Quantitative Modelling of Asynchronous Variables 305

Quantitative modelling of asynchronousvariables

Fei Xia and lan Clark

School of EEE, Newcastle University, NE1 7RU, UK
fei.xia@newcastle.ac.uk, ian.clark@newcastle.ac.uk

Abstract. Variables being passed between processes not synchronized for the
communication may be affected by the lack of synchrony betéfeeprocesses

and such passing of variables may also affect the nominal asyndietwgen

the communicating processes. There exists a large body of resedahshdata
communication between asynchronous processes exemplified by Lamport’s
atomic registers and Simpson’s multi-slot asynchronous communication mech-
anisms (ACMs). Many of the existing solutions try to reduce the effedtseof
fundamental problem by reducing the timing independence to variablesy

small size. For instance, Boolean and ternary control variables hemeubed

to protect the usually larger data structures being passed. However, ultimately
the control variables must deal with the asynchrony between the gammu
cating processes in some way. A Boolean variable (single bit) betwesyman
chronous reader-writer pair cannot avoid metastability or mutual exclpsie
tection, for instance. Existing models using formalisms such as R&triand
process algebra and solutions based on state-space analysis arestigejood
understanding in the qualitative behavior of such variables. In this wapgEm

to expand this understanding to the quantitative by developirtelsin sto-
chastic activity networks (SANs) with which quantitative investigatioag be

made with regard to such variables.

Keywords: asynchronous data communication, metastability, stochastic activi-
ty networks.

1 Introduction

In digital systemspefore the entire world’s systems can be synchronized on the
same truly global clock, inevitably it would be necessary to communicasede a
particular clock domain. With continued increase of VLSI integration, thysigdd
size of clock domains have become smaller, not larger, and the overall noinber
clock domains has also increased. For instance, whereas it used to be thaingveryth
on the motherboard of a desktop computer ran off a single global dowkwithin a
single chip there tends to be multiple clock domains as a single chipmpaocksom-
putation power than multiple classical computers.

Crossing clock domain boundaries with data can be implemented in nagsy hv
can be done fully synchronously, through the temporary sgntation between two
clock domains for the duration of data transfer. This can be founthiy globally
asynchronous locally synchronous (GALS) solutions where stretchadhier grausi-

mailto:fei.xia@newcastle.ac.uk
mailto:ian.clark@newcastle.ac.uk

306 Fei Xia and Ian Clark

ble clocks are used [1]. It can also be done with a certain degree of rasynble-
tween the communicating processes, for instance through thé das& duffers. This
can be found in the majority of network communications includitgvarks on chip
(NoC) solutions [2]

One of the ultimate examples of asynchronous data communication is¢hiesb
fully asynchronous communication where there is no synchronizatioer eittively
administered (e.g. the use of GALS-style synchronization) or implied tteaugh
the buffer full or empty states, or the mutual exclusion/critical sectiotegtion of
data), which ideally allows the processes to possess full temporal independénce
affected by the act of communication. Lamport’s atomic register followed by Simp-
son’s multi-slot ACMs attempt to solve this problem 3.

From this wide spectrum of problem statements and solutions, it isticédahere
exist two fundamental desirable properties. These are:

e Asynchrony: Minimal obliged waiting for either the reader or the writer pr
cesses. Fully asynchronous communication aims for zero waiting onsdber

e Data transfer: Maximal quality for the data eventually read. This is ustedly
scribed by a number of metric parameters, such as data coherence, data fresh-
ness, data sequencing, etc. and is different for different application scenarios
An intuitive understanding of data coherence, for instance, is thatrites, \or
anything else, should not be allowed to corrupt half-read data.

And the large number of existing solutions arrive at various tradpeifits be-
tween these two qualities [8].

A substantial amount of research exists in this field, with a largebeu of at-
tempts at provide qualitative modelling so that a solution may be testedhédiner it
violates data coherence, process asynchrony or any other metric aneshdesonhat
circumstances [8]

However there has been a total absence of any quantitative modellimgdmeéth
which different solutions may be more precisely placed relative to each intlaer
gquantitative map of trade-off.

