
Working with Petri Nets and

Asynchronous Circuits

Tomohiro Yoneda

National Institute of Informatics, Tokyo 101-8430, Japan

Abstract. Petri nets and asynchronous circuits are very important and
special topics in my research career. Petri nets have been a useful tool
for me to formally verify and synthesize asynchronous circuits. In this
paper, I especially focus on handling timing issues in such frameworks,
and would like to summarize my research experiences built on both time
Petri nets and timed asynchronous circuits.

1 Time Petri nets and timed circuits

A time Petri net [1] is one of timed extensions of a Petri net where timing con-
straints are given to their transition firings. Two nonnegative rational numbers
are assigned to each transition of a time Petri net as shown in Fig. 1. In this
example, suppose that a transition t0 becomes enabled (i.e., a marking where
both its input places p0 and p1 have tokens is reached) at time point T . Then,
t0 cannot fire before time T + a, and t0 must fire before or at time T + b.

These timing constraints given to transitions of time Petri nets are useful to
model a timed circuit, where each gate in it has bounded delays, as shown in
Fig. 2 (a). In this paper, it is considered that the timed gate shown in Fig. 2 (a)
is equivalent to a gate with an inertial delay element as shown in Fig. 2 (b).
The two parameters of the delay element show its lower and upper bounds of
the delay, that is, the actual delay of the gate is non-deterministic, but is always
within the range. Furthermore, since it is an inertial delay element, a pulse whose
width is shorter than a always disappears (i.e., it cannot go through the delay
element). A wider pulse may or may not disappear, if its width is shorter than
or equal to b.

The timed gate shown in Fig. 2 can be modeled by a time Petri net as shown
in Fig. 3. This time Petri net is extended in several points: (1) Each transition

p0

p2t0 [a,b]

p1

Fig. 1. A time Petri net.

(a)

[a,b]

x

y
z

(b)

[a,b]
x

y
zw

Fig. 2. A timed gate.

155 x 238 mm

320 Tomohiro Yoneda

2

x=1

x=0

t0 t1 t4[0,0]
t7[a,b]

t5[0,0]

t6[0,0]

x ↓ x ↑

y=1

y=0

w=1

w=0

z=1

z=0
t2 t3

y ↑y ↓

w ↓

w ↓

w ↑

z ↑

t8[a,b]
z ↓

Fig. 3. A time Petri net representing the timed gate shown in Fig. 2.

is labeled with a rising or falling change of a signal. The firing of a transition
represents the change of the corresponding signal. (2) Each place is labeled with
a value of a signal. If a place has a token, the corresponding signal has the value
at the place. (3) Some transitions have no timing constraints (e.g., t0, t1, t2, and
t3). These transitions are called input transitions. The remaining transitions are
called output transitions. When a set of time Petri nets representing gates or
modules are considered, the firings of input transitions are invoked in synchro-
nization with the firings of the corresponding output transitions.

2 Partial order reduction

State space enumeration of a formal model is an essential technique needed for
both formal verification and asynchronous circuit synthesis. However, it is not
easy to complete the state space enumeration of a system unless the system is
very small. Thus, we focused on the fact that our purpose can be achieved by
checking whether some specific properties hold or not. One such simple exam-
ple of the properties is whether a specific transition can fire in some reachable
state. This property can easily be checked, if the whole reachable state space is
examined, but it is also possible to check it in a reduced state space. The partial
order reduction is a technique to obtain such a reduced state space for the given
property. Stubborn set method [2] is one of such techniques, and we extended
similar ideas for time Petri nets [3, 4].

Let’s consider a time Petri net shown in Fig. 4 (a), and assume that we want
to check whether transition t5 can fire in some reachable state. After firing t0, t1
can fire concurrently with t3 and t4 from their timing constraints. Two transitions
t2 and t5 are in conflict, which means that firing one of those transitions disables
the other. After firing t1, t2 becomes enabled. Again, from the timing constraints,
t2 can fire at the state, and its firing disables t5. Similar situation happens for

155 x 238 mm

Petri Nets and Asynchronous Circuits 321

3

t0[0,0]

t0

t3

t1

t1

t1

t1

t4

t5

p0

p0

p4p1

p2

p3

p5

p6

p7

t3[2,2]

t4[1,3]

t5[1,3]

t1[0,5]

t2[0,4]

(a) (b)

p1, p4

p1, p5

p1, p6

p1, p7

t3

t2

t2

t2

t4

t5

p2, p4

p2, p5

p2, p6

p2, p7

t3

t4

p3, p4

p3, p5

p3, p6

t0

t1

p0

(c)

p1, p4

t3

t2

t4

t5

p2, p4

p2, p5

p2, p6

p2, p7

p3, p6

Fig. 4. (a) A time Petri net, (b) its full state space, and (c) its reduced state space.

t5. Hence, we have a reachable state graph as shown in Fig. 4 (b). This graph
is obtained by firing every transition that can fire in each state. This is the full
state enumeration.

