
Quantitative modelling of asynchronous variables

Fei Xia and Ian Clark

School of EEE, Newcastle University, NE1 7RU, UK

fei.xia@newcastle.ac.uk, ian.clark@newcastle.ac.uk

Abstract. Variables being passed between processes not synchronized for the

communication may be affected by the lack of synchrony between the processes

and such passing of variables may also affect the nominal asynchrony between

the communicating processes. There exists a large body of research on the data

communication between asynchronous processes exemplified by Lamport’s
atomic registers and Simpson’s multi-slot asynchronous communication mech-

anisms (ACMs). Many of the existing solutions try to reduce the effects of the

fundamental problem by reducing the timing independence to variables of very

small size. For instance, Boolean and ternary control variables have been used

to protect the usually larger data structures being passed. However, ultimately,

the control variables must deal with the asynchrony between the communi-

cating processes in some way. A Boolean variable (single bit) between an asyn-

chronous reader-writer pair cannot avoid metastability or mutual exclusion pro-

tection, for instance. Existing models using formalisms such as Petri nets and

process algebra and solutions based on state-space analysis provide a very good

understanding in the qualitative behavior of such variables. In this paper we aim

to expand this understanding to the quantitative by developing models in sto-

chastic activity networks (SANs) with which quantitative investigations may be

made with regard to such variables.

Keywords: asynchronous data communication, metastability, stochastic activi-

ty networks.

1 Introduction

In digital systems, before the entire world’s systems can be synchronized on the
same truly global clock, inevitably it would be necessary to communicate outside a

particular clock domain. With continued increase of VLSI integration, the physical

size of clock domains have become smaller, not larger, and the overall number of

clock domains has also increased. For instance, whereas it used to be that everything

on the motherboard of a desktop computer ran off a single global clock, now within a

single chip there tends to be multiple clock domains as a single chip packs more com-

putation power than multiple classical computers.

Crossing clock domain boundaries with data can be implemented in many ways. It

can be done fully synchronously, through the temporary synchronization between two

clock domains for the duration of data transfer. This can be found in many globally

asynchronous locally synchronous (GALS) solutions where stretchable and/or pausi-

155 x 238 mm

Quantitative Modelling of Asynchronous Variables 305

mailto:fei.xia@newcastle.ac.uk
mailto:ian.clark@newcastle.ac.uk

ble clocks are used [1]. It can also be done with a certain degree of asynchrony be-

tween the communicating processes, for instance through the use of data buffers. This

can be found in the majority of network communications including networks on chip

(NoC) solutions [2].

One of the ultimate examples of asynchronous data communication is the so-called

fully asynchronous communication where there is no synchronization either actively

administered (e.g. the use of GALS-style synchronization) or implied (e.g. through

the buffer full or empty states, or the mutual exclusion/critical section protection of

data), which ideally allows the processes to possess full temporal independence not

affected by the act of communication. Lamport’s atomic register followed by Simp-
son’s multi-slot ACMs attempt to solve this problem [3, 4].

From this wide spectrum of problem statements and solutions, it is clear that there

exist two fundamental desirable properties. These are:

 Asynchrony: Minimal obliged waiting for either the reader or the writer pro-

cesses. Fully asynchronous communication aims for zero waiting on either side.

 Data transfer: Maximal quality for the data eventually read. This is usually de-

scribed by a number of metric parameters, such as data coherence, data fresh-

ness, data sequencing, etc. and is different for different application scenarios.

An intuitive understanding of data coherence, for instance, is that the writer, or

anything else, should not be allowed to corrupt half-read data.

And the large number of existing solutions arrive at various trade-off points be-

tween these two qualities [8].

A substantial amount of research exists in this field, with a large number of at-

tempts at provide qualitative modelling so that a solution may be tested for whether it

violates data coherence, process asynchrony or any other metric and if so under what

circumstances [8].

However there has been a total absence of any quantitative modelling method with

which different solutions may be more precisely placed relative to each other in a

quantitative map of trade-off.

