
Asynchronous BDD-like structures

Oleg Mayevsky1, Andrey Mokhov2, Danil Sokolov2

1
oleg-maevsky@yandex.ru

2 Newcastle University, United Kingdom
andrey.mokhov@ncl.ac.uk, danil.sokolov@ncl.ac.uk

Abstract. Another attempt to apply BDD-like structures to build dig-
ital systems. The close relationship of BDDs with elementary schemes
of computational algorithms is used. A simple conceptual option for de-
composition of asynchronous computational processes on sub-machines
with BDD-like structure is seen in several examples.

Keywords: binary decision diagrams, asynchronous circuits

1 Introduction

An important property of Binary Decision Diagrams (BDD) is their ability to
canonically and compactly represent Boolean functions, which is attractive in
digital circuit design, and in some cases makes BDDs preferable to other rep-
resentations [1]. A lot of research has been dedicated to the use of BDDs for
synthesis and analysis of circuits in different technologies [2–4]. BDDs were typ-
ically used for implementing the combinational part of control automata in an
‘orthogonal way’ that came both with benefits, such as testability and race free-
dom, as well as drawbacks, such as the requirement for separate descriptions of
the control and operational parts of the system, and, perhaps more importantly,
the sequentiality of described processes. The sequentiality was caused by the
fact that a single BDD could only represent a single Boolean function, which
forced the designer to decompose the combinational part of control into a set of
independently synthesised components that could not be used simultaneously.

In this work we use BDD-like diagrams for the compact representation of
concurrent computations. Thanks to the orthogonality of obtained descriptions,
it is possible to directly map them into efficient asynchronous controllers of large
computation systems. We show that the size of such descriptions significantly
depends on the decomposition between the control and operational parts of the
system.

Section 2 demonstrates a correspondence between BDDs and simple logic
computations on an example. To emphasise the correspondence we show how
BDDs can be converted to Orthogonal Canonical Parameterised Computation
Graphs (OCPCGs) that inherit orthogonality and canonicity – the two key prop-
erties of BDDs. We then discuss OCPCG-based control descriptions and show
how they can be translated to Petri Nets. The rest of the section is dedicated to
graph decomposition, concurrency and synchronisation issues.

155 x 238 mm

208 Oleg Mayevsky, Andrey Mokhov and Danil Sokolov

Section 3 discusses ways of reducing the size of OCPCG descriptions by re-
stricting the labellings of their elements. We use several examples to show how
the size and properties of OCPCGs describing the control part of a system de-
pend on the properties of its operational part, and study restrictions on OCPCG
labellings that preserve the canonicity.

Section 4 concludes the paper with an example of using OCPCGs in the
implementation of the control part of a 5-bit multiplier. It is known that the
corresponding Boolean functions cannot be compactly represented by BDDs,
however we show that OCPCGs admit a simple reformulation of this problem
leading to significant savings in terms of the size of the obtained representations.

2 BDDs and logic computations

Consider a BDD in Fig. 1 describing a Boolean function y = F (x1, x2, x3, x4, x5)
whose truth table is shown in Tab. 1. The terminal nodes 0 and 1 at the bottom
of the BDD correspond to the value that the function has on a particular set
of input variables. This diagram can also be thought of as a control part of a
system, whose task is to execute a particular operation under the condition y = 1
and skip it when y = 0.

Fig. 1: BDD corresponding to the function from Tab. 1.

Let us modify the diagram in Fig. 1 by labelling the arcs leading to the two
terminals by 0 and 1 according to their targets (0 labels may also be omitted
on diagrams, as one can always infer them from remaining 1 labels). We then

155 x 238 mm

Asynchronous BDD-like Structures 209

x1 x2 x3 x4 x5 y x1 x2 x3 x4 x5 y x1 x2 x3 x4 x5 y x1 x2 x3 x4 x5 y

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1
0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0
0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1
0 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 0 1
0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0
0 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1
0 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0

Table 1: Truth table of a Boolean function of 5 variables.

merge the terminals into a new node end, and add another node begin at the top
of the diagram for symmetry. See the result in Fig. 2.

