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Abstract. Variables being passed between processes not synchronized for the 

communication may be affected by the lack of synchrony between the processes 

and such passing of variables may also affect the nominal asynchrony between 

the communicating processes. There exists a large body of research on the data 

communication between asynchronous processes exemplified by Lamport’s 
atomic registers and Simpson’s multi-slot asynchronous communication mech-

anisms (ACMs). Many of the existing solutions try to reduce the effects of the 

fundamental problem by reducing the timing independence to variables of very 

small size. For instance, Boolean and ternary control variables have been used 

to protect the usually larger data structures being passed. However, ultimately, 

the control variables must deal with the asynchrony between the communi-

cating processes in some way. A Boolean variable (single bit) between an asyn-

chronous reader-writer pair cannot avoid metastability or mutual exclusion pro-

tection, for instance. Existing models using formalisms such as Petri nets and 

process algebra and solutions based on state-space analysis provide a very good 

understanding in the qualitative behavior of such variables. In this paper we aim 

to expand this understanding to the quantitative by developing models in sto-

chastic activity networks (SANs) with which quantitative investigations may be 

made with regard to such variables. 

Keywords: asynchronous data communication, metastability, stochastic activi-

ty networks. 

1 Introduction 

In digital systems, before the entire world’s systems can be synchronized on the 
same truly global clock, inevitably it would be necessary to communicate outside a 

particular clock domain. With continued increase of VLSI integration, the physical 

size of clock domains have become smaller, not larger, and the overall number of 

clock domains has also increased. For instance, whereas it used to be that everything 

on the motherboard of a desktop computer ran off a single global clock, now within a 

single chip there tends to be multiple clock domains as a single chip packs more com-

putation power than multiple classical computers.  

Crossing clock domain boundaries with data can be implemented in many ways. It 

can be done fully synchronously, through the temporary synchronization between two 

clock domains for the duration of data transfer. This can be found in many globally 

asynchronous locally synchronous (GALS) solutions where stretchable and/or pausi-
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ble clocks are used [1]. It can also be done with a certain degree of asynchrony be-

tween the communicating processes, for instance through the use of data buffers. This 

can be found in the majority of network communications including networks on chip 

(NoC) solutions [2].  

One of the ultimate examples of asynchronous data communication is the so-called 

fully asynchronous communication where there is no synchronization either actively 

administered (e.g. the use of GALS-style synchronization) or implied (e.g. through 

the buffer full or empty states, or the mutual exclusion/critical section protection of 

data), which ideally allows the processes to possess full temporal independence not 

affected by the act of communication. Lamport’s atomic register followed by Simp-
son’s multi-slot ACMs attempt to solve this problem [3, 4].  

From this wide spectrum of problem statements and solutions, it is clear that there 

exist two fundamental desirable properties. These are: 

 Asynchrony: Minimal obliged waiting for either the reader or the writer pro-

cesses. Fully asynchronous communication aims for zero waiting on either side. 

 Data transfer: Maximal quality for the data eventually read. This is usually de-

scribed by a number of metric parameters, such as data coherence, data fresh-

ness, data sequencing, etc. and is different for different application scenarios. 

An intuitive understanding of data coherence, for instance, is that the writer, or 

anything else, should not be allowed to corrupt half-read data. 

And the large number of existing solutions arrive at various trade-off points be-

tween these two qualities [8].  

A substantial amount of research exists in this field, with a large number of at-

tempts at provide qualitative modelling so that a solution may be tested for whether it 

violates data coherence, process asynchrony or any other metric and if so under what 

circumstances [8].  

However there has been a total absence of any quantitative modelling method with 

which different solutions may be more precisely placed relative to each other in a 

quantitative map of trade-off.  

1.1 Contributions and organization 

This work is the first attempt at achieving quantitative models of asynchronous da-

ta communication. The language chosen is SANs, which provides opportunities of 

properly representing such phenomena as metastability quantitatively according to 

well accepted models [9]. Given that many solutions remove the problems caused by 

inter-process asynchrony away from potentially large data to usually small control 

variables, this work concentrate on modelling Boolean and ternary variables and their 

usual implementation using hardware latches.  

The rest of the paper is organized as follows: Section 2 introduces the concept of 

the asynchronous variable, and describes quantitative models for the two essential 

properties for Boolean asynchronous variables. Section 3 describes more complex 

asynchronous variables, their implementation and modelling. Section 4 describes case 
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studies where the models of asynchronous control variables are used to derive behav-

iors of larger systems in which they are used. Section 5 concludes the paper. 