1.1 Contributionsand organization

This work is the first attempt at achieving quantitative models of asymehsada-
ta communication. The language chosen is SANs, which provides opportadfities
properly representing such phenomena as metastability quantitatively according to
well accepted models [9]. Given that many solutions remove the probkumsed by
inter-process asynchrony away from potentially large data to usuadlif samtrol
variables, this work concentrate on modelling Boolean and ternary variabléseénd
usual implementation using hardware latches.

The rest of the paper is organized as follows: Section 2 introduces the tcohcep
the asynchronous variable, and describes quantitative models for the two essential
properties for Boolean asynchronous variables. Section 3 describes morexcomp
asynchronous variables, their implementation and modelling. Section 4 desesbes

Quantitative Modelling of Asynchronous Variables 307

studies where the models of asynchronous control variables are usst/éobéhav-
iors of larger systems in which they are used. Section 5 concludes tre pap

2 TheBoolean asynchronousvariable

Fig. 1shows the basic concept of two asynchronous processes intercommgnicati
with one (writer) providing the data and the other (reader) malsegotiit. This is
both a general description of all such data communications and a specifictamscrip
of the passing of control variables. The difference is in what the data fani is
meant to be used.

data connectior
writer > reader

Fig. 1 Unidirectional inter-process data communication.

In a control variable situation, it may happen that the writer of the overall data
communication may be the reader of a specific control variable, which isnabigte
the reader process in the overall communication. In other words, altlaosécific
instance of asynchronous data communication is usually defined a®ctiddial, i.e.
data passing from the writer to the reader, to support this communicatienoahe
control variables may go the other way, to allow the reader to infarmtiter of its
current state, for instancén the rest of the paper, unless otherwise stated, ‘reader’
and ‘writer’ pertain to the variable being discussed, which in most cases are binary
and ternary control variables and not the main data.

It is clear from Fig. 1 that we assume each individual control variable tmikdli-
rectional and cannot be written to by both sides. This simplifies the probithout
limiting the solution space, as demonstrated by numerous existing work.

The smallest control variable is the smallest digital variable, i.e. a single bihary b
This is the subject of this section.

Such a variable can be transmitted from the writer to the reader in a nafnber
ways:

(a) Fully synchronously: The reader and the writer need to be synchrdoized
single clock period during which the reader directly reads a copysoBtiole-
an value from the writer’s bus or output port. There needs to be no shared
memory, just shared wires [5].

(b) With a single shared memory location to provide some degree oftasyry
The single space FIFO buffer may be guarded with a MUTEX making it acces-
sible by one process at any time.[5]

308 Fei Xia and Ian Clark

(c) With an unguarded single space FIFO buffer: A fully asynchronduisoal-
lows buffer access by both sides at the same tint.[4

All three methods face the following two issues:

o Metastability: The phenomenon of metastability, where a nominally Boolean
signal takes a value that is neither O nor 1 which nevertheless mayegrerfs
non-trivial amounts of time, is inevitable when you have two indegathy
timed processes accessing the same memory element at the samecértarin
conflicting ways, such as reading and writing at the same timea&magre-
guests to a MUTEX element at the same time [6]. The simplest 1-bit mésnor
a latch and synchronizers, MUTEXes and Boolean variables are implemented
using circuits which could be classified as some type of latch. The first dnetho
therefore cannot avoid metastability at the synchronizer, the second method
must face it at the MUTEX, and the third directly on the data bit.

e The relative timing of access from both sides is not specified. Readipdake
the same time as, or a radically different time from, writing. And this fiatsn
has an impact on the behaviors of all three methods.

