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Abstract A large number of models that are employed in the field of
concurrent systems’ design, such as Petri nets, Signal Transition Graphs,
gate-level circuits, dataflow structures have an underlying static graph
structure. Their semantics, however, is defined using additional entities,
e.g. tokens or node/arc states, which collectively form the overall state
of the system. We jointly refer to such formalisms as Interpreted Graph
Models (IGMs).
Workcraft is a framework for capturing, simulation, synthesis and
analysis of IGMs. It provides an extendible cross-platform plugin-based
front-end to a variety of computationally-intensive command-line back-
end tools. This paper gives the developers’ perspective on Workcraft

and overviews its evolution.

1 Introduction

We want our research to be used to make the world a better place. However,
technology transfer is challenging in practice due to a number of obstacles. One
of the primary research outcomes is scientific publications. However, engineers do
not have time to read them and do not normally have a necessary background to
comprehend and apply that knowledge, or even find the necessary publications.

One of the ways to make this knowledge more accessible is to encapsulate it in
software tools. Ideally, these tools should be usable by non-experts. In practice,
however, the situation is very different. A research tool is typically developed
up to a point when it can produce a table of results for a research paper. The
motivation to develop it any further is diminished afterwards – in the current
“publish or perish” academic culture it is usually more advantageous to start
exploring new topics for writing another paper, and it is also more interesting
than polishing old tools. Moreover, research funding is usually granted for a very
limited period of time and so the academics, researchers, and PhD students who
developed the tool leave or get allocated to different projects. Hence, much of
research software has only a command-line interface with cryptic options, poor
documentation, limited error handling, requires modifying the source code to
adjust the tool to a particular variant of a problem and is not maintained.

Integrating several research tools into a coherent flow presents further chal-
lenges. File formats are often invented by the creators of the tools and are non-
standard. Furthermore, there are often gaps in the flow that have to be patched
to complete it. This requires a large amount of slog with no perspective of pub-
lishing its results. Therefore, using research software in a real industrial flow is
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often infeasible. The net result of the above is that much knowledge remains bur-
ied in publications or “experts-only” tools and is not accessible to practitioners.

Workcraft is unusual in several respects. There have been a series of fun-
ded projects related by the common topic of application of Petri nets to circuit
design. This allowed to have relatively stable group of developers and sufficient
time to make the tool usable. Furthermore, early versions of the tool attracted
industrial interest, which motivated putting more effort into user interface de-
velopment. In addition, several previously developed command-line tools were
deployed within Workcraft as back-ends. In turn, the success of Workcraft
and the perspectives of industrial exploitation motivated the developers of back-
ends to maintain and enhance the functionality of these tools.

As the result, Workcraft opens access to the goodness hidden in research
tools. The main enabling factors for this to happen are:

– Availability – open-source front-end and plugins, permissive freeware licenses
for back-end tools, as well as frequent releases with bug fixes and features
requested by users.

– Usability – elaborated GUI that was developed with much feedback from the
users.

– Portability – it runs on Windows, Linux, and Mac OS X operating systems.
– Extendibility – the framework is designed to easily include new IGMs and

interfaces to back-end tools as plugins.
– Automation – several complete design flows have been implemented by

bridging the gaps between back-ends and converting file formats.

The focus on availability, usability, portability and extendibility, along with
extensive networking, has proven effective – there is a large and diverse user base.
For example, in 2015 there were 4.4k downloads from 1.2k unique IPs and 11.1k
visits to http://workcraft.org/, 4.7k of them from unique IPs. During that
year there were 4 releases with 49 bug fixes and 23 new features. We do not know
all Workcraft users, but one can identify at least the following categories:
developers, industrial users, undergraduate students, academics, researchers, and
PhD students.