1.1 Contributions and organization

This work is the first attempt at achieving quantitative models of asynchronous da-

ta communication. The language chosen is SANs, which provides opportunities of

properly representing such phenomena as metastability quantitatively according to

well accepted models [9]. Given that many solutions remove the problems caused by

inter-process asynchrony away from potentially large data to usually small control

variables, this work concentrate on modelling Boolean and ternary variables and their

usual implementation using hardware latches.

The rest of the paper is organized as follows: Section 2 introduces the concept of

the asynchronous variable, and describes quantitative models for the two essential

properties for Boolean asynchronous variables. Section 3 describes more complex

asynchronous variables, their implementation and modelling. Section 4 describes case

155 x 238 mm

306 Fei Xia and Ian Clark

studies where the models of asynchronous control variables are used to derive behav-

iors of larger systems in which they are used. Section 5 concludes the paper.

2 The Boolean asynchronous variable

Fig. 1 shows the basic concept of two asynchronous processes intercommunicating

with one (writer) providing the data and the other (reader) making use of it. This is

both a general description of all such data communications and a specific description

of the passing of control variables. The difference is in what the data is and how it is

meant to be used.

Fig. 1 Unidirectional inter-process data communication.

In a control variable situation, it may happen that the writer of the overall data

communication may be the reader of a specific control variable, which is written by

the reader process in the overall communication. In other words, although a specific

instance of asynchronous data communication is usually defined as unidirectional, i.e.

data passing from the writer to the reader, to support this communication some of the

control variables may go the other way, to allow the reader to inform the writer of its

current state, for instance. In the rest of the paper, unless otherwise stated, ‘reader’
and ‘writer’ pertain to the variable being discussed, which in most cases are binary

and ternary control variables and not the main data.

It is clear from Fig. 1 that we assume each individual control variable to be unidi-

rectional and cannot be written to by both sides. This simplifies the problem without

limiting the solution space, as demonstrated by numerous existing work.

The smallest control variable is the smallest digital variable, i.e. a single binary bit.

This is the subject of this section.

Such a variable can be transmitted from the writer to the reader in a number of

ways:

(a) Fully synchronously: The reader and the writer need to be synchronized for a

single clock period during which the reader directly reads a copy of this Boole-

an value from the writer’s bus or output port. There needs to be no shared
memory, just shared wires [5].

(b) With a single shared memory location to provide some degree of asynchrony:

The single space FIFO buffer may be guarded with a MUTEX making it acces-

sible by one process at any time [5].

writer reader

data connection

155 x 238 mm

Quantitative Modelling of Asynchronous Variables 307

(c) With an unguarded single space FIFO buffer: A fully asynchronous solution al-

lows buffer access by both sides at the same time [4, 8].

All three methods face the following two issues:

 Metastability: The phenomenon of metastability, where a nominally Boolean

signal takes a value that is neither 0 nor 1 which nevertheless may persevere for

non-trivial amounts of time, is inevitable when you have two independently

timed processes accessing the same memory element at the same time in certain

conflicting ways, such as reading and writing at the same time or making re-

quests to a MUTEX element at the same time [6]. The simplest 1-bit memory is

a latch and synchronizers, MUTEXes and Boolean variables are implemented

using circuits which could be classified as some type of latch. The first method

therefore cannot avoid metastability at the synchronizer, the second method

must face it at the MUTEX, and the third directly on the data bit.

 The relative timing of access from both sides is not specified. Reading may take

the same time as, or a radically different time from, writing. And this potentially

has an impact on the behaviors of all three methods.

The effects of these challenges on the different methods may be reasoned about

qualitatively using existing research results and techniques [7]. For example, even

though the fully asynchronous solution may sound unsafe because the metastability is

on the data and not controlled by a MUTEX, or mitigated by multi-flop synchroniz-

ers, for a lot of control variables used in asynchronous data communications this

causes, in practice, some non-deterministic delay [8]. Since the variable being com-

municated is a binary bit, the worst case scenario, i.e. the reader and the writer both

accessing it at the same time, is that metastability may happen. Pragmatically, it is

sensible to assume that once metastability happens, the variable eventually settles

non-deterministically to one of the digital values: either 0 or 1. Metastability can only

happen if the writer is in the process of changing the value of the bit when the reader

attempts to access it. Hence either one of the settled values should be valid, for any

sensible communication algorithm and implementation. The only thing the designer

need to do is to make sure that the control variable is used after some time of its read-

ing to provide it with enough probability to settle before use, as determined by the

mean time between failure (MTBF) requirement of the design.