The effects of these challenges on the different methods may smneeaabout
qualitatively using existing research results and techniques [7]. For exawple,
though the fully asynchronous solution may sound unsafe tetagisnetastability is
on the data and not controlled by a MUTEX, or mitigated by multi-flop sypmit
ers, for a lot of control variables used in asynchronous data commumscakic
causes, in practice, some non-deterministic delay [8]. Since the variablecbeing
municated is a binary bit, the worst case scenario, i.e. the reader and théaethter
accessing it at the same time, is that metastability may happen. Pragmaiticsally,
sensible to assume that once metastability happens, the variable eventually settles
non-deterministically to one of the digital values: either 0 or 1. Metastatslityonly
happen if the writer is in the process of changing the vdltigedbit when the reader
attempts to access it. Hence either one of the settled values should be valig, for an
sensible communication algorithm and implementation. The only thingetsigreer
need to do is to make sure that the control variable is used aftetisweref its read-
ing to provide it with enough probability to settle before use, as detedntin the
mean time between failure (MTBF) requirement of the design.

However, when a designer is making a decision on choosing one nuoeftrodn-
other, a quantitative exploration may be desirable in addition to qualitativieles
tions.

In this section, we develop quantitative models for both challenges, tafglifs
and independent timing of reader and writer processes.

21 Quantitative modelling of metastability in a Boolean variable

To study the metastability behavior of a binary bit being passed framasyn-
chronous process to another, we assume it is implemented wathéescribed by
Fig. 2. This is the passing of a binary variable from the writer toethder, such that

Quantitative Modelling of Asynchronous Variables 309

the reader’s input variable y takes orthe value of the writer’s output variable X when
the clock/control signall is set. In other words]: y=x.

X D Q y
reader

cl

Fig. 2 A binary asynchronous variable.

In order to have metastability in a latch of this type, the clock or dmignealcl is
usually activated by some entity not temporally related to the writether evords,
the signals< andcl may change very close in time causing metastability to happen at
signaly. This directly corresponds with method (c) described above as a latthidike
forms the unguarded FIFO buffer used in that method. On the othér diaoce syn-
chronizers are constructed out of essentially the same kind of circuitheittame
metastability behavior, we can describe the metastability encountered by method (
using the same technique

A binary variable that may become metastable, and settling out of metastability
Representing the metastable value of a nominally Boolean variable as a distinct

marking allows the convenient tracking of metastability and its effects. SAN

model of a Boolean variable that may become metastable is shown in Fig. 3.

Fig. 3 SAN model of a Boolean variabjethat may become metastable,
including the process of metastability settling.

The process of the natural settling of metastability is usually regardegichastic
with an average speed entirely dependent on the hardware implementakiervarfi-
able. This can be represented by a timed transition whose firing takesdubeof/the
variable to 0 or 1 based on pre-determined probabilities. Established theomtan
stability describes the settling as following an exponential process hf.can be
represented by the timed transition having an exponential timing digribwrhose
mean rate. can be found through hardware experimentation [5]. It is usuaiqedo

310 Fei Xia and Ian Clark

assume that metastability settles to 0 or 1 with the same probability, i.eHo0#bv-
er, the model in Fig. 3 allows arbitrary pairs of probabilipesl-p: to be chosen, if
experiments on hardware show a bias in one way or the other.

Coincidentally, for the purpose of using this model for analgsigspnential timing
in the timed transition means that this part of the model does not intradytiéng
non-Markovian. An entirely Markovian system model usually allowsonbt simula-
tions but also analytical reasoning [9].

The logic of the input and output gates in the model is defined as follows

Gate Predicate Function
IG Mark (yM) ==
OGOo Mark (yM)=0;

if (Mark(y0)==0 and Mark(yl)==0)
then Mark(y0)=1;

0G1 Mark (yM)=0;

if (Mark(y0)==0 and Mark(yl)==0)
then Mark (y0)=1;

The settling countdown starts immediately when the variable enters metastability.
At the end of the model-determined settling time, the marking in pislces set to
zero. However, when updating the variable to a digital value, the moded toedd-
termine whether the settling process is at this moment still in charthe walue of
the variable- it is entirely possible that during the expected duration of metastability
settling time, when the settling transition is in the process of firingydahable has
otherwise been set to a secure digital value through other means saslingsbleen
successfully assigned a value by another operation. The functitims ofitput gates
ensure that only when no such thing has happened (i.e. both digtes still have
the marking of 0) the completion of the settling transition would setettpected
digital value. Otherwise nothing is done as at the end of the expectatyd@tik, the
variable has already otherwise achieved a secure digital value.

