ’out’, denoting

155 x 238 mm

172 Alexei Iliasov

that p is outside of a critical section and not trying to enter it; ’prep’, telling
that the thread is about to enter the critical section; and ’in’ for the states when
the thread is in the critical section.

machine MTX

variables s

invariant

inv1 : s ∈ P →{out, prep, in}
inv2 : card(s−1[{in}]) ≤ 1

initialisation s := P × {out}
events

prepare = any p where p ∈ P ∧ s(p) = out then s(p) := prep end

enter = any p where p ∈ P ∧ s(p) = prep then s(p) := in end

leave = any p where p ∈ P ∧ s(p) = in then s(p) := out end
end

where set P of processes is finite. Invariant inv2 expresses the property of mu-
tual exclusion. We employ the following observer process to define that no two
processes may be, at the same time, at stages ’prep’ and ’in’:

context C

. . .

c ⊆ αC× αC

S = P(P × {out, prep, in})
ϕ ⊆ S × αC

axm5 : ∀t, q · t, q ∈ P ∧ t 6= q ⇒ Js(t) = prep ∧ s(q) = inK = ∅

end

where JP (ω)K ≡ ϕ[{ω | P (ω)}]. The only non-trivial proof obligation in this
model is the preservation of inv2 by event enter . It asks to prove, for some
process p, that entering the critical does not violate safety invariant inv2.

card(s−1[{in}]) ≤ 1 ∧ s(p) = prep � card((s⊳− {p 7→ in})−1[{in}]) ≤ 1

The condition cannot be discharged within the scope of the subject model alone.
We need to bring in the constraints of the observer model to demonstrate the
condition. We proceed by replacing card((s ⊳− {p 7→ in})−1[{in}]) ≤ 1 with a
stronger goal s−1[{in}] = ∅ and continue with a proof by contradiction. The
negation of s−1[{in}] = ∅ in hypothesis gives

s(p) = prep ∧ s(x) = in ∧ x 6= p � ⊥

A state where one process is in the critical section and the other is about to
enter the critical section is disallowed by the observer (axm5) so that the point
empty technique may be used to discharge the condition. Instantiating axm5
with t = p, q = x we have ϕ[{a · a ∈ S ∧ a(p) = prep ∧ a(x) = in | a}] = ∅

which gives us set W to instantiate Condition 3 and derive a contradiction in
hypothesis.

155 x 238 mm

Proving Timing Properties 173

One way to realise observer C is by defining it to be cyclic scheduler that
allows processes to access the critical section at fixed time intervals. �

4 Realisability

According to Definition 5, a timed system is a transition (or a process, as it is
defined in Definition 2). Hence, a timed system may itself be employed in the role
of subject or observer and one can define a complex timed system made of sub-
systems which are also timed systems. One application of the compositionality
property is a structure called time log. A time log is timed system observed by an
external observer. Informally, the external observer make a record of observation
using its own timekeeping device.

Definition 7 (Time log). Time log T(C ·ϕ ·S)T,ω of timed system A = C ·ϕ ·S
is a process

T(A)T,ω = (ϕ;ω,L[τ(T · ω · τ(A))], ιT)

where T · ω · τ(A) is strict, ω is total and functional; projection L removes
states of process C: L[X] = {((a, b), {c}) 7→ (a, c) | ((a, b), {c}) ∈ X}. Also,
L[ιA× ιT] ∩ ω 6= ∅.

A time log defines a timed system (or a process) which does not reference states of
observer C. A time log is itself a transition system hence it is sometimes possible
to replace a timed system with its time log. One common reason to do this is to
separate the proof of logical properties relevant to timing constraints from the
proof of how these properties may be expressed in a specific, implementation-
oriented form, e.g., hard real-time constraints.