However, when a designer is making a decision on choosing one method over an-

other, a quantitative exploration may be desirable in addition to qualitative considera-

tions.

In this section, we develop quantitative models for both challenges, metastability

and independent timing of reader and writer processes.

2.1 Quantitative modelling of metastability in a Boolean variable

To study the metastability behavior of a binary bit being passed from one asyn-

chronous process to another, we assume it is implemented in the way described by

Fig. 2. This is the passing of a binary variable from the writer to the reader, such that

155 x 238 mm

308 Fei Xia and Ian Clark

the reader’s input variable y takes on the value of the writer’s output variable x when

the clock/control signal cl is set. In other words, cl: y=x.

Fig. 2 A binary asynchronous variable.

In order to have metastability in a latch of this type, the clock or control signal cl is

usually activated by some entity not temporally related to the writer, in other words,

the signals x and cl may change very close in time causing metastability to happen at

signal y. This directly corresponds with method (c) described above as a latch like this

forms the unguarded FIFO buffer used in that method. On the other hand, since syn-

chronizers are constructed out of essentially the same kind of circuit with the same

metastability behavior, we can describe the metastability encountered by method (a)

using the same technique.

A binary variable that may become metastable, and settling out of metastability

Representing the metastable value of a nominally Boolean variable as a distinct

marking allows the convenient tracking of metastability and its effects. The SAN

model of a Boolean variable that may become metastable is shown in Fig. 3.

Fig. 3 SAN model of a Boolean variable y that may become metastable,

including the process of metastability settling.

The process of the natural settling of metastability is usually regarded as stochastic

with an average speed entirely dependent on the hardware implementation of the vari-

able. This can be represented by a timed transition whose firing takes the value of the

variable to 0 or 1 based on pre-determined probabilities. Established theory on meta-

stability describes the settling as following an exponential process [5]. This can be

represented by the timed transition having an exponential timing distribution whose

mean rate λ can be found through hardware experimentation [5]. It is usual practice to

y0

yM

y1

IG

OG0

OG1

writer reader

x D Q y

cl

155 x 238 mm

Quantitative Modelling of Asynchronous Variables 309

assume that metastability settles to 0 or 1 with the same probability, i.e. 50%. Howev-

er, the model in Fig. 3 allows arbitrary pairs of probabilities p0=1-p1 to be chosen, if

experiments on hardware show a bias in one way or the other.

Coincidentally, for the purpose of using this model for analysis, exponential timing

in the timed transition means that this part of the model does not introduce anything

non-Markovian. An entirely Markovian system model usually allows not only simula-

tions but also analytical reasoning [9].

The logic of the input and output gates in the model is defined as follows:

Gate Predicate Function

IG Mark(yM)==1

OG0 Mark(yM)=0;

if (Mark(y0)==0 and Mark(y1)==0)

then Mark(y0)=1;

OG1 Mark(yM)=0;

if (Mark(y0)==0 and Mark(y1)==0)

then Mark(y0)=1;

The settling countdown starts immediately when the variable enters metastability.

At the end of the model-determined settling time, the marking in place yM is set to

zero. However, when updating the variable to a digital value, the model needs to de-

termine whether the settling process is at this moment still in charge of the value of

the variable – it is entirely possible that during the expected duration of metastability

settling time, when the settling transition is in the process of firing, the variable has

otherwise been set to a secure digital value through other means such as having been

successfully assigned a value by another operation. The functions of the output gates

ensure that only when no such thing has happened (i.e. both digital places still have

the marking of 0) the completion of the settling transition would set the expected

digital value. Otherwise nothing is done as at the end of the expected settling time, the

variable has already otherwise achieved a secure digital value.

