
Asynchronous Clocks

Simon Moore
University of Cambridge

Abstract. Asynchronous circuits typically operate in a clock-free man-
ner. That said, low-level timing characteristics like equipotential regions
and matched delays are often employed in self- timed circuits, a class of
asynchronous circuits. This paper takes this a step further and reviews
approaches to generating clocks inspired by asynchronous circuits, from
frequency distribution using Muller C-element chains through to pausible
clocks and asynchronously oscillating grids.

1 Introduction

After many years of discussion with Professor Alex Yakovlev and Professor David
Kinniment in Newcastle, and other members of the asynchronous circuits com-
munity, I am fortunate to have gained a deeper understanding timing in circuits.
With that understanding brings enlightenment but not always back-and-white
clarity. The question of what is a clock and what is not a clock is a grey area
when one looks closely. Proponents of asynchronous (or self-timed) circuits be-
lieve that clocks are an evil and that clock-less circuits have many virtues. This
paper reviews the heretical approach of using asynchronous (clock-less) circuits
to generate clocks, and how the boundary between asynchrony and synchrony
can be blurred.

2 Clocking basics

In its simplest form, a clock for a digital circuit comes from a precision timing
source like a quarts crystal. The precision timing source is then distributed across
a chip, to the clock inputs of components like the D flip-flop (DFF). The DFFs
provide storage of state and also control the rate of data propagation by delaying
data output until the next clock edge. Thus, data is advanced on the clock edge.
To provide the illusion that all state updates happen simultaneously (so called
synchronous digital circuits or clocked digital circuits), the clocks to each DFF
are expected to arrive simultaneously (synchronously). This provides the illusion
of discrete (digital) time to go with the discrete (digital) signal levels. In practise,
a truly synchronous clock does not exist. Instead we must be satisfied with a
close approximation that, within tolerances (e.g. setup and hold times of the
DFFs), provides an accurate enough implementation of the desired synchronous
abstraction, which arguably makes the circuit designer’s life easier.

155 x 238 mm

Asynchronous Clocks 227

2 FIXME

3 Asynchronous clock source

Many clocked circuit designers like to provide an external clock locked to a highly
stable quartz crystal. It is ironic that the performance of their circuits will vary
with temperature, so the clock frequency has to be set against the worst case
path delay between synchronising elements at the worst case temperature. Much
performance is, therefore, thrown on the floor when the circuits are operating at
more typically temperatures. But this approach does preserve the digital time
abstraction.

External crystals typically operate at a much lower rate than the desired clock
frequency. A phase locked loop is often used to multiply this lower frequency
stable clock up to a higher frequency on-chip clock.

An alternative clock generation strategy is to use a delay-line. Some low-cost
microcontrollers simply use an inverter ring to provide a clock frequency. Typi-
cally the resulting clock frequency varies significantly between devices and with
device temperature. We investigated the possibility of constructing a tuneable
delay-line that can be self-calibrated from a low-frequency and power-efficient
watch crystal [7]. An overview is presented in Figure 1 with details of the delay-
line cell in Figure 2.

QD

dout

din

32.768kHz

decoupler
arbiter

Q element

control module

swapack

swapreq

sclk slr fastmode

cout

cin

D1

optional

sclk slr fastmode

dsel

cin
din dout

cout

double buffered
delay line

Fig. 1. Overview of an asynchronous self-calibrating delay-line (from [7])

Critical to the functional behaviour is the Q-element [5] used to send both
rising and falling events through the delay line before acknowledging dout. The
Q-element ensures that the arbiter is not released until the delay line has been
through both rising and falling edge phases. Analysis of the behaviour of our
Q-element implementation (Figure 4) was undertaken using signal transition
graphs (STGs) [8, 9], a form of Petri net, with assistance from the Petrify tool [2].
Professor Yakovlev was pivotal in establishing STGs and the creation of the
Petrify tool.

155 x 238 mm

228 Simon Moore

FIXME 3

QD
m
u
x

0

1

sinl
sout

sinr

orout
orin

dout
din Delay line

Control structure

Completion

delay element

tap

sclk
slr

Fig. 2. Asynchronous delay-line cell (from [7])

ba

aa

ar

br

ar+

ba−

ba+

ar−

aa+

br−

br+

aa−

Fig. 3. Asynchronous decoupler with behaviour as an STG (from [7])

b

y

x

a

a+ y+ b+ y−

b−x+a−x−

Fig. 4. Asynchronous Q-element with behaviour as an STG (from [7])