Fig. 2: A computation graph derived from the BDD in Fig. 1.

The newly added nodes begin and end have a different semantics from that
of terminals 0 and 1 in BDDs: instead of denoting the final computed value,
they simply indicate the start and end of a computation process. Note that
the resulting computation graph in Fig. 2 may be local, that is, it may be a
(sequential) part of a larger computation system, which may contain concurrency
and/or cycles, as illustrated in Fig. 3.

All nodes of a computation graph can take part in the computation, similar
to Petri Nets. As an example, we can place a token in the begin node, that

155 x 238 mm

210 Oleg Mayevsky, Andrey Mokhov and Danil Sokolov

Fig. 3: A cyclic computation graph comprised of local processes.

will then travel along the arcs of the graph following the local routing decisions
made in individual nodes according to the values of input variables. Each arc
could in fact correspond to a Petri Net that consumes a single token from a
node, performs a computation process according to usual Petri Net rules, and
then signals about the completion by releasing the token to the next node. In
fact, the whole computation graph can be modelled by a Petri Net if we create
suitable Petri Net fragments corresponding to individual computation nodes,
e.g. as shown in Fig. 4.

Fig. 4: An example fragment Petri Net.

155 x 238 mm

Asynchronous BDD-like Structures 211

3 Labellings

Let us come back to the graph in Fig. 2. The upper half of the graph is dedicated
to the computation of the necessary logic conditions that are used by the lower
half of the graph for actually executing the action associated with y = 1. The
complexity of the computation part eventually determines the complexity of the
hardware that implements it. It is well-known that BDDs often lead to overly
complex circuits when used directly to implement logic computations, compared
to conventional logic synthesis. However, one can consider alternative ways of
labelling the elements of the computation graph in Fig. 2, which can lead to a
reduction in the number of its vertices and therefore in a lower complexity of
the resulting hardware.

As an example, let us change the semantics of the labels in our computation
graph. The label of 1 will now correspond to adding 1 to the current value of y
modulo 2, that is, y ← y⊕ 1. The label of 0 will correspond to y ← y⊕ 0, which
is essentially a no-op. With this approach, one can imagine the token to start
in the node begin with the initial value y = 0, and travel along the arcs of the
graph, undergoing the transformations corresponding to the labels on route to
the destination node end. When the token reaches end, the value of y becomes
the final outcome of the computation. There may be several equivalent labellings
that compute the same Boolean function. Fig. 5 gives an example of a labelling
that is equivalent to the one shown in Fig. 2.

Fig. 5: An equivalent labelling of the graph from Fig. 2.

155 x 238 mm

212 Oleg Mayevsky, Andrey Mokhov and Danil Sokolov

The existence of equivalent labellings means that our new computation
graphs lost an important property inherited from BDDs – the canonicity of
the representation of Boolean functions. Fortunately, it is possible to recover it.

Indeed, there are certain rules we can follow to relabel a computation graph
in order to bring it back to a canonical form. For example, consider an arbitrary
node xn with arcs labelled a, b, c and d, as shown in Fig. 6(left).

Fig. 6: Equivalent relabelling.

Let us try to change the label a to g. Labels b, c and d may need to be
changed too in order to preserve the equivalence. To find out admissible new
labels b′, c′ and d′ we can solve the following system of equations:






g ⊕ c′ = a⊕ c,

g ⊕ d′ = a⊕ d,

b′ ⊕ c′ = b⊕ c,

b′ ⊕ d′ = b⊕ d.

(1)

The equations above use modulo 2 addition ⊕, but in general any additive
group can be used. If the set of labels does not form an additive group with
respect to the chosen addition operator, then the resulting system of equations
may have no solutions or multiple solutions, therefore limiting the freedom of
graph relabelling and/or making the derivation of a canonical labelling more
challenging. On the other hand, if the system of equations is guaranteed to
always have a unique solution, as in the case of (1), then one can fix the label
of a particular arc, e.g. fix the xn = 0 branch to always have label 0, leading to
a canonical labelling of the computation graph.