2 The Boolean asynchronous variable 

Fig. 1 shows the basic concept of two asynchronous processes intercommunicating 

with one (writer) providing the data and the other (reader) making use of it. This is 

both a general description of all such data communications and a specific description 

of the passing of control variables. The difference is in what the data is and how it is 

meant to be used.  

 

Fig. 1 Unidirectional inter-process data communication. 

In a control variable situation, it may happen that the writer of the overall data 

communication may be the reader of a specific control variable, which is written by 

the reader process in the overall communication. In other words, although a specific 

instance of asynchronous data communication is usually defined as unidirectional, i.e. 

data passing from the writer to the reader, to support this communication some of the 

control variables may go the other way, to allow the reader to inform the writer of its 

current state, for instance. In the rest of the paper, unless otherwise stated, ‘reader’ 
and ‘writer’ pertain to the variable being discussed, which in most cases are binary 

and ternary control variables and not the main data. 

It is clear from Fig. 1 that we assume each individual control variable to be unidi-

rectional and cannot be written to by both sides. This simplifies the problem without 

limiting the solution space, as demonstrated by numerous existing work. 

The smallest control variable is the smallest digital variable, i.e. a single binary bit. 

This is the subject of this section. 

Such a variable can be transmitted from the writer to the reader in a number of 

ways: 

(a) Fully synchronously: The reader and the writer need to be synchronized for a 

single clock period during which the reader directly reads a copy of this Boole-

an value from the writer’s bus or output port. There needs to be no shared 
memory, just shared wires [5]. 

(b) With a single shared memory location to provide some degree of asynchrony: 

The single space FIFO buffer may be guarded with a MUTEX making it acces-

sible by one process at any time [5].  

writer reader 

data connection 
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(c) With an unguarded single space FIFO buffer: A fully asynchronous solution al-

lows buffer access by both sides at the same time [4, 8]. 

All three methods face the following two issues: 

 Metastability: The phenomenon of metastability, where a nominally Boolean 

signal takes a value that is neither 0 nor 1 which nevertheless may persevere for 

non-trivial amounts of time, is inevitable when you have two independently 

timed processes accessing the same memory element at the same time in certain 

conflicting ways, such as reading and writing at the same time or making re-

quests to a MUTEX element at the same time [6]. The simplest 1-bit memory is 

a latch and synchronizers, MUTEXes and Boolean variables are implemented 

using circuits which could be classified as some type of latch. The first method 

therefore cannot avoid metastability at the synchronizer, the second method 

must face it at the MUTEX, and the third directly on the data bit.  

 The relative timing of access from both sides is not specified. Reading may take 

the same time as, or a radically different time from, writing. And this potentially 

has an impact on the behaviors of all three methods. 

The effects of these challenges on the different methods may be reasoned about 

qualitatively using existing research results and techniques [7]. For example, even 

though the fully asynchronous solution may sound unsafe because the metastability is 

on the data and not controlled by a MUTEX, or mitigated by multi-flop synchroniz-

ers, for a lot of control variables used in asynchronous data communications this 

causes, in practice, some non-deterministic delay [8]. Since the variable being com-

municated is a binary bit, the worst case scenario, i.e. the reader and the writer both 

accessing it at the same time, is that metastability may happen. Pragmatically, it is 

sensible to assume that once metastability happens, the variable eventually settles 

non-deterministically to one of the digital values: either 0 or 1. Metastability can only 

happen if the writer is in the process of changing the value of the bit when the reader 

attempts to access it. Hence either one of the settled values should be valid, for any 

sensible communication algorithm and implementation. The only thing the designer 

need to do is to make sure that the control variable is used after some time of its read-

ing to provide it with enough probability to settle before use, as determined by the 

mean time between failure (MTBF) requirement of the design. 

However, when a designer is making a decision on choosing one method over an-

other, a quantitative exploration may be desirable in addition to qualitative considera-

tions. 

In this section, we develop quantitative models for both challenges, metastability 

and independent timing of reader and writer processes.  

2.1 Quantitative modelling of metastability in a Boolean variable 

To study the metastability behavior of a binary bit being passed from one asyn-

chronous process to another, we assume it is implemented in the way described by 

Fig. 2. This is the passing of a binary variable from the writer to the reader, such that 
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the reader’s input variable y takes on the value of the writer’s output variable x when 

the clock/control signal cl is set. In other words, cl: y=x. 