In this paper we give the developers’ perspective on Workcraft. The main
principles of Workcraft architecture and its design flow are outlined in Sec-
tions 2 and 3. Supported IGMs together with relevant case studies use are presen-
ted in Sections 4 and 5. We analyse the categories of Workcraft users in
Section 6 and overview the timeline of Workcraft evolution in Section 7.

2 Workcraft philosophy

In this section we discuss several basic principles/ideas underlying Workcraft.
Some of them are visible to the user and aimed at enhancing the user experience.
Others are concerned with the internal organisation and aimed at simplifying
the integration of new research tools.
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2.1 Interpreted Graph Models

A large number of models that are employed in the field of concurrent systems’
design, such as Petri nets, Signal Transition Graphs, gate-level circuits, dataflow
structures have an underlying static graph structure. Their semantics, however, is
defined using additional entities, e.g. tokens or node/arc states, which collectively
form the overall state of the system. We jointly refer to such formalisms as
Interpreted Graph Models (IGMs) [21].

The similarities between the interpreted graph models allow for links between
different formalisms to be created, either by means of adapter interfaces or by
conversion from one model type into another. This greatly extends the range of
applicable modelling and analysis techniques.

Workcraft is designed to provide a flexible common framework for de-
velopment of interpreted graph models, including visual editing, (co-)simulation
and analysis. The latter can be carried out either directly or by mapping a model
into a behaviourally equivalent model of a different type (usually a Petri net or
Signal Transition Graph). Hence the user can design a system using the most
appropriate formalism (or even different formalisms for the subsystems), while
still utilising the power of Petri net analysis techniques. In Section 4 there is a
summary of the currently supported IGMs.

2.2 Front-end vs. back-end

Workcraft provides front-end to a number of command-line back-end tools,
such as Petrify [10,2] and UnfoldingTools toolkit [3]. The calls to back-end
tools are transparent to the user: Workcraft automatically chooses the correct
command-line parameters, parses the output of the tools and presents it to the
user in an appropriate graphic form. For example, to check whether a digital
circuit conforms to its environment the user needs to click a single menu item.
In response the following sequence of actions is performed by the front-end:

1. The circuit is converted to an equivalent STG.
2. The internal signal transitions in the environment STG (it models the con-

tract between the circuit and its environment) are replaced by dummies –
this is required for technical reason.

3. The STGs obtained in the previous two steps are composed by calling
PComp back-end with appropriate command line parameters.

4. The front-end expresses the conformation property as an expression in
Reach language. Parts of this expression are specific to the circuit under
test and need to be calculated by the front-end.

5. The composed STG is unfolded by calling Punf back-end.
6. The resulting unfolding prefix and Reach expression are passed to MPSat

back-end that performs verification.
7. The verification results are parsed by the front-end. If the property holds

then an appropriate message is displayed. Otherwise the violation trace of
the composed STG reported by MPSat is projected to the circuit, and the
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user can execute it step-by-step to debug the problem. All the capabilities
of the front-end simulator are available, e.g. navigation within the trace,
branching, etc.

Each of the above steps looks trivial and “boring” (and hence unpublishable) from
the research point of view. However, checking conformation is a frequent task
during the circuit design. Performing all the above steps manually would have
been very tedious and error-prone, discouraging the casual user from applying
formal verification. Hence using Workcraft makes it feasible for the user to
harness the power of research tools, which helps to catch the bugs early in the
design process, and reduces the risk of an incorrect circuit going into production.

2.3 Plugin-based architecture

Extendibility is an important part of Workcraft philosophy and this is reflec-
ted in its plugin-based architecture [23]. In particular, there is a framework for
adding new IGMs and integrating new back-end tools. This framework provides a
number of standard services available to the plugins, such as (de-)serialisation of
IGMs, common editing features (creation of nodes and connections, undo-redo,
copy-paste, etc.) and model visualisation.

To add a new IGM the developer has to implement a small set of Java
interfaces for mathematical and visual representation of the IGM. Most of the
functionality has default implementations provided by the Workcraft core
and only “unusual” features of a new model need to be explicitly implemented.