Not all timed system may be realised in physical reality. If the object of a
formal development is a piece of software of hardware it is necessary to check,
at the level of a concrete design, that certain properties are respected by an
observer process. These properties, called realisability conditions, are as follows:

– time advance is monotonic
– infinite subject activities take infinitely long time to observe

Instead of checking these properties directly on an observer model, it is more
convenient to consider yet another observer and study the observations defined
by the new observer and the original timed system. The first realisability con-
dition demands that the time model described in an observer process may be
mapped to a monotonic time model. The second condition prohibits a situation
where an unterminating activity of a subject process is timed to terminate by a
certain deadline.
An animation is a time log satisfying the the realisability conditions. Let bounded(X,Y)
denote the fact that there exist lower and upper bounds w.r.t. the relation of
process Y = (αY, <), bounded(X) ≡ X ⊆ αY∧(∃l, u · l, u ∈ αY∧∀p ·p ∈ P⇒ l <

p < b).

155 x 238 mm

174 Alexei Iliasov

Definition 8 (Animation of timed system). An animation of C · ϕ · S is
a time log T(C · ϕ · S)T,ω such that T is monotone and every bounded sub-
set of αT maps to a finite sequence of subject actions: ∀P · bounded(P,T) ⇒
finite(ω−1;ϕ−1[P]).

Definition 9 (Realisability). A timed system is realisable if it admits at least
one animation.

According to Definition 5, a timed system is a transition (or a process, as it is
defined in Definition 2). Hence, a timed system may itself be employed in the role
of subject or observer and one can define a complex timed system made of sub-
systems which are also timed systems. One application of the compositionality
property is a structure called an animation. An animation is a timed system
formed by observed another timed system. Informally, the external observer
make a record of observation using its own timekeeping device.

Definition 10 (Animation). Animation T(C · ϕ · S)T,ω of timed system A =
C · ϕ · S is a process

T(A)T,ω = (ϕ;ω,L[τ(T · ω · τ(A))], ιT)

where T · ω · τ(A) is strict, ω is total and functional; projection L removes
states of process C: L[X] = {((a, b), {c}) 7→ (a, c) | ((a, b), {c}) ∈ X}. Also,
L[ιA× ιT] ∩ ω 6= ∅.

An animation defines a timed system (or a process) which does not reference
states of observer C. An animation is itself a transition system hence it is some-
times possible to replace a timed system with its animation. One common reason
to do this is to separate the proof of logical properties relevant to timing con-
straints from the proof of how these properties may be expressed in a specific,
implementation-oriented form, e.g., hard real-time constraints.

Recipe 5 (Real-time constraints) The form of timing constraints of a
concrete design is dictated by the practical necessity to validate constraints via
some form of static analysis (i.e., worst-case execution time) or by observing
execution runs of a software or hardware implementation. For the former, it
may be necessary to present constraints in the form of durations of elementary
execution steps.

In a timed Event-B we suggest to use an observer based on a dense linear
order (DLO) to realise real-time constraints. A linear order c is dense if it satisfies
condition ∀x, y · x 7→ y ∈ c ⇒ (∃z · x 7→ z ∈ c ∧ z 7→ y ∈ c). Intuitively, with
a dense order one is able to define durations and time points with an arbitrary
precision1. It also means one is able to interpolate between any two time points.
An example of an Event-B model of a DLO may be found in [1].

Assume a process C = (αC, c, ιC) where c is a DLO. This process will be
employed to define an animator for some timed system A. We introduce a layer

1 This is what, we believe, is usually meant as a property distinguishing a “real-valued
clock” from a “discrete” clock.

155 x 238 mm

Proving Timing Properties 175

of syntactic shorthand to express properties of C. Let t ∈ αC be the current
state of animator C, P a predicate defined on set γ−1[αC] and γ an animation
relation.

– at(P, t)γ ≡ P (γ−1(t)): event (defined by predicate) P happens at time t;
– during(P, i)γ ≡ ∃t · t ∈ i ⇒ at(s, t)γ : event P happens at least once during

time interval i;
– within(∆,P, t)γ ≡ ∃t′ · t′ > t ∧ t′ − t ≤ ∆ ∧ P (γ−1(t′)): event P happens

within ∆ time units after t;
– after(∆,P, t)γ ≡ ¬within(∆,P, t)γ ∧ within(∞, P, t)γ : event P happens not

sooner than ∆ time units (but happens eventually) after t.