Actively changing the variable value

In addition to the settling of metastability, which is a passive processathe of
a nominally Boolean variable may also be changed actively. An examplis &f the
setting of variable to the value of variablein Fig. 2.

To model metastability and its effect fully, we need to consider thenfoigpsitua-
tions:

e Whencl comesx is stable at either 0 or 1 — y takes the value of

e Whencl comes,x is itself metastable, i.e. having the value of-My has a
probability of becoming M;

¢ Whencl comesx is being changeéd» y has a probability of becoming M;

This means that we need a place or places whose marking(s) indatatestbe-
ing changed between the two digital values 0 and 1. In adddidtself is a signal

Quantitative Modelling of Asynchronous Variables 311

whose change may take some time. This is best represented by haweigchange
indicated by a marking in a place.

The SAN formalism facilitates the compact representation of such conditional rela-
tionships once such states as ‘X is being changed’ and ‘cl is coming’ are represented
by markings Similar to the metastability settling speed, the probabilitigsgstting a
value of 0, M or 1 in any particular situation may be obtained thrdwagdware ex-
periments. Hardware characterization is the best method for generating the quantita-
tive parameters for these models.

OGO

yl
Gl y0
yM

OGM

Fig. 4 Changing the value of an asynchronous Boolean variable.

Fig. 4 shows the structure of the SAN model of changing the valueBobkean
variable implemented using a circuit of the type shown in Fig2l&es namedo,
yM, cl0, etc. denote that the signal takes a particular value. Places named with the
signal name followed by two values denote that the signal is transitiomingthe
first value to the second, i.k01 denotes: 0—1.

The logic of the input and output gates is as foiow

Gate Predicate Function

IG Mark (cl1l0)==1

OGO Mark (y=M)=0;
Mark (y=0)=0;
Mark (y=1)=1;

0OG1 Mark (y=M)=0;
Mark (y=1)=0;
Mark (y=0)=1;

OGM Mark (y=0)=0;
Mark (y=1)=0;
Mark (y=M)=1;

The process of changing the valueyaftarts wherel is being reset (falling edge
trigger on the clock, place10 marked). At the end of the process, the valug ief

312 Fei Xia and Ian Clark

set according to what branch of the SAN the model has been progredsinfirsT
transition on the left hand side is where the logic is that determines bosltle ofy
will be set, and as such must correctly specify the probabilities of edshbodnches,
changing from 0 to 1, changing from 1 to 0O, setting to M, andathing (keeping the
old value ofy).

This depends on the markings of the places listed on the left haraf §ide 4.

For instance, case 4 of the activity, do nothing, has a probabilitysaenx=0 and
y=0, and a probability of 0 wher0 andy=1. The probability of case 3 is non-zero if
one of the placesM, x01 andx10 are marked. The probability of case 3 under differ-
ent conditions when it is not zero can be determined through hardvaeectehniza-
tion experiments [5].

This model has a relatively low precision as it assumes a constant probabylity of
entering metastability if, whenl changesx is in the process of change. However,
accepted theory of metastability indicates that the probabiliyyeotering metastabil-
ity is related to how close th# andx changes are in time [GAssuming the same
probability for all cases of overlapping access may not be precisgtefancertainly
analysis.

Timing issues

The precision of the above model can be improved by representing ahe of
changing processes, eithechanging ocl falling, as constituting multiple steps. This
extended representation is shown in Fig. 5.

<:>c|101 ' (>c|102 l POCWH

Fig. 5 Dividing a value change into multiple steps.