For integration of a back-end tool the developer needs to provide versions
of the tool for the supported operating systems (this is usually not a problem
because console applications are relatively easy to port), and implement a simple
Java interface that specifies how to run the tool, interpret its output, which IGMs
it is applicable to, and which menu to integrate it into.

There is also a possibility to add more complicated plugins that interact with
visual representation of the IGMs, e.g. the simulation plugin.

3 Workcraft design flow

The Workcraft design flow is modelled by the Petri net in Figure 1. A typical
way of designing a circuit is as follows.

1. The STG specification (place specification) is created in the Workcraft
editor (transition edit) or perhaps imported from a *.g file (transition import).

2. The user verifies various properties of this specification, such as consistency,
deadlock freeness, output persistency, input properness, complete state cod-
ing (CSC) and some custom design specific properties (transition verify).

3. The verification report from a back-end tool (place report) is then presen-
ted to the user in a convenient form, e.g. a violation trace can be simu-
lated (transition simulate), CSC conflict cores can be visualised as a core
map or a core density map (transition visualise). This helps the user to de-
bug the STG.
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Figure 1: Workcraft design flow.

4. Once a correct specification is obtained, it can be implemented as a circuit.
At this point the CSC property may still be violated, and so a new STG
where the conflicts are resolved by inserting new internal signals can be auto-
matically created by synthesis back-ends (transition synthesise; hence place
specification will contain two tokens representing the original and modified
STGs).

5. At this point the user can synthesise a digital circuit (transition synthesise;
hence place specification will contain three tokens representing the two STGs
and the circuit).

6. The user can manually alter the circuit, e.g. by improving the layout or
changing the polarity of some internal signals (transition edit).

7. The circuit must be verified against the initial specification, as synthesis tools
are complicated and may have bugs and manual editing is error-prone (trans-
ition verify). Verification report is presented to the user in a convenient form.

8. The created models can be exported, e.g. as Verilog netlist for circuits and
*.g files for STGs (transition export). In addition models can be exported
in a variety of graphic formats for inserting into documentation or research
papers.

4 Workcraft models

As explained in Section 2, Workcraft supports several IGMs, and new models
are added from time to time. Some of the most popular IGMs are described
below. A crucial aspect of Workcraft is interaction and synergy between
different types of IGMs.

A popular formalism for capturing the behaviour of a concurrent system is
Finite State Machines (FSMs). The advantage of FSMs is their relative simplicity
compared to the alternative formalisms. However, they represent concurrency
by multi-dimensional interleaving ‘diamonds’ which is unnatural and leads to
exponential blow-up in the size of the model [27].

Petri nets (PNs) [19] are a well-known ‘true concurrency’ formalism which
is much more convenient for practical modelling. Workcraft supports con-
versions between FSMs and PNs: one can construct the reachability graph of a
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PN or, vice versa, synthesise a PN as a compact representation of a behaviour
expressed as an FSM – see Vending Machine case study in Section 5.1 for FSM
and PN.

Signal Transition Graphs (STGs) [9,24] are a kind of PNs where transitions
are labelled by rising and falling edges of signals. STGs are often used to specify
the behaviour of speed-independent Digital Circuits [18,12], which is another
IGM supported by Workcraft. Many kinds of interactions and conversions
between these two models are supported. For example, one can synthesise an
STG as a circuit using several implementation styles or convert a circuit to an
STG – this is necessary for composing it with the environment expressed as an
STG for subsequent verification of various standard and custom correctness prop-
erties [22]. Section 5.2 presents a case study on designing a speed-independent
circuit using STGs.

Dataflow Structures (DFSs) [25] and xMAS Circuits [8] are high-level models
for designing pipelines, in particular data paths of circuits. Workcraft sup-
ports the simulation and analysis of these IGMs by converting them to STGs
and utilising the established functionality. Some model-specific functionality such
as finding bottlenecks, cycle analysis, and performance optimisation using wag-
ging [7] are also supported. Section 5.3 showcases DFS functionality using a
baseband transmitter pipeline.