Once a canonical relabelling is performed, one can reduce the resulting graph
by merging equivalent nodes, similar to the reduction of BDDs. Fig. 5 shows two
pairs of equivalent nodes by dashed arrows; after merging them we obtain the
reduced computation graph shown in Fig. 7.

The system of equations of the form (1) will be analogous for any addi-
tive group, including non-commutative ones, such as real or complex numbers,
vectors, matrices, etc. The issue of commutativity in this context is related to
concurrency. Indeed, if the labels do not commute then the computation order is
important and the graph corresponds to a sequential computation process. On

155 x 238 mm

Asynchronous BDD-like Structures 213

Fig. 7: Reduced computation graph from Fig. 5.

the other hand, if labels commute, e.g. a + b = b + a, then the order in which
a and b are performed does not matter and they may be performed concur-
rently. Most real systems are mixed and involve both sequential and concurrent
computations, which can be represented by general models such as Petri Nets.
The following example illustrates how commutative labels can also be used for
finding further reduction opportunities in computation graphs.

Let us remove the node conditions xn from the graph in Fig. 7 and place
them on the incoming arcs instead, as shown in Fig. 8. In other words, nodes no
longer contain any conditions, and the latter actually become arc labels, which
means variable comparisons are now performed while travelling along arcs. We
therefore have a new set of arc labels {x1, x2, ...} that do not interact in any way
with existing labels {0, 1}, and therefore commute with them. However, we can
no longer relabel arcs as described above, because we have not yet defined the
group operation that acts on the new labels. Despite this, we can already identify
new equivalent nodes that can be merged, as indicated by dashed arrows. The
graph obtained by merging these nodes is shown in Fig. 9.

Let us refer to the new labels {x1, x2, ...} as condition labels. Can we move
these labels from one arc to another? Yes, we can! Below we give one possible
relabelling method, which is not as simple as we would like, but does provide
further intuition into labelled computation graphs.

Let us keep all condition labels in a queue, which is initially empty, and
supports two operations: i) extracting a label at the front of the queue, ii) adding
a new label to the queue, either combining it an with existing label corresponding
to the same control variable (using a group operation defined below), or adding

155 x 238 mm

214 Oleg Mayevsky, Andrey Mokhov and Danil Sokolov

Fig. 8: Moving conditions from nodes to arcs.

Fig. 9: Reducing the graph in Fig. 8.

it to the back of the queue if it is the first occurrence of the variable in the queue.
Note that labels corresponding to different variables do not interact with each

155 x 238 mm

Asynchronous BDD-like Structures 215

other, therefore it is sufficient to define an operation only on labels corresponding
the the same variable.

Let x stand for a control variable. Then we can define a group operation +
for combining labels corresponding to this variable according to Tab. 2. This is
an infinite commutative group.

+ 0 x −x 2 · x −2 · x . . .

0 0 x −x 2 · x −2 · x . . .

x x 2 · x 0 3 · x −x . . .

−x −x 0 −2 · x x −3 · x . . .

2 · x 2 · x 3 · x x 4 · x 0 . . .

−2 · x −2 · x −x −3 · x 0 −4 · x . . .

. .

Table 2: Combining condition labels corresponding to variable x

Label x in this group means: apply x as the branching condition at the current
node. Label 2 · x (here the dot is not a group operation, it simply denotes the
multiplicity of the label) means: apply x as the branching condition at the current
node as well as the next node. Label −x means: skip x and use the next label in
the queue as the branching condition. This is a complex rule and will likely incur
significant hardware cost in the implementation. Furthermore, to further reduce
the size of the computation graph it may be necessary to allow multiple labels
on each arc in the graph, which is also costly. Nevertheless, this approach may
be practically beneficial for certain applications, where the aim is to minimise
the number of branches. The graph obtained by labelling arcs using the group
operations in Tab. 2 and its reduced variant are shown in Fig. 10.