During a change of the signell how much this change has progressed is indicated
by where the token is in the chain. Usually variable value changes take detgcmi
time related to the speed of the hardware in which the process that makdsange
is mapped. Such a deterministic delay can easily be divided into a secqfedteter-
ministic delays as represented by the timed transitions in Higprstochastic delays,
this method is less effective and accurate unless the distributions of tlenceqd
smaller delays can be derived from the distribution of the overall detagh is not
always possible. In other words, if metastability is involved in anpasigalue
change, this method of dividing into multiple smaller changes may beffestve
and using a single probability as in the previous section may be uahimid

Knowing where a signal is in its changing process when the other $gakdo
changing allows the distance in time between these two changesdprbesented, up
to the precision of the stages in the model shown in Fig. 5. Thelroad therefore
be made as precise as the time resolution of the hardware characterization data

The other timing issue, that of the relative durations of time each of ther rexadl
writer processes makes accesses to a shared resource, is automegicesignted in

Quantitative Modelling of Asynchronous Variables 313

models developed according to the methods given in this sectioathiBogthe meta-
stability settling time, rising time, and falling time of each signal/fdkscribe over-
all process lengths such as how long a shared variable is acceshednifer or the
reader.

2.2 MUTEX and arbitration

For method (b), which protects the shared memory location with aaimeralu-
sion arrangement avoiding simultaneous accesses by both the readeitemd e

metastability and timing modelling can be derived based on the models preasented
Section 2.1. This is because MUTEXes are usually constructed out of similaiscircu

i.e. a single bit memory. However, since the input signals to MUTEXeradrthe
somewhat asymmetric data and clock with different functions, but fullyretric
requests, the models need to be modified to reflect this.

A typical MUTEX consists of an SR-latch followed by a metastability resolver. |

functions as follows:

e Be ready to receive requests from two different processes when nadsgoai:
standing;

e Issue a grand to the process which has just produced a request;

o Withdraw a grant after receiving a reset of a request sigmatequesting pro-

cess is assumed to reset its request once the granted resource has baese mad

of;

e When requests from both processes arrive close together, the latgjo vy
metastability, but the metastability resolver makes sure that no grahte st
sued until the metastability has been resolved,;

¢ A requesting process is assumed to hold up its request until a granets-issu
there is no withdrawal of requests without grants.

The model for the metastable state and its settlement is similar to Fig. 3,af-a Bo

ean variable is used to issue grants, for instgnGegrants process 0 agdl grants
process 1, as is normal for MUTEX arbitration.

oR

1 gw
rR10 ready _’O

rkR1 M

Fig. 6 Responding to requests

314 Fei Xia and Ian Clark

The model in Fig. 6 is based on the assumption that the internal MUTEX state of 1
corresponds to granting to writer and 0 corresponds to granting to ,reatheut
losing generality. Once the internal state 0 or 1 is secured, the covésp grant
may take non-zero time to appear, represented by the timed transitithe nght
hand side. If this degree of representation is not needed, these majabedepth
instantaneous transitions. The internal state M causes the entire process tattelay w
the only activity being the metastability settling. Note that this settlinghstlis less
complex than Fig. 3 as in a MUTEX it is not possible for external inflietecdard
set M to one of the digital states. Because requesters would not withdraw ongstand
requests, the only route out of the M state is via settlement.

The internal state is only represented between the start of a grant computation (the
left hand transition firing) and the next grant commitment (one ofigie mand tran-
sitions starting to fire). Although the actual circuit would maintainrderial state
always, it is only of functional relevance in between those evidetsce the model is
simplified this way.

The input gate IG has the following predicate and function:

Gate Predicate Function
IG Mark (ready)==1 && Mark (ready) =0
(Mark (rWl) == | | Mark (rR1l)==1)

This means that grant computation starts when the place ‘ready’ is marked and at
least one of the request signals is preseml (and/orrR1 marked). And starting a
round of grant computation unmarks the place ‘ready’. Place ‘ready’ is marked again
once a requesting process has finished using its granted access.

The probabilities in the grant computation starting transition need to reflecthe f
lowing protocol:

¢ If neitherrR1 norrRO1 is marked, i.e. the reader request is not present nor being
issued, grant computation goes to the branch leading to internal place ‘1’ with a
probability of 1. This leads towards granting writer access.

o If neitherrWl norrWO1 is marked, i.e. the writer request is not present nor be-
ing issued, grant computation goes to the branch leading to internal place ‘0’
with a probability of 1. This leads to granting reader access.

o If one ofrRL/FRO1 and one of W1/rWO1 are marked at the same time, i.e. both
reader and writer requests are either present or being issued, grantatmmpu
goes to all three branches with appropriate probabilities, which may be obtained
from experimental characterization of hardware.