Conditional Partial Order Graphs (CPOGs) [15] is a formalism for specifying
a collection of behavioural scenarios, and combining them into a compact graph
representation using the optimal encoding. For example, CPOGs can be used for
synthesis of application-specific microprocessor instruction sets, see Section 5.4
for an ARM Cortex-M0 case study.

Structured Occurrence Nets (SONs) [14] is a model for capturing and analysis
of causality and concurrency in families of execution traces. They can be used
to represent the current state of crime or accident investigation – see Section 5.5
for the use of SONs to model Ladbroke Grove rail crash.

The diagram in Figure 2 shows the relationships between the currently sup-
ported IGMs. There are several categories of automatic conversions. Synthesis,
e.g. from STGs to Digital Circuits or from FSMs to PNs, is a computationally
intensive procedure whose resulting graph is structurally very different from the
input graph. Translation is a relatively simple transformation yielding a struc-
turally similar graph. Lossless translation, e.g. from PNs to STGs, does not lose
information, i.e. the original model can be restored from the result of the con-
version. Lossy translation, e.g. from STGs to PNs, loses some information, in
this case the signal information attached to transitions.

5 Case studies

The applications of Workcraft are wide-ranging: from modelling concurrent
algorithms and biological systems to designing asynchronous circuits and invest-
igating crimes. In this section we present several examples of how Workcraft
can be used.
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Figure 2: Relationships between Workcraft models.

5.1 Modelling Concurrent Systems: Vending Machine

In this case study Workcraft is used to capture the behaviour of a concurrent
vending machine as an FSM shown in Figure 3a. It allows the user to insert a £1
coin (action pound) concurrently with making an order (actions coke and choc).
Note that the concurrency between actions pound and coke as well as pound and
choc is represented by interleaving – there are two corresponding diamonds in
this FSM, and the layout is chosen so as to highlight them.

(a) FSM specification. (b) Synthesised Petri net.

Figure 3: Concurrent vending machine.

A PN can often be automatically obtained from the initial FSM model by the
process called synthesis (Conversion→Net synthesis [Petrify] menu item of
FSM model). The resultant PN is shown in Figure 3b; one can validate that
be reachability graph of this PN coincides with the original FSM. Note that
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transitions pound and coke as well as pound and choc are now truly concurrent
in the PN.

5.2 Design of Asynchronous Circuits: VME Bus Controller

In this case study Workcraft is used to formally specify and derive a speed-
independent implementation of VME bus controller. A controller for VME bus
provides an interface between a data bus and a slave device, as shown in Figure 4.

dsw

dsr

dtack

d

lds

ldtack

VME bus

controller

transceiver

device

bus

Figure 4: VME bus interface.

The controller has two modes of operation: reading from the device into the
bus (activated by dsr+) and writing from the bus into the device (activated by
dsw+). In the reading mode, a request to read data form the device is made
through lds+. When the device has the data ready and this is acknowledged by
ldtack+, the controller opens the transceiver by d+ and notifies the bus that
data is ready for transfer by dtack+. After the read operation is complete, all
the signals return to the initial state.

In the writing mode, once the data is stable on the bus, the transceiver is
opened by d+, and the write request is made by lds+. When the device ac-
knowledges the receipt of data by ldtack+, the transceiver is closed with d-, thus
isolating the device from the bus, and the bus is notified that the write operation
is complete by dtack+. After that all the signals return to the initial state.

The read and write modes of VME control are captured in Workcraft
by the STGs in Figures 5a and 5b respectively. These two STGs describe the
behaviour of the same circuit and need to be combined into one specification by
merging their initial states. Note that transitions ldtack-, lds- and dtack- occur
in both branches of the choice and can also be merged. For merging places and
transitions one can use the corresponding operations in the Transformations

menu. The complete STG specification of VME bus controller is shown in Fig-
ure 5c.