Actively changing the variable value

In addition to the settling of metastability, which is a passive process, the value of

a nominally Boolean variable may also be changed actively. An example of this is the

setting of variable y to the value of variable x in Fig. 2.

To model metastability and its effect fully, we need to consider the following situa-

tions:

 When cl comes, x is stable at either 0 or 1 → y takes the value of x

 When cl comes, x is itself metastable, i.e. having the value of M → y has a

probability of becoming M;

 When cl comes, x is being changed → y has a probability of becoming M;

This means that we need a place or places whose marking(s) indicate that x is be-

ing changed between the two digital values 0 and 1. In addition, cl itself is a signal

155 x 238 mm

310 Fei Xia and Ian Clark

whose change may take some time. This is best represented by having any cl change

indicated by a marking in a place.

The SAN formalism facilitates the compact representation of such conditional rela-

tionships, once such states as ‘x is being changed’ and ‘cl is coming’ are represented
by markings. Similar to the metastability settling speed, the probabilities of y getting a

value of 0, M or 1 in any particular situation may be obtained through hardware ex-

periments. Hardware characterization is the best method for generating the quantita-

tive parameters for these models.

Fig. 4 Changing the value of an asynchronous Boolean variable.

Fig. 4 shows the structure of the SAN model of changing the value of a Boolean

variable implemented using a circuit of the type shown in Fig. 2. Places named x0,

yM, cl0, etc. denote that the signal takes a particular value. Places named with the

signal name followed by two values denote that the signal is transitioning from the

first value to the second, i.e. x01 denotes x: 0→1.
The logic of the input and output gates is as follows:

Gate Predicate Function

IG Mark(cl10)==1

OG0 Mark(y=M)=0;

Mark(y=0)=0;

Mark(y=1)=1;

OG1 Mark(y=M)=0;

Mark(y=1)=0;

Mark(y=0)=1;

OGM Mark(y=0)=0;

Mark(y=1)=0;

Mark(y=M)=1;

The process of changing the value of y starts when cl is being reset (falling edge

trigger on the clock, place cl10 marked). At the end of the process, the value of y is

x0

x01

x1

xM

x10 cl10 cl0

y1

y0

yM

y01

y10

IG

OG0

OGM

OG1

155 x 238 mm

Quantitative Modelling of Asynchronous Variables 311

set according to what branch of the SAN the model has been progressing. The first

transition on the left hand side is where the logic is that determines how the value of y

will be set, and as such must correctly specify the probabilities of each of its branches,

changing from 0 to 1, changing from 1 to 0, setting to M, and do nothing (keeping the

old value of y).

This depends on the markings of the places listed on the left hand side of Fig. 4.

For instance, case 4 of the activity, do nothing, has a probability of 1 when x=0 and

y=0, and a probability of 0 when x=0 and y=1. The probability of case 3 is non-zero if

one of the places xM, x01 and x10 are marked. The probability of case 3 under differ-

ent conditions when it is not zero can be determined through hardware characteriza-

tion experiments [5].

This model has a relatively low precision as it assumes a constant probability of y

entering metastability if, when cl changes, x is in the process of change. However,

accepted theory of metastability indicates that the probability of y entering metastabil-

ity is related to how close the cl and x changes are in time [5]. Assuming the same

probability for all cases of overlapping access may not be precise enough for certainly

analysis.

Timing issues

The precision of the above model can be improved by representing one of the

changing processes, either x changing or cl falling, as constituting multiple steps. This

extended representation is shown in Fig. 5.

Fig. 5 Dividing a value change into multiple steps.

During a change of the signal cl, how much this change has progressed is indicated

by where the token is in the chain. Usually variable value changes take deterministic

time related to the speed of the hardware in which the process that makes this change

is mapped. Such a deterministic delay can easily be divided into a sequence of deter-

ministic delays as represented by the timed transitions in Fig. 5. For stochastic delays,

this method is less effective and accurate unless the distributions of the sequence of

smaller delays can be derived from the distribution of the overall delay, which is not

always possible. In other words, if metastability is involved in any signal value

change, this method of dividing into multiple smaller changes may be less effective

and using a single probability as in the previous section may be unavoidable.