Granting is represented by either plaj® or placegR. The appropriate process
taking its grant by taking the token from its corresponding grkattep and puts a
token back to place ‘ready’ after the end of the access.

The normal assumptions of MUTEX arbitration apply. For instance, aseguis
not supposed to withdrawn a request before a grant is issueddmdts In order to
represent all possible causes of metastability properly, request signals afednasl
taking nonzero time to set up (‘being issued’ is at least one distinct state). More pre-

Quantitative Modelling of Asynchronous Variables 315

cise modelling by having a multi-stage setup process for onetbrdb the request
signals is possible with the method shown in Fig. 5, if necessary.

3 Theternary asynchronousvariable

Larger control variables may be needed for more complex ACMs. Here we discuss
the ternary control variable used in certain existing ACM algorithms, te shat
larger control variables can be constructed out of Boolean asynchronous variables.

A ternary (base-3) variable taking three possible values (e.g., Ondgy2be im-
plemented in a number of ways. The most straightforward is tonesdot encoding
and binary circuits. In other words, using three wires, with a marimiuone of then
having a signal value of 1 at any time. Wire 0 being 1 and the wtbewnires being 0
indicate the value of the variable being 0, wire 1 being 1 and the othawites be-
ing O indicate the value of the variable being 1, and wire 2 being 1 anthétretwo
wires being 0 indicate the value of the variable being 2:

Signalson wires Variablevalue

{1, 0, 0} 0

{0, 1, 0} 1

{0, 0, 1} 2

{0, 0, 0} potential spacer (see below)
other values are not allowed undefined

When such a variable is being sent from one independently timed gtocasoth-
er, the simplest way of avoiding confusion and reducing potential asréosmake
use of spacers. In other words, when changing the vakigchfa variable, the current
wire holding 1 is pulled down to O first, before another wire isreen 0 to 1. Briefly,
the three wires hold the spacer signal {0, 0, 0}, which indicatefatiéhat the value
of the ternary variable is being changed.

For instance, the following steps change the variable value from 0 to 2:

{1,0,0} - {0,0,0} — {0, O, 1}

With such an implementation, or any other implementation using biogig, the
models derived in Section 2 can be directly used, as each ternary variabléeis imp
mented with binary signals

It is worth noting that when reading the value of such a tewemigble, a spacer
should cause a wait on the reader’s part as the value is not functionally valid. In other
words, reading a ternary variable should be done using the follgringdure:

wait until (v0=1 or vl=1l or v2=1);
read v;

316 Fei Xia and Ian Clark

In such a scheme, metastability can only happen when changisgater or
changing out of spacer. The spacer scheme qualitatively trades spacdodatigi-
tional variable value safety.

Ternary logic based on using three different analogue signal valuepresent the
three variable values is conceptually possible. It is worth noting that theséscir
have been ignored in general by researchers in the field of asynebrdata com-
munication. Modelling such implementations is out of the scope of alpisrp

4 Casestudy

In this section we investigate the usage of the asynchronous variable moaels
wider context, i.e. when these variables are used as control variables in ACMs. Here
the examples used are the ‘pool’ or ‘RR-OW’ type, with a single logical buffer space,
mechanisms that aim to provide the reading and writing procesges$ul timing
independence. This means that overwriting of previously unread taéa $n the
buffer, and rereading of previously read data, must be allowes isTimtuitive if the
buffer has a limited number of spaces (in this case a single spacepotentially
allow multiple cycles of reader access in between two writer accesdanudtiple
writer accesses in between two reader accesses.

The fundamental assumption of these ACMs is that they serve as data connectors
between the communicating processes between which a sequence of daté fitems
same type are transferred. In each cycle of writing and reading atieesslevant
communicating process transfers one item of data to or from the ACM.