Before proceeding to synthesis the STG needs to satisfy the following sound-
ness properties (Verification menu of Workcraft enables checking all these
properties with a single click):

– Deadlock freeness – every reachable marking enables at least one transition.
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(a) Read operation. (b) Write operation. (c) Combined operation.

Figure 5: STG specification of VME bus controller.

– Consistency – the ‘+’ and ‘–’ transitions of every signal alternate in every
execution, always starting with the same sign.

– Input properness – an input cannot be disabled by an output or internal
signal, and cannot be triggered by an internal signal.

– Output persistency – an enabled output or internal signal cannot be disabled
by any other signal.

The STG specification can now be synthesised into an asynchronous circuit. A
complex-gate solution is as follows (csc0 signal was automatically inserted by
Petrify back-end to resolve a CSC conflict):
INORDER = dsr dsw ldtack d dtack lds csc0;

OUTORDER = [d] [dtack] [lds] [csc0];

[d] = dsr ldtack csc0’ + dsw (csc0 + ldtack’);

[dtack] = d’ csc0’ (dsr’ + dsw) + dsw’ d;

[lds] = csc0’;

[csc0] = dsr’ d’ (csc0 + dsw’) + ldtack csc0;

This solution uses complex gates that do not usually exist in real gate libra-
ries. Such gates need to be decomposed to map them to existing library gates –
this is done by logic decomposition that preserves speed-independence of the cir-
cuit. The library of available gates can be passed to Workcraft in SIS GenLib
format.

The result of technology mapping into TSMC gate library (with an addition
of C-elements) is shown in Figure 6. One can verify (via Verification menu)
that the circuit implementation is deadlock-free, hazard-free, and conforms to
the original STG specification.
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Figure 6: Implementation of VME bus controller. The dotted lines through the
inverters express the timing assumption that their delays are smaller than any
other gate delay in the circuit.
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5.3 Analysis of Asynchronous Pipelines: Baseband Transmitter

Pipelines can be modelled in Workcraft using the Dataflow Structure (DFS)
formalism. This abstraction separates the structure and the function of the sys-
tem from the implementation details of its components.

The possibility of formally modelling and reasoning about the system at this
architectural level is crucial, as the design decisions made at this level will affect
all the subsequent stages of the design. Moreover, optimisations performed at
this level are likely to have a much stronger impact than micro-optimisations
applied towards the end of the design process.

A DFS model in Figure 7a represents pipeline stages of a baseband trans-
mitter at a rather high level of abstraction. Even at this level important design
decisions can be made about specific implementation of the pipeline components.
For example, information about the maximum number of streams to encode (up
to 4 streams), available components for Fast Fourier Transform (maximum 64-
points) and the preliminary performance estimates (interleaver is the bottleneck
as it is 3 times slower than the other pipeline stages) define the refinement of
the DFS model shown in Figure 7b. Note that the refinement of the interleaver
stage into three concurrent slices was obtained automatically using the 3-way
wagging [7] operation in the Transformations menu.

5.4 Instruction Set Architecture: ARM Cortex-M0+

Workcraft can be used to specify and explore processor Instruction Set Ar-
chitectures (ISAs), and synthesise efficient hardware implementations for their
microcontrollers. In this section we use Workcraft to specify a subset of ARM
Cortex-M0+ instructions, automatically derive optimal opcodes for them, and
synthesise a Verilog netlist for the corresponding microcontroller. The presen-
ted approach relies on CPOGs as the modelling formalism [15] that provides
the designer with a convenient ISA visualisation notation as well as analysis
methods.

Figure 8 shows 11 partial orders corresponding to instruction classes of ARM
Cortex-M0+ processor [1][11]. The events in these partial orders correspond to
primitive computation steps performed during instruction execution:

– PCIU stands for the Program Counter Increment Unit. It is used to advance
the program counter when fetching instruction opcodes and operands from
the program memory.