Knowing where a signal is in its changing process when the other signal is also

changing allows the distance in time between these two changes to be represented, up

to the precision of the stages in the model shown in Fig. 5. The model can therefore

be made as precise as the time resolution of the hardware characterization data.

The other timing issue, that of the relative durations of time each of the reader and

writer processes makes accesses to a shared resource, is automatically represented in

cl101 cl10n cl102 … …

155 x 238 mm

312 Fei Xia and Ian Clark

models developed according to the methods given in this section. Together, the meta-

stability settling time, rising time, and falling time of each signal fully describe over-

all process lengths such as how long a shared variable is accessed by the writer or the

reader.

2.2 MUTEX and arbitration

For method (b), which protects the shared memory location with a mutual exclu-

sion arrangement avoiding simultaneous accesses by both the reader and writer. The

metastability and timing modelling can be derived based on the models presented in

Section 2.1. This is because MUTEXes are usually constructed out of similar circuits,

i.e. a single bit memory. However, since the input signals to MUTEXes are not the

somewhat asymmetric data and clock with different functions, but fully symmetric

requests, the models need to be modified to reflect this.

A typical MUTEX consists of an SR-latch followed by a metastability resolver. It

functions as follows:

 Be ready to receive requests from two different processes when no grant is out-

standing;

 Issue a grand to the process which has just produced a request;

 Withdraw a grant after receiving a reset of a request signal – a requesting pro-

cess is assumed to reset its request once the granted resource has been made use

of;

 When requests from both processes arrive close together, the latch may go into

metastability, but the metastability resolver makes sure that no grants will be is-

sued until the metastability has been resolved;

 A requesting process is assumed to hold up its request until a grant is issued –

there is no withdrawal of requests without grants.

The model for the metastable state and its settlement is similar to Fig. 3, if a Bool-

ean variable is used to issue grants, for instance y=0 grants process 0 and y=1 grants

process 1, as is normal for MUTEX arbitration.

Fig. 6 Responding to requests

gW

gR

rW01

rR10

IG rW1

rR1

ready

1

0

M

155 x 238 mm

Quantitative Modelling of Asynchronous Variables 313

The model in Fig. 6 is based on the assumption that the internal MUTEX state of 1

corresponds to granting to writer and 0 corresponds to granting to reader, without

losing generality. Once the internal state 0 or 1 is secured, the corresponding grant

may take non-zero time to appear, represented by the timed transitions on the right

hand side. If this degree of representation is not needed, these may be replaced with

instantaneous transitions. The internal state M causes the entire process to delay with

the only activity being the metastability settling. Note that this settling sub-net is less

complex than Fig. 3 as in a MUTEX it is not possible for external influences to hard

set M to one of the digital states. Because requesters would not withdraw outstanding

requests, the only route out of the M state is via settlement.

The internal state is only represented between the start of a grant computation (the

left hand transition firing) and the next grant commitment (one of the right hand tran-

sitions starting to fire). Although the actual circuit would maintain an internal state

always, it is only of functional relevance in between those events. Hence the model is

simplified this way.

The input gate IG has the following predicate and function:

Gate Predicate Function

IG Mark(ready)==1 &&

(Mark(rW1)==1 || Mark(rR1)==1)

Mark(ready)=0

This means that grant computation starts when the place ‘ready’ is marked and at
least one of the request signals is present (rW1 and/or rR1 marked). And starting a

round of grant computation unmarks the place ‘ready’. Place ‘ready’ is marked again
once a requesting process has finished using its granted access.

The probabilities in the grant computation starting transition need to reflect the fol-

lowing protocol:

 If neither rR1 nor rR01 is marked, i.e. the reader request is not present nor being

issued, grant computation goes to the branch leading to internal place ‘1’ with a
probability of 1. This leads towards granting writer access.

 If neither rW1 nor rW01 is marked, i.e. the writer request is not present nor be-

ing issued, grant computation goes to the branch leading to internal place ‘0’
with a probability of 1. This leads to granting reader access.

 If one of rR1/rR01 and one of rW1/rW01 are marked at the same time, i.e. both

reader and writer requests are either present or being issued, grant computation

goes to all three branches with appropriate probabilities, which may be obtained

from experimental characterization of hardware.