 
Fig. 2 A binary asynchronous variable. 

In order to have metastability in a latch of this type, the clock or control signal cl is 

usually activated by some entity not temporally related to the writer, in other words, 

the signals x and cl may change very close in time causing metastability to happen at 

signal y. This directly corresponds with method (c) described above as a latch like this 

forms the unguarded FIFO buffer used in that method. On the other hand, since syn-

chronizers are constructed out of essentially the same kind of circuit with the same 

metastability behavior, we can describe the metastability encountered by method (a) 

using the same technique.  

A binary variable that may become metastable, and settling out of metastability 

Representing the metastable value of a nominally Boolean variable as a distinct 

marking allows the convenient tracking of metastability and its effects. The SAN 

model of a Boolean variable that may become metastable is shown in Fig. 3. 

 
Fig. 3 SAN model of a Boolean variable y that may become metastable,  

including the process of metastability settling. 

The process of the natural settling of metastability is usually regarded as stochastic 

with an average speed entirely dependent on the hardware implementation of the vari-

able. This can be represented by a timed transition whose firing takes the value of the 

variable to 0 or 1 based on pre-determined probabilities. Established theory on meta-

stability describes the settling as following an exponential process [5]. This can be 

represented by the timed transition having an exponential timing distribution whose 

mean rate λ can be found through hardware experimentation [5]. It is usual practice to 

y0 

yM 

y1 

IG 

OG0 
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writer reader 

x D Q y 

cl 
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assume that metastability settles to 0 or 1 with the same probability, i.e. 50%. Howev-

er, the model in Fig. 3 allows arbitrary pairs of probabilities p0=1-p1 to be chosen, if 

experiments on hardware show a bias in one way or the other. 

Coincidentally, for the purpose of using this model for analysis, exponential timing 

in the timed transition means that this part of the model does not introduce anything 

non-Markovian. An entirely Markovian system model usually allows not only simula-

tions but also analytical reasoning [9]. 

The logic of the input and output gates in the model is defined as follows: 

 

Gate Predicate Function 

IG Mark(yM)==1  

OG0  Mark(yM)=0; 

if (Mark(y0)==0 and Mark(y1)==0) 

then Mark(y0)=1; 

OG1  Mark(yM)=0; 

if (Mark(y0)==0 and Mark(y1)==0) 

then Mark(y0)=1; 

 

The settling countdown starts immediately when the variable enters metastability. 

At the end of the model-determined settling time, the marking in place yM is set to 

zero. However, when updating the variable to a digital value, the model needs to de-

termine whether the settling process is at this moment still in charge of the value of 

the variable – it is entirely possible that during the expected duration of metastability 

settling time, when the settling transition is in the process of firing, the variable has 

otherwise been set to a secure digital value through other means such as having been 

successfully assigned a value by another operation. The functions of the output gates 

ensure that only when no such thing has happened (i.e. both digital places still have 

the marking of 0) the completion of the settling transition would set the expected 

digital value. Otherwise nothing is done as at the end of the expected settling time, the 

variable has already otherwise achieved a secure digital value.  

Actively changing the variable value 

In addition to the settling of metastability, which is a passive process, the value of 

a nominally Boolean variable may also be changed actively. An example of this is the 

setting of variable y to the value of variable x in Fig. 2. 

To model metastability and its effect fully, we need to consider the following situa-

tions: 

 When cl comes, x is stable at either 0 or 1 → y takes the value of x 

 When cl comes, x is itself metastable, i.e. having the value of M → y has a 

probability of becoming M; 

 When cl comes, x is being changed → y has a probability of becoming M; 

This means that we need a place or places whose marking(s) indicate that x is be-

ing changed between the two digital values 0 and 1. In addition, cl itself is a signal 
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whose change may take some time. This is best represented by having any cl change 

indicated by a marking in a place.  

The SAN formalism facilitates the compact representation of such conditional rela-

tionships, once such states as ‘x is being changed’ and ‘cl is coming’ are represented 
by markings. Similar to the metastability settling speed, the probabilities of y getting a 

value of 0, M or 1 in any particular situation may be obtained through hardware ex-

periments. Hardware characterization is the best method for generating the quantita-

tive parameters for these models.  

 
Fig. 4 Changing the value of an asynchronous Boolean variable. 