To obtain the graph shown in Fig. 10(left) we use the following relabelling
approach. Our end goal is to have 0 labels on all false arcs of the graph. To
achieve that we first move variable x1 to the topmost arc. We then remove
label x2 from the subsequent false arc by subtracting x2 from both outgoing
branches, and adding x2 to the incoming arcs. This procedure is then repeated
for all occurrences of x3, until all false arcs are free from it, and so forth.

Let us now demonstrate how the resulting graph can be used for computation.
Consider variable assignment 11010 (x1 corresponds to the leftmost bit). Starting
at the arc leaving node begin, we extract the first element from the queue and
since x1 = 1 we follow the true arc of the subsequent node of the graph (see
Fig. 10b). The arc holds two labels: the first one tells us that we need to update
the value of y by adding 1 to it: y ← y ⊕ 1 = 0 ⊕ 1 = 1, the second one tells
us that condition variable x4 will have to be skipped, therefore we erase it from
the queue and proceed. These two markers do not interact and hence commute.
Once both of them are handled, we arrive at the next node (denoted as 3 in
Fig. 10b), and the next variable in the queue that we check is x2. Since x2 = 1
we travel along the arc leading to node 4, updating y ← y ⊕ 1 = 1 ⊕ 1 = 0

155 x 238 mm

216 Oleg Mayevsky, Andrey Mokhov and Danil Sokolov

(a) Initial transformation. (b) Reduced graph.

Fig. 10: Graph Fig. 9 transformed using condition labels.

again and adding x5 to the back of the control label queue. The next variable to
check is x3 = 0, hence we follow the false arc, which contains label 0 only (as a
consequence of our relabelling algorithm). We do nothing and now check x5 = 0
(remember, we erased x4 from the queue), which leads us directly to node end,
where we report the computation outcome: y = 0 (upon checking Tab. 1 we see
that this is the correct value).

3.1 Labellings with two operations

The use of independent (commutative) labels allows us to model a system of
Boolean functions with a single computation graph. However, the more inde-
pendent labels we can have on an arc and the more different values a single label
can take, the fewer opportunities for graph reduction will be available, because
the number of ‘unmergeable’ nodes grows. As we have seen in the previous sub-
section, by introducing a richer algebraic structure to labels sometimes allows us
to find new opportunities for graph reductions without sacrificing the canonicity
of the representation. We can take this idea further, and consider labels that
form richer algebraic structures with two operations, that still guarantee unique
solutions to the system of equations arising in the process of graph relabelling.
For finite sets of labels such algebras are Galois fields; for infinite sets – division
rings.

An algebraic structure with two operations is a powerful tool for graph rela-
belling. We can associate pairs of labels with an arc of a computation graph: one

155 x 238 mm

Asynchronous BDD-like Structures 217

for the additive component, and another for the multiplicative one. The additive
component is added to the labels reachable during the computation, while the
multiplicative one is multiplied by them.

The relabelling process is arranged in two stages. In the first stage we asso-
ciate additive labels with all arcs making sure that false arcs contain 0 values
(as before). In the second stage, we add multiplicative labels to all arcs except
for those pointing to node end. We then normalise the pairs so that false arcs
contain exactly the pair (0, 1), the additive zero and the multiplicative identity.