– The Instruction Fetch Unit (IFU) loads instruction opcodes and immediate
instruction operands from the program memory into the processor instruc-
tion register.

– The data memory can be accessed using the Memory Access Unit (MAU),
which transfers data between the processor registers and the data memory.

– The Arithmetic Logic Unit (ALU) is capable of performing basic compu-
tations such as addition, multiplication, comparison, bitwise Boolean logic
operations, etc.
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Figure 8: ARM Cortex M0+ instruction classes.

The partial orders can be created in Workcraft either by individually pla-
cing and connecting events, or by using the Parameterised Graphs Algebra [17]
plugin, which allows one to specify partial orders algebraically (as an example,
the partial order ALU (register to register) in Figure 8 can be specified by the
expression PCIU -> IFU + ALU).

Figure 9: Compact representation of ARM Cortex M0+ instructions.

The CPOG encoding plugin Scenco [11] can be used to automatically de-
rive instruction opcodes minimising the area of the resulting microcontroller.
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The plugin allows one to set a desired opcode length and reserve opcode bits in
certain instructions. Several encoding algorithms are supported – see Table 1.
Note that choosing good opcodes has a significant impact on the area of the
resulting microcontroller. Having computed the optimal opcodes for the given
partial orders, it is possible to represent them compactly as a CPOG, see Fig-
ure 9. Furthermore, it is possible to synthesise the processor microcontroller that
can execute all 11 instruction classes. The microcontroller can be automatically
synthesised as a Digital Circuit in Workcraft – see Figure 10, or exported as
a Verilog netlist for processing with traditional EDA toolkits.

Figure 10: Synthesised microcontroller.
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Encoding algorithm Microcontroller area, µm2 Gate count

Sequential assignment 468 28

Random, 10 samples 436 28
Random, 100 samples 364 24
Random, 200 samples 372 24

Heuristic [11], 10 seeds 312 21
Heuristic, 100 seeds 256 16
Heuristic, 200 seeds 248 15

SAT-based [16] 256 16

Table 1: Comparison of CPOG encoding algorithms.

5.5 Accident Investigation: Ladbroke Grove Rail Crash

In this case study Workcraft is used for modelling Ladbroke Grove rail
crash [20]. Ladbroke Grove, London, was the scene of a serious railway acci-
dent in October 1999. An outbound diesel train collided with a high speed train
at the combined velocity of 130mph, with 31 people killed and over 500 injured.
The immediate cause of the disaster was that the diesel train passed signal SN109
at red, although there were many other contributing factors.

The SON model in Figure 11 captures the details of the Ladbroke Grove rail
crash. It consists of five occurrence nets that represent separate parties of the
accident:

– signals – represents the track signals that diesel train passed by in sequence.
The first signal SN43 is green (proceed). The next two signals SN63 and
SN87 are both yellow (caution). The last one SN109 is red (stop).

– driver – shows the behaviours of the diesel train driver. It captures the opera-
tion of the train speed control with seven speed notches (1-7) and the brake
actions.

– diesel train – models the speed of diesel train as a reaction to driver actions.
– control centre – is the behaviours of the signaller who was in charge of mon-

itoring the situation.
– HST – models the high speed train shortly before collision.

Workcraft allows one to verify several kinds of properties of SON models,
including behavioural, structural and temporal consistency.

6 Workcraft users

User-centred design process is at the heart of Workcraft philosophy. Work-
craft is used for different purposes, such as education, research, and industrial
circuit design to list a few. Therefore there are several categories of users: taught
students, academics and research students, industrial engineers. The developers
of Workcraft also use it intensively in their research. It is not trivial to de-
velop a tool that suits all these categories. Hence the developers made a point not

155 x 238 mm

Workcraft: Ten Years Later         283



Figure 11: SONs model of the Ladbroke Grove rail crash.

to impose their design decisions on the users, but rather listen to their feedback
and try to understand their needs. This resulted in an intuitive GUI. Historically
there have been many reports of features as bugs because the users were con-
fused due to lack of experience and understanding. Rather than dismissing these
reports, an effort was made to improve the interface and address the sources of
confusion.