41 A two-dot ACM

The two-slot pool ACM, proposed by Simpson in [4], attempts torapwdate the
full asynchrony between the reading and writing accesses by wsinphysical data
memory spaces, each enough to contain one item of data. When as feqmesns,
the other access should maximally be able to occupy one slot, hencéuitienitis
that whenever an access needs to happen it always has a slot to fgoomitol. vari-
ables are used to make sure that reading accesses ‘chase’ writing accesses each
reading access tries to read from the slot containing the neweptetely written
data item, as indicated by the writing access’s previous round. How the writing access
chooses its slot can be more interesting. A seemingly totally safe metiooalgys
avoid the reading access by going to the other slot not currently fegidgThis how-
ever has been shown to create the possibility that the reading access wireaeh
ing the same item of data whilst the writing access keeps overwritthg tther slot,
if the two accesses are matched in their speed. Simpson’s method is to have the writ-
ing access point to alternating slots in successive rounds regardlessreftihread-
ing is happening. This has been shown to lead to clashes on theskdrby both
processes and violate data coherence, under certain circumstances.

The algorithm for the two-slot mechanism can be written as follows:

Quantitative Modelling of Asynchronous Variables 317

Write access Read access
w=!(1); r=1;
d[w]=input; Output=d[r];
1=w;

In this algorithm the two data slots are arranged into an dffayl], whose access
is managed through the shared control varifp¥ehich is Boolean and indicates the
last complete written slot. The writing access uses its private control vawatole
choose the next slot to be written. The reading access uses its privaté\aordtde
r to choose the next slot to be read.

In the writing access the sequence of actions are: choosing the shotassed by
the previous writing access, writing to that slot, indicating that slot to dagbwevrit-
ten one. It is then assumed that the writing process ends and the mastss ghat
contains the writing process will execute a sequence of actions wiictdes the
preparation of the next writing access round. Then the writing aeékssart again
from the first statement. This is assumed to form a forever loop asfotie ACM
continues to be used.

The reading access has the following sequence of actions: choosgigt tlveread
from, read from that slot. After a round of reading access ¢émelsnaster process that
includes the reading access is assumed to perform actions not related smgdhés
ACM, including making use of the data just read. A forever loop situaiimilar to
the writing side is also assumed.

The ACM accesses can then be viewed as procedures or functions gatfesr b
respective master processes in each cycle of action.

A single Boolean control variable is shared between the two accesslymesé
which is written by the writing access and read by the readingsaadtésused for the
writing side to indicate to the reading side, and to itself, the immediat@ps com-
pletely written slotThe passing of this Boolean variable through the reader statement
r=1 can be modelled with the method described in Section 2

Here we investigate the mode of operation where the two-slot ACM wotks i
always correctly readrhis is guaranteed if the duration between two writing accesses
is longer than a reading access. If this is not the case, the two&ldtcAn violate
data coherence evenliis always correctly read and there is not much point in ana-
lyzing what happens when, for instancéecomes metastable.

As the value of itself is changed entirely during a writer internal statement unre-
lated to the reader, it cannot be metastable. As a result the modehrdrthe syn-
chronizer is simpler in methods (a) and (c) as there is no such thmgtastability
propagation between the two sides. For method (b), the MUTEX prote@bledy
and both1=w; andr=1; need to be preceded by requests to the MUTEX and fol-
lowed by request resets. The writer example is as follows:

riW=1;
1=w;
rw=0;

318 Fei Xia and Ian Clark

4.2 Quantitative model explorations

Models in SANs were constructed within the environment of the Mdbiug 16p
and quantitative explorations of the behavior of the two-slot ACM studitkisame
environment. In this first explorative attempt, the following assumptomsnade:

e The smallest step, that of assigning the value of a Boolean variable, isisit to
time, calledz — this usually corresponds with somewhere in the picosecond
range in current CMOS technology given typical latches;

e Both reader and writer processes have deterministic delays in their stistemen
to emulate real-time programs whose timings have deterministic specifgatio

e The reader process is started after a stochastic delay after the writes proces
emulate non-deterministic phase differences between the two processes; the r
olution of this phase difference is 8.40 that processes can by desynchronized
by less time than a full Boolean variable value change;

e Test cases with both=w; andr=1; takingr, with 1=w; takingr andr=1;
taking 1@, as well as witi=w; taking 1@ andr=1; takingr are explored,;

e Reading is assumed to take 10 times the time as a reader binary variable state-
ment and writing is assumed to take 10 times the time as a writer baréalle
statement;

e The time distance between two write accesses and that between two read ac-
cesses is assumed to take 1000 times the time as a binary variable statement.