The following statement says that, at all times, whenever there happens a
stimulus event (s), it is followed by a response event (r) within ∆ time units

∀t · t ∈ αC ∧ at(s, t)γ ⇒ within(∆, r, t)γ

One may elect to be more precise and state that, should a stimulus happen at
time t, a response follows within interval [t+∆1, t+∆2]

∀t · t ∈ αC ∧ at(s, t)γ ⇒ during([t+∆1, t+∆2], r)γ

which is the same as

∀t · t ∈ αC ∧ at(s, t)γ ⇒¬within(∆1, r, t)γ ∧ within(∆2, r, t)γ

As a further illustration, the following are statements about a simple traffic light.

– Aγ(t) ≡ within(∞,green, t)γ : the green aspect is eventually lit;
– Bγ(t) ≡ ¬within(∞,green∧ red, t)γ : the green and red aspects are never lit

at the same time;
– Cγ(t) ≡ at(red, t) ⇒ after(∆1,green, t)γ : the green aspect follows the red

aspect within ∆1 time units;
– Dγ(t) ≡ at(red, t) ⇒ ¬after(∆2,yellow, t)γ : the yellow aspect might be lit

after red aspect might happen but not sooner than ∆2 time units.

Any traffic light implementation must respect these properties. In an animator
specification this is expressed by addign an axiom that animator C may never
violate these properties:

ιC ⊆ vγ c[vγ] ⊆ vγ (4)

For the traffic light example, it must hold that the initial states ιC satisfies
properties A − D and the animation relation c preserves properties A − D so
that vγ is the set of all valid time points: vγ = {t | t ∈ αC ∧ Aγ(t) ∧ Bγ(t) ∧
Cγ(t) ∧Dγ(t)}.

The verification effort is in showing that an animator does indeed animate a
given timed system. For this we consider the animation relation γ connecting the
timed system observer with the animator C. If one can prove that γ exists as an

155 x 238 mm

176 Alexei Iliasov

animation relation that one may take the animation as a timed specification that
respects both the abstract scheduling properties of the original timed system and
the real-time constraints of the animator. �

Example 5 (Buffer, contd.). In this example we show how to construct an an-
imation of the lossless buffer timed system C1 · ϕ1 · BUF in the terms of the
relative speeds of the write and read operations. For this, we reinterpret the
timing requirements with an animator that explicitly defines operation delays
and time-outs.

Consider a DLO animator T = (αT, <, {zero}) and animation relation ω ∈
{E,F}→ αT such that for all x, y ∈ αT it holds that

(a) P1(t) ≡ within(∆R, λc · c = E, t)ω (a read happens within ∆R time units)
(b) P2(t) ≡ ¬within(∆W , λc · c = F, t)ω (a write happens not sooner than ∆W

time units from now)
(c) P3 ≡ ∆R ≤ ∆W (reader is quicker than writer)
(d) ω[{E}] = {zero} (system starts at time zero ∈ αT)

In this example, properties P1 − P3 also sufficiently constrain the animation
relation γ. Delays ∆R and ∆W define the durations of wr and rd. We prove that
T animates C1 ·ϕ1 ·BUF with animation connection ω. Let vγ = {t | P1(t)∧P2(t)}
(we omit P3 as it is not time-sensetive) and less be a prefix form of <. From
Condition 4 we derive the following hypothesis

{zero} ⊆ vω less[vω] ⊆ vω

The initialisation condition expands to

(∃t′ · t′ > zero ∧ t′ − zero ≤ ∆R ∧ ω−1(t′) = E)∧
¬(∃t′ · t′ > zero ∧ t′ − zero ≤ ∆W ∧ ω−1(t′) = F)

(5)