Plenty of resources to support Workcraft users are available from the http:

//workcraft.org/ website:

– binary distributions for Windows, Linux, Mac OS X and a link to the source
code at GitHub;

– educational materials in the form of tutorials and case studies;
– user manuals;
– guidelines for developers of new IGMs, plugins, and back-ends;
– news track and announcement of the training events.

6.1 Education

Workcraft and the developed educational materials have been deployed in
the learning process at Newcastle University as a part of undergraduate module
CSC3324: Understanding Concurrency for Stage 3 students within the Research-
led Teaching initiative. Not only this enhanced the learning process for the stu-
dents, but the developers have also benefited by gathering invaluable data about

– how novice users attempted to install and use Workcraft;
– unexpected use patterns;
– features which students found difficult or confusing;
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– bug reports;
– suggestions for improvements;
– feature requests.

This data helped to improve the stability and usability of Workcraft. The
developers directly engaged with the students and tried to resolve the issues as
soon as possible. In particular, several versions of Workcraft were released in
the course of the module, so that the students could see their feedback making
real difference.

Workcraft is also used by other universities to support teaching of asyn-
chronous circuit design, in particular by Technical University of Denmark for
02204: Design of Asynchronous Circuits course and by Southampton University
for the MSc Systems on Chip course.

6.2 Research

Researchers use Workcraft for formal modelling or designing various systems.
Accessible simulation, synthesis and verification features enhance this process
and automate some routine and tedious parts of it. Researchers occasionally
come up with new IGM formalisms. The extendible architecture of Workcraft
makes it possible to implement them as plugins, benefiting from the functionality
that is already present in the Workcraft core and existing plugins.

An important part of researcher survival is funding applications. Work-
craft has been used, and is planned to be used, in several research proposals.
There are several ways in which Workcraft is useful for this purpose:

– As a platform for developing solutions for the problems stated in the project
proposal.

– As an impact and dissemination channel: the research results are encapsu-
lated in Workcraft to enable non-expert users to reap the benefits.

– Establishing industrial links which strengthen the impact cases. Industry
also helped to focus on industrially relevant topics and discover new areas
of research (e.g. analogue-to-asynchronous interfaces) generating ideas for
research proposals.

– In the REF2014 UK national exercise, one of the Newcastle socio-economic
impact case studies was Worldwide Adoption of Asynchronous Circuits and
Improved Business Process Modelling – it was judged to be world-leading.
This case study included the development of techniques and tools for the
synthesis of asynchronous systems (these tools are now incorporated into
Workcraft as back-ends). This achievement can be leveraged in future
funding applications.

On the practical side in research papers related to Petri nets and asynchronous
circuits one usually needs a number of diagrams. Using LATEX primitives or
general-purpose graphics editors is tedious and time-consuming. Workcraft
export feature allows one to produce high quality diagrams of the supported
IGMs in a variety of graphic formats with minimum effort. This also improves the
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consistency between the published diagrams and the models that were actually
used in the research.

6.3 Industry

Interaction with industry is of paramount importance for the researchers living
in the ivory tower of academia, and industrial uptake is a crucial criterion of
success for research software. We are proud that Workcraft is used by several
hardware design companies to develop real-life electronic circuits.

Interaction with industry proved to be of enormous use. It provided real-
life case studies, gave insight into problems faced by industry where research is
necessary and what kind of solutions can be actually implemented in silicone.
We had a number of joint projects and publications with industrial partners
and exchanged numerous visits. Several tutorials and teaching materials were
developed to address educational needs of engineers. The feedback and feature
requests submitted by the engineers helped to improve the usability of Work-
craft in industrial context as well as identify and implement missing links in
the design flow.