Granting is represented by either place gW or place gR. The appropriate process

taking its grant by taking the token from its corresponding grant place, and puts a

token back to place ‘ready’ after the end of the access.
The normal assumptions of MUTEX arbitration apply. For instance, a requester is

not supposed to withdrawn a request before a grant is issued in its favor. In order to

represent all possible causes of metastability properly, request signals are modelled as

taking non-zero time to set up (‘being issued’ is at least one distinct state). More pre-

155 x 238 mm

314 Fei Xia and Ian Clark

cise modelling by having a multi-stage setup process for one or both of the request

signals is possible with the method shown in Fig. 5, if necessary.

3 The ternary asynchronous variable

Larger control variables may be needed for more complex ACMs. Here we discuss

the ternary control variable used in certain existing ACM algorithms, to show that

larger control variables can be constructed out of Boolean asynchronous variables.

A ternary (base-3) variable taking three possible values (e.g., 0, 1, 2) may be im-

plemented in a number of ways. The most straightforward is to use one-hot encoding

and binary circuits. In other words, using three wires, with a maximum of one of then

having a signal value of 1 at any time. Wire 0 being 1 and the other two wires being 0

indicate the value of the variable being 0, wire 1 being 1 and the other two wires be-

ing 0 indicate the value of the variable being 1, and wire 2 being 1 and the other two

wires being 0 indicate the value of the variable being 2:

Signals on wires Variable value

{1, 0, 0} 0

{0, 1, 0} 1

{0, 0, 1} 2

{0, 0, 0} potential spacer (see below)

other values are not allowed undefined

When such a variable is being sent from one independently timed process to anoth-

er, the simplest way of avoiding confusion and reducing potential errors is to make

use of spacers. In other words, when changing the value of such a variable, the current

wire holding 1 is pulled down to 0 first, before another wire is set from 0 to 1. Briefly,

the three wires hold the spacer signal {0, 0, 0}, which indicates the fact that the value

of the ternary variable is being changed.

For instance, the following steps change the variable value from 0 to 2:

{1, 0, 0} → {0, 0, 0} → {0, 0, 1}

With such an implementation, or any other implementation using binary logic, the

models derived in Section 2 can be directly used, as each ternary variable is imple-

mented with binary signals.

It is worth noting that when reading the value of such a ternary variable, a spacer

should cause a wait on the reader’s part as the value is not functionally valid. In other

words, reading a ternary variable should be done using the following procedure:

wait until (v0=1 or v1=1 or v2=1);

read v;

155 x 238 mm

Quantitative Modelling of Asynchronous Variables 315

In such a scheme, metastability can only happen when changing to spacer or

changing out of spacer. The spacer scheme qualitatively trades spacer delay for addi-

tional variable value safety.

Ternary logic based on using three different analogue signal values to represent the

three variable values is conceptually possible. It is worth noting that these circuits

have been ignored in general by researchers in the field of asynchronous data com-

munication. Modelling such implementations is out of the scope of this paper.

4 Case study

In this section we investigate the usage of the asynchronous variable models in a

wider context, i.e. when these variables are used as control variables in ACMs. Here

the examples used are the ‘pool’ or ‘RR-OW’ type, with a single logical buffer space,
mechanisms that aim to provide the reading and writing processes with full timing

independence. This means that overwriting of previously unread data stored in the

buffer, and rereading of previously read data, must be allowed. This is intuitive if the

buffer has a limited number of spaces (in this case a single space), and potentially

allow multiple cycles of reader access in between two writer accesses and multiple

writer accesses in between two reader accesses.

The fundamental assumption of these ACMs is that they serve as data connectors

between the communicating processes between which a sequence of data items of the

same type are transferred. In each cycle of writing and reading access, the relevant

communicating process transfers one item of data to or from the ACM.