Statement less[vω] ⊆ vω gives

∀t0, t1 · t0t1 ∈ αT ∧ t0 < t1∧
((∃t′ · t′ > t0 ∧ t′ − t0 ≤ ∆R ∧ ω−1(t′) = E)∧
¬(∃t′ · t′ > t0 ∧ t′ − t0 ≤ ∆W ∧ ω−1(t′) = F))⇒

((∃t′ · t′ > t1 ∧ t′ − t1 ≤ ∆R ∧ ω−1(t′) = E)∧
¬(∃t′ · t′ > t1 ∧ t′ − t1 ≤ ∆W ∧ ω−1(t′) = F))

(6)

We sketch the proof for the fact that ω is an animation relation: for any t < t′ it
holds that ω−1(t) < ω−1(t′). The only case when ω−1(t) ≥ ω−1(t′) is ω−1(t) = F
and ω−1(t′) = F. Assume that such t and t′ exist. From Condition 5 there exists
t0 < t and ω−1(t0) = E. From Condition 6 we have the existence of t1 such
that t1 > t0 ∧ t1 − t0 ≤ ∆R ∧ ω−1(t1) = E and t1 > t′. The t1 > t′ part may
be shown by induction: since t0 and t are a finite distance apart there exists
ti, ω

−1(ti) = E such that there does not exist ti+1, ω
−1(ti) = E and ti+1 < t.

Also, from Condition 6, we have that t′− t ≥ ∆W which leads to a contradiction
due to condition (c). �

155 x 238 mm

Proving Timing Properties 177

Recipe 6 (Point merge) This technique is a generalisation of the empty point
technique. It is used to derive a contradiction when a subject state, defined by
the intersection of states of two or more concurrent threads disagrees with the
observation model. The following lemma states how to make a transition from
a set of statements about individual thread states to a statement about a time
point when such a state configuration may be observed.

Lemma 1 (Point merge). Let W and Pi be non-empty subject process states
such that W = {v | W (v)}, Pi = {v | Pi(v)} where W (v) and Pi(v) are predicates
over subject process state space and it holds that W ⇒

∧
i Pi. Then there exist

time points ti ∈ JPiK ∩ JW K such that ∀i, j · ti = tj.

Proof. See [3] (a Rodin Toolkit proof).

The proof technique is to show that no two states from Pi and Pj , i 6= j may be
observed at the same time (due to some timing conditions). Then the existence
of a time point common for the two states Pi and Pj gives a contradiction.

We have applied the point merge technique in the proof of Fischer’s timing-
based algorithm of mutual exclusion [19, 4]. The complete Event-B development
of the algorithm is available at [2]. �

5 Related Work

One closely related work is that of Abadi and Lamport [4] which shows that
timing constraints may be expressed directly in TLA without syntactic or se-
mantic extensions. Timed automata [6] offers a formal framework for specifying
real-time properties by enriching the state of an automata with a number real-
valued clocks. The UPPAAL[7] tool offers support for automated verification of
timed automata. Timed process algebras have been researched extensively and
there is a large variety of notations and semantics. The timed extensions of CSP
[19] and CCS[16] are two notable examples.

Although Event-B lacks any native support of time, some form of timed
modelling may be done directly in the Event-B notation. The basic principle - a
clock variable employed to keep track of time - is fairly intuitive and has been
applied in various state-based and proces algebraic methods. One example is
Tock-CSP [19] which uses the standard CSP notation and measures the passage
of time by counting the occurence of a tock event. A state-based equivalent is
having a dedicated variable now to track the passage of time and express timing
conditions [4, 15].

Previous work on modelling time in B uses a clock variable which records
the current value of a clock, and an operation is given to advance time [9]. This
approach is taken up again for Event B in [10, 17]. In [14] the concept of time is
embedded into the B notation itself. Time is modelled by equipping a machine
with a clock and assuming that an event execution is not instanteneous.