Fig. 4 shows the structure of the SAN model of changing the value of a Boolean 

variable implemented using a circuit of the type shown in Fig. 2. Places named x0, 

yM, cl0, etc. denote that the signal takes a particular value. Places named with the 

signal name followed by two values denote that the signal is transitioning from the 

first value to the second, i.e. x01 denotes x: 0→1. 
The logic of the input and output gates is as follows: 

 

Gate Predicate Function 

IG Mark(cl10)==1  

OG0  Mark(y=M)=0; 

Mark(y=0)=0; 

Mark(y=1)=1; 

OG1  Mark(y=M)=0; 

Mark(y=1)=0; 

Mark(y=0)=1; 

OGM  Mark(y=0)=0; 

Mark(y=1)=0; 

Mark(y=M)=1; 

 

The process of changing the value of y starts when cl is being reset (falling edge 

trigger on the clock, place cl10 marked). At the end of the process, the value of y is 
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set according to what branch of the SAN the model has been progressing. The first 

transition on the left hand side is where the logic is that determines how the value of y 

will be set, and as such must correctly specify the probabilities of each of its branches, 

changing from 0 to 1, changing from 1 to 0, setting to M, and do nothing (keeping the 

old value of y). 

This depends on the markings of the places listed on the left hand side of Fig. 4. 

For instance, case 4 of the activity, do nothing, has a probability of 1 when x=0 and 

y=0, and a probability of 0 when x=0 and y=1. The probability of case 3 is non-zero if 

one of the places xM, x01 and x10 are marked. The probability of case 3 under differ-

ent conditions when it is not zero can be determined through hardware characteriza-

tion experiments [5]. 

This model has a relatively low precision as it assumes a constant probability of y 

entering metastability if, when cl changes, x is in the process of change. However, 

accepted theory of metastability indicates that the probability of y entering metastabil-

ity is related to how close the cl and x changes are in time [5]. Assuming the same 

probability for all cases of overlapping access may not be precise enough for certainly 

analysis. 

Timing issues 

The precision of the above model can be improved by representing one of the 

changing processes, either x changing or cl falling, as constituting multiple steps. This 

extended representation is shown in Fig. 5. 

 
Fig. 5 Dividing a value change into multiple steps. 

During a change of the signal cl, how much this change has progressed is indicated 

by where the token is in the chain. Usually variable value changes take deterministic 

time related to the speed of the hardware in which the process that makes this change 

is mapped. Such a deterministic delay can easily be divided into a sequence of deter-

ministic delays as represented by the timed transitions in Fig. 5. For stochastic delays, 

this method is less effective and accurate unless the distributions of the sequence of 

smaller delays can be derived from the distribution of the overall delay, which is not 

always possible. In other words, if metastability is involved in any signal value 

change, this method of dividing into multiple smaller changes may be less effective 

and using a single probability as in the previous section may be unavoidable. 

Knowing where a signal is in its changing process when the other signal is also 

changing allows the distance in time between these two changes to be represented, up 

to the precision of the stages in the model shown in Fig. 5. The model can therefore 

be made as precise as the time resolution of the hardware characterization data.  

The other timing issue, that of the relative durations of time each of the reader and 

writer processes makes accesses to a shared resource, is automatically represented in 

cl101 cl10n cl102 … … 
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models developed according to the methods given in this section. Together, the meta-

stability settling time, rising time, and falling time of each signal fully describe over-

all process lengths such as how long a shared variable is accessed by the writer or the 

reader. 

2.2 MUTEX and arbitration 

For method (b), which protects the shared memory location with a mutual exclu-

sion arrangement avoiding simultaneous accesses by both the reader and writer. The 

metastability and timing modelling can be derived based on the models presented in 

Section 2.1. This is because MUTEXes are usually constructed out of similar circuits, 

i.e. a single bit memory. However, since the input signals to MUTEXes are not the 

somewhat asymmetric data and clock with different functions, but fully symmetric 

requests, the models need to be modified to reflect this. 

A typical MUTEX consists of an SR-latch followed by a metastability resolver. It 

functions as follows: 

 Be ready to receive requests from two different processes when no grant is out-

standing; 

 Issue a grand to the process which has just produced a request; 

 Withdraw a grant after receiving a reset of a request signal – a requesting pro-

cess is assumed to reset its request once the granted resource has been made use 

of; 

 When requests from both processes arrive close together, the latch may go into 

metastability, but the metastability resolver makes sure that no grants will be is-

sued until the metastability has been resolved; 

 A requesting process is assumed to hold up its request until a grant is issued – 

there is no withdrawal of requests without grants. 