Let us clarify the above using an example of a system of four Boolean func-
tions of four input variables x1..x4 describing a 2-bit binary multiplier. Tab. 3
shows the truth table for all four functions y1..y4 of the multiplier.

x1 x2 x3 x4 y1 y2 y3 y4

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

Table 3: Truth table of a 2-bit binary multiplier

Let us use 4-bit labels with addition + being component-wise addition mod-
ulo 2, and multiplication ∗ defined modulo an irreducible polynomial e4 + e+ I
where e = 0010 is the generator. Below are all 24 = 16 labels of the resulting
algebraic structure:

– e = 0010 – the generator,
– e2 = 0100,
– e3 = 1000,
– e4 = e+ I = 0011,
– e5 = e2 + e = 0110,
– e6 = e3 + e2 = 1100,
– e7 = e3 + e+ I = 1011,
– e8 = e2 + I = 0101,

155 x 238 mm

218 Oleg Mayevsky, Andrey Mokhov and Danil Sokolov

– e9 = e3 + e = 1010,
– e10 = e2 + e+ I = 0111,
– e11 = e3 + e2 + e = 1110,
– e12 = e3 + e2 + e+ I = 1111,
– e13 = e3 + e2 + I = 1101,
– e14 = e3 + I = 1001,
– e15 = I = 0001 – the identity element,
– ∅ = 0000 – the zero element.

As the first step we build a computation graph according to the specification
given in Tab. 3 using only additive labelling, that is using only the modulo 2
addition operation for combining labels along computation paths. The resulting
graph is shown in Fig. 11.

Fig. 11: Additive labelling.

There are no pairs of equivalent nodes, hence the obtained graph cannot
be reduced. However, we can now relabel the graph using the multiplication
operation, by factoring out common factors from outgoing arcs and moving them
up to the incoming arcs in a canonical manner. After applying the relabelling to
the lower layer of the graph we obtain a new graph shown in Fig. 12. We explain
the used notation for new labels below.

We use so-called Polish prefix notation for compact representation of the
effect (function) that additive and multiplicative labels have on values travelling
along arcs. For example, label +∅ ∗ I should be interpreted as y ← ∅ + I ∗ y,
where y represents the current value of the computation, just as in the examples

155 x 238 mm

Asynchronous BDD-like Structures 219

Fig. 12: Multiplicative labelling of the lower layer of the graph in Fig. 11.

before. The use of Polish notation allows us to avoid parentheses on the arcs
of the graph. Alternatively, one can use lambda calculus for a more general and
familiar (yet somewhat more verbose) representation.

Let us now define the relabelling rule using the properties of addition and
multiplication of our Galois field. As before, consider a node xn with incoming
and outgoing arcs as shown in Fig. 13. If we would like to relabel the graph by
changing a to g, how do we need to change the other labels?

Fig. 13: Relabelling with two operations.

155 x 238 mm

220 Oleg Mayevsky, Andrey Mokhov and Danil Sokolov

The following four equations need to be satisfied:






c+ x ∗ g = c+ a ∗m,

d+ y ∗ g = d+ a ∗ n,

c+ x ∗ b′ = c+ b ∗m,

d+ y ∗ b′ = d+ b ∗ n.

(2)

Unique solutions of (2) have the following form:






x = g−1
∗ a ∗m,

y = g−1
∗ a ∗ n,

b′ = g ∗ a−1
∗ b.

(3)

Using the obtained solution we can complete the relabelling procedure of the
lower layer of our example graph, as shown in Fig. 14.

Fig. 14: Canonical relabelling of the lower layer of the graph in Fig. 12.

After the canonical relabelling all nodes of the lower layer become equivalent
and can therefore be merged as shown in Fig. 15.

We continue the process by relabelling the previous (third) layer, leading the
graph shown in Fig. 16 containing two new equivalent nodes that will further be
merged. By proceeding analogously we complete the graph relabelling obtaining
the graph shown in Fig. 17.

How do we use the obtained computation graph? We start at the node begin
and traverse the graph according to the values of conditions x1..x4 until we reach

155 x 238 mm

Asynchronous BDD-like Structures 221

Fig. 15: Merging equivalent nodes of the lower layer in the graph in Fig. 14.