Basically we cover the cases where the writer is 10 times faster than, the sam
speed as, and 10 times slower than the reader. The only non-detgecndeiays in
the study comes from metastability settlement. We also tried one case wherd-the wri
er’s speed is related to 7, and hence that of the reader, by a random non-integer value,
but that did not show up any new results or trends.

We only explored methods (b) MUTEX protection forl and (c)- unprotected
fully asynchronous accessltby both sides.

The quantitative results we obtained, collated from a number of experiments, are
listed as follows:

Method | Data Data Data Delay Delay Delay
error error error min mean max
min mean max

(b) 0 0 0 0 0.013r | oot

(c) 0 0.025% | 10096 | 0 0 0

These explorations are based on realistic assumptions of very low pradgsabilit
the onset of metastability even with overlapping accesses (e.g. 1%) anc:fastam
bility settlement (e.g. the mean settlement time=10.1). Data error is measured by
how many reads produced output values iaa¢ not been written, and ‘delay’ in the
above results relate to additional delay either side has to suffer because ttate-

1 These are theoretical values derived from [5].

Quantitative Modelling of Asynchronous Variables 319

ments1=w; and r=1; took longer than normal time due to the asynchrony. The
results confirm the intuitive notion that the two methods trade delay withatoess

as the MUTEX method protects the variable by paying potential non-deistimin
delay as a price, and the fully asynchronous method guarantees fylpdedéctabil-

ity by paying potential data corruption. Although these qualitative poenisbe de-
rived from existing methods this work provides a systematicafi@gnerating quan-
titative trade-off maps for designers.

5 Conclusions and future work

Quantitative models of asynchronous variables including metastability aset-its
tlement are developed using the formalism stochastic activity networks (S#Ns)
their use initially demonstrated through a case study conducted usikgligs tool.
Whilst the actual numbers obtained from the work so far may not hgvpracatical
significance, the fact that they can be obtained using the methoddgutagpresents
a new development in the modelling of variables being passed betweanrwolly
synchronized processes.

The models can be extended and used on the entire class of existihgohG
tions and the hypothesis that the method may be used for devet@mngCMs are
promising topics of future work.

References

1. M. Krstic, E. Grass, F. Gurkaynak, P. Vivet, "Globally asynobts, locally synchronous
circuits: overview andulook," in IEEE Design & Test of Computers, &), pp.430-441,
2007.

2. L. Benini, G. De Micheli, "Networks on chips: a new SoC paradigmComputer, 35,(1)
pp. 70-78, 2002.

3. Lamport, L., ‘On interprocess communication: Parts 1 and II’, Distrib. Comput., 1,(2),
pp.77-101 1986.

4. Simpson, R., “Four-slot fully asynchronous communication mechanism”, IEE Proceed-
ings, Pt. E, 137,(1), pp.17-30, 1990.

5. D. Kinnement, Synchronization and arbitration in digital systems, W2Ig§7.

6. Kleeman, L., Cantoni, A., “On the unavoidability of metastable behavior in digital sys-
tems”, IEEE Trans. Comput, 36,(1), pp.109-112, 1987.

7. Clark, L., Xia, F., Yakovlev, Y., Davies, A., ‘Petri net models of latch metastability’, Elec-
tronics Letters 34,(7), pp.63636, 1998.

8. Xia, F, Yakovlev, A., Clark, I., Shang. D:Data communication in systems with heteroge-
neous timing, IEEE Micro, 22,(§, pp. 58-69, 2002.

9. Sanders, W. and Meyer J., ‘Stochastic activity networks: formal definitions and concepts’,
LNCS 2090, pp.315-343, 2000.

10. The Mdbius tool, available at: https://www.mobius.illinois.edu/.