7 Workcraft timeline

Workcraft started in 2006 as a PhD research project of Ivan Poliakov to
provide a modelling and simulation tool for PNs and STGs. Additional require-
ments were to make it cross-platform, user-friendly, and easily extendible. The
result proved to be a convenient framework for a range of PN-like models (sub-
sequently called IGMs), and other researchers started adding their favourite
formalisms to Workcraft.

Figure 12 captures the history of Workcraft as a SON model. The cent-
ral part of the diagram represents the development of Workcraft versions,
highlighting some major features associated with each release. The shaded ver-
tices denote new IGMs introduced in the corresponding release. Developers of
the codebase and their contribution to specific features are listed at the top.
The main dissemination results in terms of exhibition demonstrations, training
sessions, and teaching are at the bottom of the diagram.

The main milestones in Workcraft development are as follows:

– Workcraft 1 series (A New Hope) was implemented in Java with native
libraries for OpenGL graphics. It supported PNs, STGs, ACMs and Digital
Circuits models. It also worked as a sandpit for trying different flavours of
self-timed datapath models with various token game semantics. This lead to
formalisation of a folklore static DFS model and its extension with dynamic
elements. Figure 13 shows Workcraft v1.0 when simulating a motor con-
trol system with asynchronous communication between slow speed controller,
fast torque controller, and the slowest adaptive parameter tuner [13].

155 x 238 mm

286         Danil Sokolov, Victor Khomenko and Andrey Mokhov



F
ig

u
re

12
:
W

o
r
k
c
r
a
f
t

ti
m

el
in

e
ex

p
re

ss
ed

in
S
O

N
s.

155 x 238 mm

Workcraft: Ten Years Later         287



Figure 13: Modelling asynchronous communication in Workcraft v1.0.

– Workcraft 2 series (Metastability Strikes Back) was a major revision of
the core functionality, plugin architecture, file exchange format, and rende-
ring engine. Several new IGMs we added in this series, namely CPOGs, SONs
and Policy nets. A screenshot in Figure 14 shows a development of Petri net
representation of algorithm for generating a pair of public and private keys
used in AES encryption in Workcraft v2.0 [26].

– Workcraft 2.2 branch (Attack of Scala) was a heroic attempt to direct
the development into reactive programming paradigm using Scala functional
programming language. Due to inherent complexity of the design concepts
only few researchers could contribute to this development. As a result this
branch was abandoned.

– Workcraft 3 series (Return of the Hazard) is currently under active de-
velopment and follows regular schedule of releases (as opposed to rolling re-
leases in the previous development). The focus of this series is on improving
user experience and developing tutorial materials. Several new IGMs were
also added, namely FSMs, FSTs and DTDs. Figure 15 shows a screenshot of
Workcraft v3.1.0 when designing an asynchronous controller for a basic
buck converter [5].
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8 Conclusions

Workcraft is a versatile framework for capturing, simulation, synthesis and
analysis of IGMs. It opens access to all the goodness hidden in command-line aca-
demic tools. This has significantly increased the user base, including industrial
users, and thus the research impact of this software. The future plans include:

– Promoting Workcraft to an even wider audience. This will be achieved
by creating and delivering tutorials to academic and industrial audience,
development of the website [4], and improving the user experience based on
their feedback.

– Encouraging other researchers to integrate their tools as back-ends.
– Extending Workcraft by adding new IGMs and implementing new fea-

tures for existing ones. This will often be based on user requests. For example,
waveforms model will be added in near future based on a request from an
industrial partner.

– Finding other areas of application for the supported methods. For example,
techniques based on STGs and speed-independent circuits appear to be well
suited for modelling and analysis of Genetic Regulatory Networks [6].
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