4.1 A two-slot ACM

The two-slot pool ACM, proposed by Simpson in [4], attempts to accommodate the

full asynchrony between the reading and writing accesses by using two physical data

memory spaces, each enough to contain one item of data. When an access happens,

the other access should maximally be able to occupy one slot, hence the intuition is

that whenever an access needs to happen it always has a slot to point to. Control vari-

ables are used to make sure that reading accesses ‘chase’ writing accesses – each

reading access tries to read from the slot containing the newest completely written

data item, as indicated by the writing access’s previous round. How the writing access
chooses its slot can be more interesting. A seemingly totally safe method is to always

avoid the reading access by going to the other slot not currently being read. This how-

ever has been shown to create the possibility that the reading access will keep reread-

ing the same item of data whilst the writing access keeps overwriting to the other slot,

if the two accesses are matched in their speed. Simpson’s method is to have the writ-
ing access point to alternating slots in successive rounds regardless of where the read-

ing is happening. This has been shown to lead to clashes on the same slot by both

processes and violate data coherence, under certain circumstances.

The algorithm for the two-slot mechanism can be written as follows:

155 x 238 mm

316 Fei Xia and Ian Clark

Write access Read access

w=!(l); r=l;

d[w]=input; Output=d[r];

l=w;

In this algorithm the two data slots are arranged into an array d[0..1], whose access

is managed through the shared control variable l, which is Boolean and indicates the

last complete written slot. The writing access uses its private control variable w to

choose the next slot to be written. The reading access uses its private control variable

r to choose the next slot to be read.

In the writing access the sequence of actions are: choosing the slot not accessed by

the previous writing access, writing to that slot, indicating that slot to be the last writ-

ten one. It is then assumed that the writing process ends and the master process that

contains the writing process will execute a sequence of actions which includes the

preparation of the next writing access round. Then the writing access will start again

from the first statement. This is assumed to form a forever loop as long as the ACM

continues to be used.

The reading access has the following sequence of actions: choosing the slot to read

from, read from that slot. After a round of reading access ends, the master process that

includes the reading access is assumed to perform actions not related to accessing this

ACM, including making use of the data just read. A forever loop situation similar to

the writing side is also assumed.

The ACM accesses can then be viewed as procedures or functions called by their

respective master processes in each cycle of action.

A single Boolean control variable is shared between the two access procedures, l,

which is written by the writing access and read by the reading access. It is used for the

writing side to indicate to the reading side, and to itself, the immediate previous com-

pletely written slot. The passing of this Boolean variable through the reader statement

r=l can be modelled with the method described in Section 2.

Here we investigate the mode of operation where the two-slot ACM works if l is

always correctly read. This is guaranteed if the duration between two writing accesses

is longer than a reading access. If this is not the case, the two-slot ACM can violate

data coherence even if l is always correctly read and there is not much point in ana-

lyzing what happens when, for instance, r becomes metastable.

As the value of l itself is changed entirely during a writer internal statement unre-

lated to the reader, it cannot be metastable. As a result the model for r and the syn-

chronizer is simpler in methods (a) and (c) as there is no such thing as metastability

propagation between the two sides. For method (b), the MUTEX protects variable l,

and both l=w; and r=l; need to be preceded by requests to the MUTEX and fol-

lowed by request resets. The writer example is as follows:

rW=1;

l=w;

rW=0;

155 x 238 mm

Quantitative Modelling of Asynchronous Variables 317

4.2 Quantitative model explorations

Models in SANs were constructed within the environment of the Möbius tool [10]

and quantitative explorations of the behavior of the two-slot ACM studied in the same

environment. In this first explorative attempt, the following assumptions are made:

 The smallest step, that of assigning the value of a Boolean variable, is set to unit

time, called τ – this usually corresponds with somewhere in the picosecond

range in current CMOS technology given typical latches;

 Both reader and writer processes have deterministic delays in their statements,

to emulate real-time programs whose timings have deterministic specifications;

 The reader process is started after a stochastic delay after the writer process, to

emulate non-deterministic phase differences between the two processes, the res-

olution of this phase difference is 0.1τ so that processes can by desynchronized

by less time than a full Boolean variable value change;

 Test cases with both l=w; and r=l; taking τ, with l=w; taking τ and r=l;

taking 10τ, as well as with l=w; taking 10τ and r=l; taking τ are explored;

 Reading is assumed to take 10 times the time as a reader binary variable state-

ment and writing is assumed to take 10 times the time as a writer binary variable

statement;

 The time distance between two write accesses and that between two read ac-

cesses is assumed to take 1000 times the time as a binary variable statement.