Fig. 16: Relabelling of the third layer.

the node end, writing down the computation result in the form of an expression
in Polish prefix notation. We then evaluate the expression and interpret the
result as a 4-bit Boolean vector y1..y4. For example, let x1 = x2 = x3 = x4 = 1,
i.e. the input Boolean vector is 1111. This vector corresponds to the rightmost

155 x 238 mm

222 Oleg Mayevsky, Andrey Mokhov and Danil Sokolov

Fig. 17: Complete graph relabelling.

computation path in the graph in Fig. 17. The resulting expression is (+∅∗e+∅∗
e3+e∗e8)I. We clarify the evaluation of the expression in Fig. 18. The resulting
Boolean vector is 1001, which matches the specification in Tab. 3.

Fig. 18: Evaluating of the resulting expression for input 1111.

The presented approach to the reduction of the size of computation graphs
is inspired by differential BDDs [5].

155 x 238 mm

Asynchronous BDD-like Structures 223

b1 b2 b3 b4 b5 Operation

0

0

0
0

0 r1; ∅; ∅; ∅; ∅; ∅; ∅; ∅; ∅; ∅
1 r1; r2; ∅; ∅; ∅; ∅; ∅; ∅; ∅; ∅

1
0 r1; r2; r3; ∅; ∅; ∅; ∅; ∅; ∅; ∅
1 r1; r2; r3; r2; ∅; ∅; ∅; ∅; ∅; ∅

1
0

0 r1; r2; r3; r3; ∅; ∅; ∅; ∅; ∅; ∅
1 r1; r2; r3; r3; r2; ∅; ∅; ∅; ∅; ∅

1
0 r1; r2; r3; r2; r3; ∅; ∅; ∅; ∅; ∅
1 r1; r2; r3; r2; r3; r2; ∅; ∅; ∅; ∅

1

0
0

0 r1; r2; r3; r3; r3; ∅; ∅; ∅; ∅; ∅
1 r1; r2; r3; r3; r3; r2; ∅; ∅; ∅; ∅

1
0 r1; r2; r3; r3; r2; r3; ∅; ∅; ∅; ∅
1 r1; r2; r3; r3; r2; r3; r2; ∅; ∅; ∅

1
0

0 r1; r2; r3; r2; r3; r3; ∅; ∅; ∅; ∅
1 r1; r2; r3; r2; r3; r3; r2; ∅; ∅; ∅

1
0 r1; r2; r3; r2; r3; r3; r2; ∅; ∅; ∅
1 r1; r2; r3; r2; r3; r2; r3; r2; ∅; ∅

1

0

0
0

0 r1; r2; r3; r3; r3; r3; ∅; ∅; ∅; ∅
1 r1; r2; r3; r3; r3; r3; r2; ∅; ∅; ∅

1
0 r1; r2; r3; r3; r3; r2; r3; ∅; ∅; ∅
1 r1; r2; r3; r3; r3; r2; r3; r2; ∅; ∅

1
0

0 r1; r2; r3; r3; r2; r3; r3; ∅; ∅; ∅
1 r1; r2; r3; r3; r2; r3; r3; r2; ∅; ∅

1
0 r1; r2; r3; r3; r2; r3; r2; r3; ∅; ∅
1 r1; r2; r3; r3; r2; r3; r2; r3; r2; ∅

1

0
0

0 r1; r2; r3; r2; r3; r3; r3; ∅; ∅; ∅
1 r1; r2; r3; r2; r3; r3; r3; r2; ∅; ∅

1
0 r1; r2; r3; r2; r3; r3; r2; r3; ∅; ∅
1 r1; r2; r3; r2; r3; r3; r2; r3; r2; ∅

1
0

0 r1; r2; r3; r2; r3; r2; r3; r3; ∅; ∅
1 r1; r2; r3; r2; r3; r2; r3; r3; r2; ∅

1
0 r1; r2; r3; r2; r3; r2; r3; r2; r3; ∅
1 r1; r2; r3; r2; r3; r2; r3; r2; r3; r2

Table 4: Decision tree for a 5-bit sequential multiplier.