155 x 238 mm

178 Alexei Iliasov

We briefly discuss the general ideas behind a clock variable technique and
show how it may related to our approach. A machine with a clock variable t has
the following form

machine m
variables v, t

invariant I(v) ∧ P (v, t)
initialisation R(v′, t′)
events

sys = when G(v, t) then S(v, t, v′) end
tick = when H(v, t) then T (t, v, t′) end

end

Timing constraints are encoded as a safety invariant P (v, t). A clock variable t is
usually defined as t ∈ N to imply an unbounded discrete clock. The clock variable
is updated by event tick; an update would either increment t by one or ’jump’
time to some interesting point in future (i.e., next deadline). The behaviour of
a system is then cumulatively defined by some event sys which may not update
t but may refer to t in its guard. An informal interpretation is the following: if
activity sys must happen within interval [a(v), b(v)], guard G(v, t) should not
allow sys happen before a(v) while the clock guard H(v, t) should prevent time
from progressing beyond b(v) until sys has happened. Sometimes intervals are
singular and one speaks about deadlines [17].

Verification conditions for time properties are invariant preservation theo-
rems for P (v, t):

I(v) ∧ P (v, t) ∧G(v, t) ∧ S(v, t, v′)⇒ P (v′, t)
I(v) ∧ P (v, t) ∧H(v, t) ∧ T (t, v, t′)⇒ P (v, t′)

On the left-hand side, P (v, t) is stated on an old state and on the right-hand
side on a new state produceed by respective events. What such theorems show is
that, if properly initialised, the system is guaranteed to stay within the bounds
set by predicate P (v, t).

This technique allows one to demonstarte a range of progress properties with
a heavy reliance on Event-B refinement principles. In Event-B one is able to re-
fine a previously atomic transition into a sequence or a terminating loop of new
transitions. Atomicity refinement - as this technique is known - allows one to
prove certain progress properties by constructing suitable refinement relations.
For instance, one can prove that activity A completes before activity B (each
comprising several events) by showing that A and B are derived from abstract
events a and b and, at that abstraction level, it is somehow known that a always
precedes b. Such kind of properties of a and b may be demonstrated by encoding
an ordering relation with an auxiliary variable or generating a special proof obli-
gation [12, 13]. A model with a clock variable restates the atomicity refinement
technique in terms of deadlines and intervals.

It is easy to convert the tick model into Leibnizian time. Rather than giving
a timed system that defines an equivalent transitions system we define a timed
system that, as we believe, corresponds to the intended purpose of an Event-B

155 x 238 mm

Proving Timing Properties 179

machine with a tick event. Let Υ = {t | ∃v · P (v, t)} and Ω = {v | ∃t · I(v) ∧
P (v, t)}. Then machine m corresponds to a timed system C · ϕ · S such that

– C = (Υ, c, ιC) where c ⊆ Υ × Υ and c ∩ id(Υ) = ∅

– S = (Ω, s, ιS) where s = {v 7→ v′ | ∃t ·G(v, t) ∧ S(v, t, v′)}
– ϕ = {v 7→ t | G(v, t) ∧ ¬H(v, t)} ∩ {(v, t) | P (v, t)}

Note that C · ϕ · S does not depend on the definition of T (t, v, t′). This is
because in an Event-B model there is no meaning to T (t, v, t′) in the sense
that no proof obligation constraints T (t, v, t′) beyond requiring that T (t, v, t′)
is safe and irreflexive (should be imposed by the proof of convergence of tick)
and T (t, v, t′) ⊆ {(v, t) | P (v, t)} × {(v, t) | P (v, t)}. The guard H(v, t) of tick
potentially matters as it would be a part of the deadlock freeness condition. In
practice, the convergence and deadlock freeness of tick are hard to prove and are
rarely attempted. In the Leibnizian time model the P (v, t) constraint is placed in
the observation connection and the irreflexivity property is a part of the observer
model leaving subject S to contend with functional properties.

6 Discussion

We have presented a summary of our ideas on how the Leibnizian model of time
may be used to construct timed Event-B specifications. Our approach offers a
homogenous technique to time modelling where properties of timed models are
expressed and proven in a gradual, refinement-based manner. The approach is
a conservative extension of Event-B. No notational or semantical changes are
necessary and the existing modelling tools have proven adequate.