Basically we cover the cases where the writer is 10 times faster than, the same

speed as, and 10 times slower than the reader. The only non-deterministic delays in

the study comes from metastability settlement. We also tried one case where the writ-

er’s speed is related to τ, and hence that of the reader, by a random non-integer value,

but that did not show up any new results or trends.

We only explored methods (b) – MUTEX protection for l and (c) – unprotected

fully asynchronous access to l by both sides.

The quantitative results we obtained, collated from a number of experiments, are

listed as follows:

Method Data

error

min

Data

error

mean

Data

error

max

Delay

min

Delay

mean

Delay

max

(b) 0 0 0 0 0.013τ ∞1

(c) 0 0.025% 100%2 0 0 0

These explorations are based on realistic assumptions of very low probabilities of

the onset of metastability even with overlapping accesses (e.g. 1%) and fast metasta-

bility settlement (e.g. the mean settlement time 1/λ = 0.1τ). Data error is measured by

how many reads produced output values that have not been written, and ‘delay’ in the
above results relate to additional delay either side has to suffer because the two state-

1 These are theoretical values derived from [5].

155 x 238 mm

318 Fei Xia and Ian Clark

ments l=w; and r=l; took longer than normal time due to the asynchrony. The

results confirm the intuitive notion that the two methods trade delay with correctness

as the MUTEX method protects the variable by paying potential non-deterministic

delay as a price, and the fully asynchronous method guarantees full delay predictabil-

ity by paying potential data corruption. Although these qualitative points can be de-

rived from existing methods this work provides a systematic way of generating quan-

titative trade-off maps for designers.

5 Conclusions and future work

Quantitative models of asynchronous variables including metastability and its set-

tlement are developed using the formalism stochastic activity networks (SANs) and

their use initially demonstrated through a case study conducted using the Möbius tool.

Whilst the actual numbers obtained from the work so far may not have any practical

significance, the fact that they can be obtained using the methods provided represents

a new development in the modelling of variables being passed between two non-fully

synchronized processes.

The models can be extended and used on the entire class of existing ACM solu-

tions and the hypothesis that the method may be used for developing new ACMs are

promising topics of future work.

References

1. M. Krstic, E. Grass, F. Gürkaynak, P. Vivet, "Globally asynchronous, locally synchronous

circuits: overview and outlook," in IEEE Design & Test of Computers, 24,(5), pp.430-441,

2007.

2. L. Benini, G. De Micheli, "Networks on chips: a new SoC paradigm," in Computer, 35,(1),

pp. 70-78, 2002.

3. Lamport, L., ‘On interprocess communication: Parts I and II’, Distrib. Comput., 1,(2),

pp.77-101 1986.

4. Simpson, R., “Four-slot fully asynchronous communication mechanism”, IEE Proceed-
ings, Pt. E, 137,(1), pp.17-30, 1990.

5. D. Kinnement, Synchronization and arbitration in digital systems, Wiley, 2007.

6. Kleeman, L., Cantoni, A., “On the unavoidability of metastable behavior in digital sys-

tems”, IEEE Trans. Comput, 36,(1), pp.109-112, 1987.

7. Clark, I., Xia, F., Yakovlev, Y., Davies, A., ‘Petri net models of latch metastability’, Elec-

tronics Letters 34,(7), pp.635–636, 1998.

8. Xia, F, Yakovlev, A., Clark, I., Shang. D., ‘Data communication in systems with heteroge-

neous timing’, IEEE Micro, 22,(6), pp. 58-69, 2002.

9. Sanders, W. and Meyer J., ‘Stochastic activity networks: formal definitions and concepts’,
LNCS 2090, pp.315-343, 2000.

10. The Möbius tool, available at: https://www.mobius.illinois.edu/.

155 x 238 mm

Quantitative Modelling of Asynchronous Variables 319