In order to check the above property without constructing the full state
graph, we usually fire one enabled and firable transition in each state. Intuitively,
an enabled transition is firable, if it can fire with respect to its timing constraints.
After firing t0, both t1 and t3 satisfy this condition. Since we choose one such
transition arbitrarily, assume that t1 is chosen. After firing t1, t2 and t3 are such
transitions. This state is special, because firing t2 takes away the possibility to
fire t5. Thus, firing only t2 in this state may lead to an incorrect decision. Instead,
enabled and firable transitions that may eventually make t5 enabled in time are
searched. In this case, it is t3. Our algorithm requires that t3 should also be
fired when t2 is fired from this state. On the other hand, t3 is an enabled and
firable transition in this state, and it conflicts with no other transitions. Thus,
when t3 is fired in this state, it is not required to fire any other transitions. For
this reason, our algorithm chooses to fire t3 in this state. t4 is fired similarly,
and then, both t2 and t5 become enabled. In this state, there is no other option
except for firing t2 or t5, and the reduced state space shown in Fig. 4 (c) is
obtained.

A key idea of our algorithm is that in case where firing a transition ta is
considered and a disabled transition tb is in conflict with ta, enabled and firable
transitions that may eventually make tb enabled in time are searched. Firing
such transitions (as well as ta) prevents us from missing possible transition fir-
ings. By the way, the above “in time” is also important. For example, if the

155 x 238 mm

322 Tomohiro Yoneda

4

timing constraints of t3 is [8, 8] instead of [2, 2], t3 cannot make t5 enabled in
time, because t2 must fire before time T (t0) + 9 (let T (u) denote the time when
transition u fires).

I mainly worked with Holger Schlingloff for this research topic. We both
stayed at Carnegie Mellon University in 1990-1991 as visiting researchers of
Prof. E. M. Clarke. We published 7 co-authored papers. An incomplete list of
researchers with whom I communicated on this topic is B. Berthomieu, P. Gode-
froid, K. L. McMillan, D. Peled, and A. Valmari.

3 Formal verification of timed asynchronous circuits

Our framework of formal verification of timed asynchronous circuits is a confor-
mance checking. In this framework, a safety failure for given specification and
circuit is a situation where a possible behavior in either side (specification or
circuit) is not possible in the other side. This situation usually happens when
the circuit produces a bad output that is not specified in the specification. For
this purpose, the given specification is first modeled by a time Petri net. This
time Petri net specifies when the input signals of the circuit can change, with
the timing constrains given to its output transitions. It also specifies when the
output signals of the circuit can change, with its input transitions. For example,
Fig. 5 (b) is a specification of a C-element in Fig. 5 (a). Note that transitions
labeled with τ are dummy transitions that are output transitions, but have no
corresponding input transitions.

c

a

b

t0[0,5]

[5,10]

t4t2[4.9,4.9]

t1[0,5]

(a) (b)

a ↑

b ↑

τ

t3[5.2,5.2]
τ

c ↑

t5[0,5]

t9t7[4.9,4.9]

t6[0,5]
τ

t8[5.2,5.2]
τ

a ↓

b ↓

c ↓

C

Fig. 5. (a) a circuit, and (b) its specification.

A circuit is modeled by a set of time Petri nets. As shown in Fig. 3, a simple
gate is straightforwardly modeled by a time Petri net. For connecting several
gates to compose a circuit, it is only needed to prepare a set of gates. Two im-
portant roles of our verification algorithm are (1) to synchronize the firings of
corresponding input and output transitions to explore the state space of the sys-
tem (i.e., a set of time Petri nets for a specification and gates), and (2) to check
whether for any firable output transition there exists a corresponding enabled
input transition. By the role (1), when an output of a gate is connected to an
input of another gate, its connection is represented by firing those input and

155 x 238 mm

Petri Nets and Asynchronous Circuits 323

5

output transitions in synchronization with each other. The role (1) also works
for specifying how a circuit should be used with respect to the specification.
Remember that the output transitions of the specification decide how the corre-
sponding input signals of a circuit behave, by synchronizing the corresponding
output transitions in a specification and the input transitions in a circuit. That
is, the specification stimulates the circuit. The role (2) is exactly for detecting
the safety failures.