The model for the metastable state and its settlement is similar to Fig. 3, if a Bool-

ean variable is used to issue grants, for instance y=0 grants process 0 and y=1 grants 

process 1, as is normal for MUTEX arbitration.  

 
Fig. 6 Responding to requests 
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The model in Fig. 6 is based on the assumption that the internal MUTEX state of 1 

corresponds to granting to writer and 0 corresponds to granting to reader, without 

losing generality. Once the internal state 0 or 1 is secured, the corresponding grant 

may take non-zero time to appear, represented by the timed transitions on the right 

hand side. If this degree of representation is not needed, these may be replaced with 

instantaneous transitions. The internal state M causes the entire process to delay with 

the only activity being the metastability settling. Note that this settling sub-net is less 

complex than Fig. 3 as in a MUTEX it is not possible for external influences to hard 

set M to one of the digital states. Because requesters would not withdraw outstanding 

requests, the only route out of the M state is via settlement. 

The internal state is only represented between the start of a grant computation (the 

left hand transition firing) and the next grant commitment (one of the right hand tran-

sitions starting to fire). Although the actual circuit would maintain an internal state 

always, it is only of functional relevance in between those events. Hence the model is 

simplified this way. 

The input gate IG has the following predicate and function: 

 

Gate Predicate Function 

IG Mark(ready)==1 &&  

(Mark(rW1)==1 || Mark(rR1)==1) 

Mark(ready)=0 

 

This means that grant computation starts when the place ‘ready’ is marked and at 
least one of the request signals is present (rW1 and/or rR1 marked). And starting a 

round of grant computation unmarks the place ‘ready’. Place ‘ready’ is marked again 
once a requesting process has finished using its granted access. 

The probabilities in the grant computation starting transition need to reflect the fol-

lowing protocol: 

 If neither rR1 nor rR01 is marked, i.e. the reader request is not present nor being 

issued, grant computation goes to the branch leading to internal place ‘1’ with a 
probability of 1. This leads towards granting writer access. 

 If neither rW1 nor rW01 is marked, i.e. the writer request is not present nor be-

ing issued, grant computation goes to the branch leading to internal place ‘0’ 
with a probability of 1. This leads to granting reader access. 

 If one of rR1/rR01 and one of rW1/rW01 are marked at the same time, i.e. both 

reader and writer requests are either present or being issued, grant computation 

goes to all three branches with appropriate probabilities, which may be obtained 

from experimental characterization of hardware. 

Granting is represented by either place gW or place gR. The appropriate process 

taking its grant by taking the token from its corresponding grant place, and puts a 

token back to place ‘ready’ after the end of the access. 
The normal assumptions of MUTEX arbitration apply. For instance, a requester is 

not supposed to withdrawn a request before a grant is issued in its favor. In order to 

represent all possible causes of metastability properly, request signals are modelled as 

taking non-zero time to set up (‘being issued’ is at least one distinct state). More pre-
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cise modelling by having a multi-stage setup process for one or both of the request 

signals is possible with the method shown in Fig. 5, if necessary. 

3 The ternary asynchronous variable 

Larger control variables may be needed for more complex ACMs. Here we discuss 

the ternary control variable used in certain existing ACM algorithms, to show that 

larger control variables can be constructed out of Boolean asynchronous variables. 

A ternary (base-3) variable taking three possible values (e.g., 0, 1, 2) may be im-

plemented in a number of ways. The most straightforward is to use one-hot encoding 

and binary circuits. In other words, using three wires, with a maximum of one of then 

having a signal value of 1 at any time. Wire 0 being 1 and the other two wires being 0 

indicate the value of the variable being 0, wire 1 being 1 and the other two wires be-

ing 0 indicate the value of the variable being 1, and wire 2 being 1 and the other two 

wires being 0 indicate the value of the variable being 2: 

 

Signals on wires Variable value 

{1, 0, 0} 0 

{0, 1, 0} 1 

{0, 0, 1} 2 

{0, 0, 0} potential spacer (see below) 

other values are not allowed undefined  

 

When such a variable is being sent from one independently timed process to anoth-

er, the simplest way of avoiding confusion and reducing potential errors is to make 

use of spacers. In other words, when changing the value of such a variable, the current 

wire holding 1 is pulled down to 0 first, before another wire is set from 0 to 1. Briefly, 

the three wires hold the spacer signal {0, 0, 0}, which indicates the fact that the value 

of the ternary variable is being changed. 