4 Example of a sequential computation process

Consider a sequential computation process corresponding to the multiplier of 5-
bit non-negative integer numbers. We have a 10-bit asynchronous accumulating
register Y that supports three operations: i) add a given 5-bit value A to its
current content: Y ← Y +A, ii) double the currently stored value: Y ← Y + Y ,
and iii) reset to zero: Y ← 0. The complete binary decision tree for all input
vectors is shown in Tab. 4; the table uses the following notation for brevity:

– ∅ corresponds to the no-op (doing nothing),
– r1 corresponds to the reset operation: Y ← 0,
– r2 corresponds to addition: Y ← Y +A,
– r3 corresponds to doubling: Y ← Y + Y .

155 x 238 mm

224 Oleg Mayevsky, Andrey Mokhov and Danil Sokolov

A list of operations separated by semicolons corresponds to the sequential
execution of listed operations from left to right.

(a) Canonical. (b) Not canonical.

Fig. 19: Computation graphs for the 5-bit multiplier.

The leafs of the decision tree are all distinct, therefore the only way to achieve
any reduction in the size of the computation graph is to introduce an algebraic
structure on the arc labels. Let us first consider label r1, which stands for the
reset of the register. To define an additive group we use ∅ as the zero label,
and introduce the negative label −r1, which stands for undo the reset operation.
Supporting such undo operations in hardware may be overly expensive, therefore
we do not want them to appear the final computation graph, however we are
still free to use them analytically in intermediate derivations. We extend the
additive group on labels r2 and r3 in a similar manner, although their negative
labels have more straightforward hardware implementations: −r2 means subtract
A from Y : Y ← Y −A, while −r3 means divide Y by 2 : Y ← Y/2. The resulting
group is defined by the following equations:

– r1 + r1 = 2 · r1, r1 − r1 = ∅,−r1 − r1 = −2 · r1, . . .;
– r2 + r2 = 2 · r2, r2 − r2 = ∅,−r2 − r2 = −2 · r2, . . .;
– r3 + r3 = 2 · r3, r3 − r3 = ∅,−r3 − r3 = −2 · r3,

Using the relabelling system of equations similar to (1), one can derive the
canonical computation graph shown in Fig. 19a. We have not considered the

155 x 238 mm

Asynchronous BDD-like Structures 225

optimality with respect to the register operations, however, and one can see that
some of the resulting computation labels contain redundant shifting operations
(doubling labels r3 followed by immediate division by 2 labels −r3). This is a
cost of choosing a particular canonical relabelling. If canonicity can be sacrificed,
it is possible to obtain a more efficient labelling shown in Fig. 19b, which avoids
negative labels.

References

[1] Alex Semenov, Alex Yakovlev: ”Combining Partial Orders and Symbolic Traversal
for Efficient Verification of Asynchronous Circuits”, 1995.

[2] ”Binary Decision Diagram (BDD) adiabatic charging logic circuit”, EP 1331738
A1, http://www.google.com.tr/patents/EP1331738A1?cl=en

[3] Aiqun Cao, Cheng-Kok Koh: ”Non-crossing ordered BDD for physical synthesis of
regular circuit structure”, School of Electrical and Computer Engineering, Purdue
University West Lafayette, IN 47907-1285, 2003.

[4] Robert Wille, Oliver Keszocze, Clemens Hopfmuller, Rolf Drechsler: ”Revers BDD-
based synthesys for splitter-free optical circuits”, Institute of Computer Science, Uni-
versity of Bremen, Germany, Cyber Physical Systems.

[5] Anuchit Anuchitanukul, Zohar Manna, Toms E. Uribe: ”Differential BDDs”, In J.
van Leeuwen, ed, Computer Science Today , Lecture Notes in Computer Science, vol.
1000, pp. 218-233, Springer-Verlag, 1995.

155 x 238 mm

226 Oleg Mayevsky, Andrey Mokhov and Danil Sokolov