155 x 238 mm

Asynchronous Clocks 229

4 FIXME

4 Asynchronous clock distribution

Clock distribution is the art of broadcasting a clock across a chip so that its
frequency and phase appear identical at every clocked element (e.g. DFF). Fre-
quency distribution, in contrast is rather easier. One could, for example, con-
struct a long chain of inverters (Figure 5a) and arrange them in a serpentine
manner over the surface of the chip. This would (almost) manage to broadcast
the frequency. I say “almost” because a pulse proceeding down an inverter chain
will undergo pulse shrinkage, so it is unlikely to reach the end of a long chain.
On the other hand, an asynchronous micropipeline made of Muller-C elements
(Figure 5b) will successfully distribute the frequency and will guarantee that
pulse shrinkage will never obliterate a pulse as it carefully copies the pulse (or
token) to the next Muller C-element before destroying the source.

A conventional clock distribution approach uses a H-tree fractal over the
surface of the chip. This works quite well, though still presents potential discon-
tinuities in clock phase (e.g. see nodes A and B in Figure 6 which are clocked
from different branches but are physically adjacent). Self-calibration in the tree
can help. Also, sometimes a grid is used at the lowest level to crowbar the H-tree
leaves together.

Rather than drive a grid from a H-tree, Dr Scott Fairbanks and I investigated
the use of a micropipeline structure laid out as a grid to form a self-oscillating
clock distribution system (both frequency and phase) [3]. This originated from
earlier work on the one-dimensional asP micropipline structure [1] (see Figure 7a)
and was evolved into a two-dimensional structure (Figure 7c). The grid inputs are
mixed using the circuit in Figure 8. Pull-up and pull-down nodes are alternated
across a grid. Pull-up nodes use the mixer to identify when the majority of
inputs are low and then pulls high. Pull-down nodes do the inverse. Thus the
grid oscillates in unison and measurements indicate very low skew even in the
presence of device variability.

Fig. 5. (a) inverter and (b) micropipeline clock frequency distribution

155 x 238 mm

230 Simon Moore

FIXME 5

Fig. 6. Simplified H-tree clock distribution

North

South

EastWest

North

South

EastWest

North

South

EastWest

North

South

MIX MIX

Pull-Down Pull-Up

Drive

Amplification

Detection

Fig. 7. Evolution from dynamic asP to a distributed clock generator (from [3])

155 x 238 mm

Asynchronous Clocks 231

6 FIXME

Fig. 8. Clock mixer for the distributed clock generator (from [3])

5 Globally asynchronous but locally synchronous circuits

Given that global synchronisation is difficult to achieve, one option is to build
chips which are globally asynchronous but locally synchronous (GALS). Since
local synchrony is easier to achieve, it allows the clock (synchronous) design
method to be used in the small (e.g. a processor core) with asynchronous inter-
connect between these clocked islands. Global frequency distribution might still
be used to control the rate of transfer of information between blocks, making it
easy to use credit-based flow control.

Moving data between synchronous domains is not without its problems, how-
ever. Sampling a “data ready” bit or some other flow control information coming
from another clock domain is likely to result in metastability in the sampling
flip-flop. Using a two-flop synchroniser is one approach and with careful design
it is possible to reduce the mean-time between failure (MTBF) to once in the
lifetime of the universe [4]. However, with incorrect design, or device variability
reducing the performance of the sampling flip-flop, the MTBF can easily become
less than a minute.

In order to avoid metastability altogether, it is possible to use pausible clocks
to ensure completely safe data transfer. Dr Robert Mullins and I undertook a
great deal of work in this area with the key final paper being Demystifying

Data-Driven and Pausible Clocking Schemes [6]. Dr Robert Mullins and I were
delighted to collaborate with Professor David Kinniment and Professor Alex
Yakovlev on the book Synchronization and Arbitration in Digital Systems [4]
with several circuits from [6] being reproduced.

Pausible clocks are based around the use of a delay line clock source (Fig-
ure 9a) that can be transformed into a data driven clock (Figure 9b) where a
local clock signal is produced whenever there is new input data. This is, however,
rather restrictive since one typically requires that the local clock continues to
oscillate regardless of whether there is new data or not. To this end, the circuit
in Figure 9d (an evolution from the circuits in Figure 9a–c) can be used so that

155 x 238 mm

232 Simon Moore

FIXME 7

delay line

Clock

C

Clock

Req

Ack

(a) Ring Oscillator (b) Data-Driven Clock

C

Clock

Req Grant

Clock

C

M
U

T
E

X

(c) Ring Oscillator (II) (d) Pausible Clock

Fig. 9. Pausible and Data-Driven Local Clocks (from [6])

the clock is only paused to safely transfer new data. Using this basic concept,
a complete GALS system can be produced (see Figure 10). For further details,
see [6].