For instance, the following steps change the variable value from 0 to 2: 

 

{1, 0, 0} → {0, 0, 0} → {0, 0, 1} 

 

With such an implementation, or any other implementation using binary logic, the 

models derived in Section 2 can be directly used, as each ternary variable is imple-

mented with binary signals.  

It is worth noting that when reading the value of such a ternary variable, a spacer 

should cause a wait on the reader’s part as the value is not functionally valid. In other 

words, reading a ternary variable should be done using the following procedure: 

 

wait until (v0=1 or v1=1 or v2=1); 

read v; 
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In such a scheme, metastability can only happen when changing to spacer or 

changing out of spacer. The spacer scheme qualitatively trades spacer delay for addi-

tional variable value safety.  

Ternary logic based on using three different analogue signal values to represent the 

three variable values is conceptually possible. It is worth noting that these circuits 

have been ignored in general by researchers in the field of asynchronous data com-

munication. Modelling such implementations is out of the scope of this paper. 

4 Case study 

In this section we investigate the usage of the asynchronous variable models in a 

wider context, i.e. when these variables are used as control variables in ACMs. Here 

the examples used are the ‘pool’ or ‘RR-OW’ type, with a single logical buffer space, 
mechanisms that aim to provide the reading and writing processes with full timing 

independence. This means that overwriting of previously unread data stored in the 

buffer, and rereading of previously read data, must be allowed. This is intuitive if the 

buffer has a limited number of spaces (in this case a single space), and potentially 

allow multiple cycles of reader access in between two writer accesses and multiple 

writer accesses in between two reader accesses. 

The fundamental assumption of these ACMs is that they serve as data connectors 

between the communicating processes between which a sequence of data items of the 

same type are transferred. In each cycle of writing and reading access, the relevant 

communicating process transfers one item of data to or from the ACM.  

4.1 A two-slot ACM 

The two-slot pool ACM, proposed by Simpson in [4], attempts to accommodate the 

full asynchrony between the reading and writing accesses by using two physical data 

memory spaces, each enough to contain one item of data. When an access happens, 

the other access should maximally be able to occupy one slot, hence the intuition is 

that whenever an access needs to happen it always has a slot to point to. Control vari-

ables are used to make sure that reading accesses ‘chase’ writing accesses – each 

reading access tries to read from the slot containing the newest completely written 

data item, as indicated by the writing access’s previous round. How the writing access 
chooses its slot can be more interesting. A seemingly totally safe method is to always 

avoid the reading access by going to the other slot not currently being read. This how-

ever has been shown to create the possibility that the reading access will keep reread-

ing the same item of data whilst the writing access keeps overwriting to the other slot, 

if the two accesses are matched in their speed. Simpson’s method is to have the writ-
ing access point to alternating slots in successive rounds regardless of where the read-

ing is happening. This has been shown to lead to clashes on the same slot by both 

processes and violate data coherence, under certain circumstances.  

The algorithm for the two-slot mechanism can be written as follows: 
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Write access Read access 

w=!(l); r=l; 

d[w]=input; Output=d[r]; 

l=w;  

 

In this algorithm the two data slots are arranged into an array d[0..1], whose access 

is managed through the shared control variable l, which is Boolean and indicates the 

last complete written slot. The writing access uses its private control variable w to 

choose the next slot to be written. The reading access uses its private control variable 

r to choose the next slot to be read.  

In the writing access the sequence of actions are: choosing the slot not accessed by 

the previous writing access, writing to that slot, indicating that slot to be the last writ-

ten one. It is then assumed that the writing process ends and the master process that 

contains the writing process will execute a sequence of actions which includes the 

preparation of the next writing access round. Then the writing access will start again 

from the first statement. This is assumed to form a forever loop as long as the ACM 

continues to be used. 

The reading access has the following sequence of actions: choosing the slot to read 

from, read from that slot. After a round of reading access ends, the master process that 

includes the reading access is assumed to perform actions not related to accessing this 

ACM, including making use of the data just read. A forever loop situation similar to 

the writing side is also assumed. 

The ACM accesses can then be viewed as procedures or functions called by their 

respective master processes in each cycle of action. 