Our technique does not dictate any specific time domain: we let a modeller
choose the most appropriate abstraction of time – a simple scheduler, a fictious
integer clock or a dense time clock. Both dense and discrete time domains are
supported so that the approach may be used as a part of a toolchain with a wide
range of potential roles including expressing scheduling properties and hard real-
time constraints. The approach has proven to be quite effecient and intuitive:
we were able to tackle several large case studies and, as far as we are aware,
our models are simpler and require a lower verification effort while all proofs are
completely machine-checked.

Due to space constraints, we did not present a larger case study although
one such case study is available at [2]. Many recipes were not discussed. These
include rules for demonstrating the realisability of a timed specification and
several refinement-related recipes. We plan to provide a plug-in to the Rodin
Toolkit [18] for automated generation of the timed systems proof obligations and
a template-based assistant for constructing various kinds of observer processes.

References

1. A. Iliasov and J. Bryans. Dense linear order; An Event-B context encoding. online
at http://www.iliasov.org/fischer/observer.pdf.

155 x 238 mm

180 Alexei Iliasov

2. A. Iliasov and J. Bryans. Event-B development of Fischer’s algorithm. online at
http://iliasov.org/fischer.

3. A. Iliasov and J. Bryans. Supplementary material: proofs and models. online at
http://iliasov.org/ltime.

4. M. Abadi and L. Lamport. An old-fashioned recipe for real time. In Proceedings
of the Real-Time: Theory in Practice, REX Workshop, London, UK, UK, 1992.
Springer-Verlag.

5. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

6. R. Alur and D. L. Dill. Automata for modeling real-time systems. In Proceedings
of the seventeenth international colloquium on Automata, languages and program-
ming. Springer-Verlag New York, Inc., 1990.

7. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal - a tool
suite for automatic verification of real-time systems. In Proceedings of the DI-
MACS/SYCON workshop on Hybrid systems III : verification and control, pages
232–243. Springer-Verlag New York, Inc., 1996.

8. J. W. Bryans, J. S. Fitzgerald, A. Romanovsky, and A. Roth. Patterns for mod-
elling time and consistency in business information systems. In 15th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems. IEEE Computer
Society, 2010.

9. M. Butler and J. Falampin. An approach to modelling and refining timing prop-
erties in B. In Refinement of Critical Systems (RCS), January 2002.

10. D. Cansell, D. Méry, and J. Rehm. Time Constraint Patterns for Event B Develop-
ment. In Formal Specification and Development in B, 7th International Conference
of B Users, 2007.

11. M. J. Futch. Leibniz’s Metaphysics of Time and Space. Springer-Verlag GmbH,
2008.

12. Thai Son Hoang and Jean-Raymond Abrial. Reasoning about liveness properties
in event-b. In ICFEM, pages 456–471, 2011.

13. A. Iliasov. Use case scenarios as verification conditions: event-b/flow approach.
In Proceedings of the Third international conference on Software engineering for
resilient systems, SERENE’11, 2011.

14. K. Lano. The B Language and Method: A Guide to Practical Formal Development.
Springer-Verlag New York, Inc., 1996.

15. Nancy Lynch and Frits Vaandrager. Forward and backward simulations - part ii:
Timing-based systems. Information and Computation, 128.

16. F. Moller and C. Tofts. A temporal calculus of communicating systems. In Pro-
ceedings on Theories of concurrency : unification and extension: unification and
extension, CONCUR ’90, pages 401–415. Springer-Verlag New York, Inc., 1990.

17. J. Rehm. A method to refine time constraints in event B framework. In AVoCS,
2006.

18. RODIN. Event-B Platform. http://www.event-b.org/, 2009.
19. S. Schneider. Concurrent and Real Time Systems: The CSP Approach. John Wiley

& Sons, Inc., New York, NY, USA, 1999.

155 x 238 mm

Proving Timing Properties 181