As mentioned in the previous section, it is not usually possible to explore
the full state space. Thus, we have applied the partial order reduction for the
conformance checking. For this purpose, we need to consider a property for
the partial order reduction, such that a safety failed state is reachable in the
reduced state space if and only if a safety failed state is reachable in the full state
space. Remember that the simple partial order reduction algorithm mentioned in
Section 2 searches enabled and firable transitions that make tb enabled in time,
where tb is in conflict with ta and ta is fired at the current state. For handling
the conformance checking, this search is extended such that an input transition
tc is considered for the search similarly to tb, where td is an output transition
that corresponds to tc and td is made enabled by ta (see Fig. 6).

search

t
d

t
b

t
c

t
a

search

input transition of t
d

Fig. 6. Extended search of enabled and firable transitions.

I mainly worked with Chris Myers for this research topic. We had a joint
travel grant for 3 years, and published 15 co-authored papers related to this
topic. An incomplete list of researchers with whom I communicated on this
topic is P. A. Beerel, J. Cortadella, D. Dill, K. L. McMillan, and H. Schlingloff.

4 Synthesis of asynchronous circuits

Synthesis of an asynchronous circuit is to obtain an asynchronous circuit M for
a given specification G such that M behaves identically to G. In our case, G is
given as a timed signal transition graph, which is a kind of a time Petri net. By
using timed signal transition graphs for specifications, several behaviors that are

155 x 238 mm

324 Tomohiro Yoneda

6

impossible due to the given timing constraints are ignored, and thus, a smaller
circuit is expected to be finally synthesized.

If the full state space of G is obtained, and it satisfies several properties,
M can be obtained by a standard logic synthesis algorithm for asynchronous
circuits. Such logic synthesis algorithm is implemented in several tools. The
most popular tool may be Petrify [5]. Again, it is not easy to explore the full
state space of the given specifications, especially when those specifications are
obtained in a high-level synthesis process.

Our approach to this problem is a decomposition based synthesis [6, 7]. In
our approach, for an output x of the given G, some subset V of signals of G
and abs(G, V, x) are first obtained, where abs(G,V, x) and G have equivalent
behaviors with respect to signals in V , and abs(G,V, x) is synthesizable. Then, a
standard logic synthesis algorithm is applied to abs(G,V, x) instead of G, which
generates a sub-circuit for an output x. This process is repeated for each output
of G. Usually, the state space of abs(G,V, x) is much smaller than that of G.
Thus, the synthesis time can be dramatically reduced. The construction of V is,
however, not trivial. Actually, it can easily be obtained from the full state space
of G, but it does not help us. Our key contribution is an algorithm to efficiently
obtain V using a technique similar to the partial order reduction for time Petri
nets. Note that this approach uses a restricted information through a subset V of
signals of G. Thus, the synthesized circuits by our method may not be optimal.
According to the experimental results, however, this overhead is pretty small [6,
7].

I worked with Chris Myers also for this research topic. We published 7 co-
authored papers related to this topic. An incomplete list of researchers with
whom I communicated on this topic is J. Cortadella, V. Khomenko, M. Schaefer,
and W. Vogler.

5 Conclusion

In this paper, I summarized my previous work related to time Petri nets. I
have chosen such research topics, because I had many chances to talk with Alex
Yakovlev through those topics in related conferences such as ASYNC and ACSD.
Recently, I have been more interested in designing asynchronous circuits such as
asynchronous NoCs. At ACSD conference in 2011, Alex invited me as a key-note
speaker, and I was greatly honored to be able to give a talk on asynchronous
NoCs there.

References

1. P. Merlin and D. J. Faber. Recoverability of communication protocols. IEEE Trans.

on Communication, COM-24(9):1036–1043, 1976.

2. A. Valmari. Stubborn sets for reduced state space generation. LNCS 483 Advances

in Petri Nets, pages 491–515, 1990.

155 x 238 mm

Petri Nets and Asynchronous Circuits 325

7

3. T. Yoneda, A. Shibayama, H. Schlingloff, and E. M. Clarke. Efficient verification of
parallel real-time systems. LNCS 697 Computer Aided Verification, pages 321–332,
1993.

4. T. Yoneda and H. Schlingloff. Efficient verification of parallel real-time systems.
Formal Method in System Design, pages 187–215, 1997.

5. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify:
a tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. IEICE Transactions on Information and Systems, E80-D(3):315–325,
March 1997.

6. T. Yoneda, H. Onda, and C. Myers. Synthesis of speed independent circuits based
on decomposition. Proc. of 10th International Symposium on Advanced Research in

Asynchronous Circuits and Systems, pages 135–145, 2004.
7. T. Yoneda and C. J. Myers. Synthesis of timed circuits based on decomposition.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26(7):1177–1195, July 2007.

155 x 238 mm

326 Tomohiro Yoneda