Conclusions

Just as digital circuits abstract the analog world into discrete ones and zeros,
clocked synchronous circuits abstract continuous time into discrete ticks. In much
the same way that it can be useful to analyse digital circuits in their true analog
form, it can also be helpful to analyse the true asynchronous (or analog-time)
behaviour using techniques like STGs that Professor Yakovlev has been pivotal in
creating. Moreover, the ability to mix clocked and asynchronous circuits enables
a broader range of design tradeoffs. As we face challenges in clock distribution
and device variability for future CMOS circuits, asynchronous techniques may
well become critical to meet design requirements. Finally, it should be noted that
we can use asynchronous techniques to control and generate clocks, blending
synchrony with asynchrony.

155 x 238 mm

Asynchronous Clocks 233

8 FIXME

A
s
y
n
c
h
ro

n
o
u
s

F
IF

O

r_
i

a
_
i

a
_
o

r_
o

d
_
i

d
_
o

A
s
y
n
c
h
ro

n
o
u
s

F
IF

O

r_
i

a
_
i

a
_
o

r_
o

d
_
i

d
_
o

C
lo

c
k

E
n

C
lo

c
k

C
+C
lo

c
k

C

d
a
ta

_
o
u
t

re
q
_
o
u
t

a
c
k
_
o
u
t

s
tre

tc
h
_
b

O
u

tp
u

t P
o

rt In
te

rfa
c
e

re
q

a
c
k

E
n

MUTEX

re
q
_
in

a
c
k
_
in

d
a
ta

_
in

In
p

u
t P

o
rt In

te
rfa

c
e

C
lo

c
k

s
y
n
c
_
n
e
w

d
a
ta

s
y
n
c
_
d
a
ta

_
o
u
t

s
y
n
c
_
d
a
ta

_
in

s
y
n
c
_
re

q

C
lo

c
k

C
lo

c
k
 G

e
n

e
ra

to
r T

e
m

p
la

te

C
lo

c
k

o
u

t
in

S
Y

N
C

H
R

O
N

O
U

S

C
O

R
E

C
lo

c
k

S
Y

N
C

.

C
O

R
E

A
s
y
n

c
. F

IF
O

L
o

c
a
l C

lo
c
k
 G

e
n

e
ra

to
r

a
n

d
 W

ra
p

p
e
r

N
e
w

 D
a
ta

F
la

g
s

F
ig
.
1
0
.
A

lo
ca
lly

-clo
ck
ed

sy
n
ch
ro
n
o
u
s
b
lo
ck

w
ith

a
p
a
u
sib

le-clo
ck

in
p
u
t
p
o
rt

a
n
d
reg

istered
/
stretch

a
b
le-clo

ck
o
u
tp
u
t
p
o
rt

(fro
m

[6
])

155 x 238 mm

234 Simon Moore

FIXME 9

References

1. Control structure for a high- speed asynchronous pipeline (1999)
2. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify:

a tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. IEICE Transactions on information and Systems 80(3), 315–325 (1997)

3. Fairbanks, S., Moore, S.W.: Self-timed circuitry for global clocking. In: 11th IEEE
International Symposium on Asynchronous Circuits and Systems. pp. 86–96 (March
2005)

4. Kinniment, D.J.: John Wiley & Sons, Ltd (2008)
5. Martin, A.J.: Synthesis of asynchronous VLSI circuits. In: Straunstrup, J. (ed.)

Formal Methods for VLSI Design, chap. 6, pp. 237–283. North-Holland (1990)
6. Mullins, R., Moore, S.: Demystifying data-driven and pausible clocking schemes.

In: 13th IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC’07). pp. 175–185 (March 2007)

7. Taylor, G., Moore, S., Wilcox, S., Robinson, P.: An on-chip dynamically recalibrated
delay line for embedded self-timed systems. In: Advanced Research in Asynchronous
Circuits and Systems, 2000. (ASYNC 2000) Proceedings. Sixth International Sym-
posium on. pp. 45–51 (2000)

8. Yakovlev, A., Lavagno, L., Sangiovanni-Vincentelli, A.: A unified signal transition
graph model for asynchronous control circuit synthesis. In: Computer-Aided De-
sign, 1992. ICCAD-92. Digest of Technical Papers., 1992 IEEE/ACM International
Conference on. pp. 104–111 (Nov 1992)

9. Yakovlev, A., Lavagno, L., Sangiovanni-Vincentelli, A.: A unified signal transition
graph model for asynchronous control circuit synthesis. Formal Methods in System
Design 9(3), 139–188 (1996)

155 x 238 mm

Asynchronous Clocks 235