A single Boolean control variable is shared between the two access procedures, l, 

which is written by the writing access and read by the reading access. It is used for the 

writing side to indicate to the reading side, and to itself, the immediate previous com-

pletely written slot. The passing of this Boolean variable through the reader statement 

r=l can be modelled with the method described in Section 2.  

Here we investigate the mode of operation where the two-slot ACM works if l is 

always correctly read. This is guaranteed if the duration between two writing accesses 

is longer than a reading access. If this is not the case, the two-slot ACM can violate 

data coherence even if l is always correctly read and there is not much point in ana-

lyzing what happens when, for instance, r becomes metastable.  

As the value of l itself is changed entirely during a writer internal statement unre-

lated to the reader, it cannot be metastable. As a result the model for r and the syn-

chronizer is simpler in methods (a) and (c) as there is no such thing as metastability 

propagation between the two sides. For method (b), the MUTEX protects variable l, 

and both l=w; and r=l; need to be preceded by requests to the MUTEX and fol-

lowed by request resets. The writer example is as follows:  

 

rW=1; 

l=w; 

rW=0; 
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4.2 Quantitative model explorations 

Models in SANs were constructed within the environment of the Möbius tool [10] 

and quantitative explorations of the behavior of the two-slot ACM studied in the same 

environment. In this first explorative attempt, the following assumptions are made: 

 The smallest step, that of assigning the value of a Boolean variable, is set to unit 

time, called τ – this usually corresponds with somewhere in the picosecond 

range in current CMOS technology given typical latches;  

 Both reader and writer processes have deterministic delays in their statements, 

to emulate real-time programs whose timings have deterministic specifications; 

 The reader process is started after a stochastic delay after the writer process, to 

emulate non-deterministic phase differences between the two processes, the res-

olution of this phase difference is 0.1τ so that processes can by desynchronized 

by less time than a full Boolean variable value change; 

 Test cases with both l=w; and r=l; taking τ, with l=w; taking τ and r=l; 

taking 10τ, as well as with l=w; taking 10τ and r=l; taking τ are explored; 

 Reading is assumed to take 10 times the time as a reader binary variable state-

ment and writing is assumed to take 10 times the time as a writer binary variable 

statement; 

 The time distance between two write accesses and that between two read ac-

cesses is assumed to take 1000 times the time as a binary variable statement. 

Basically we cover the cases where the writer is 10 times faster than, the same 

speed as, and 10 times slower than the reader. The only non-deterministic delays in 

the study comes from metastability settlement. We also tried one case where the writ-

er’s speed is related to τ, and hence that of the reader, by a random non-integer value, 

but that did not show up any new results or trends. 

We only explored methods (b) – MUTEX protection for l and (c) – unprotected 

fully asynchronous access to l by both sides. 

The quantitative results we obtained, collated from a number of experiments, are 

listed as follows: 

 

Method Data 

error 

min 

Data 

error 

mean 

Data 

error 

max 

Delay 

min 

Delay 

mean 

Delay 

max 

(b) 0 0 0 0 0.013τ ∞1 

(c) 0 0.025% 100%2 0 0 0 

 

These explorations are based on realistic assumptions of very low probabilities of 

the onset of metastability even with overlapping accesses (e.g. 1%) and fast metasta-

bility settlement (e.g. the mean settlement time 1/λ = 0.1τ). Data error is measured by 

how many reads produced output values that have not been written, and ‘delay’ in the 
above results relate to additional delay either side has to suffer because the two state-

                                                           
1  These are theoretical values derived from [5]. 
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ments l=w; and r=l; took longer than normal time due to the asynchrony. The 

results confirm the intuitive notion that the two methods trade delay with correctness 

as the MUTEX method protects the variable by paying potential non-deterministic 

delay as a price, and the fully asynchronous method guarantees full delay predictabil-

ity by paying potential data corruption. Although these qualitative points can be de-

rived from existing methods this work provides a systematic way of generating quan-

titative trade-off maps for designers.  

5 Conclusions and future work 

Quantitative models of asynchronous variables including metastability and its set-

tlement are developed using the formalism stochastic activity networks (SANs) and 

their use initially demonstrated through a case study conducted using the Möbius tool. 

Whilst the actual numbers obtained from the work so far may not have any practical 

significance, the fact that they can be obtained using the methods provided represents 

a new development in the modelling of variables being passed between two non-fully 

synchronized processes.  

The models can be extended and used on the entire class of existing ACM solu-

tions and the hypothesis that the method may be used for developing new ACMs are 

promising topics of future work. 
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