
Performance Analysis and Behavior of Timed

Concurrent Systems Using Petri-Net Models

Steven M. Nowick

Columbia University, New York NY 10027, USA,
nowick@cs.columbia.edu,

WWW home page: http://www.cs.columbia.edu/~nowick/

Abstract. The modeling and performance analysis of concurrent sys-
tems using Petri nets is considered under a useful timing model: proba-
bilistic (i.e. exponential) delay distributions. While the focus is on decision-
free concurrent systems, i.e. marked graphs (MG), generalizations are
identified to allow limited choice. A tight state space is efficiently con-
structed, through hierarchical decomposition followed by composition,
which defines the time evolution of the system. Efficient algorithmic so-
lution techniques and tools are also presented. Interesting analogies to
biological and physical systems are highlighted.

Keywords: asynchronous circuits, Petri nets, marked graphs, timing
analysis, stochastic performance analysis

1 Introduction

Asynchronous design have been widely explored as a promising direction for
organizing complex systems [1] [2]. While much of the asynchronous paradigm
has been directed towards digital systems, the underlying paradigm of “self-
synchronizing systems” which evolve in continuous time, has resonance in the
physical, biological and social worlds.

A key research direction has been to capture complex system behavior, then
analyze its behavior. The main focus of this article is on asynchronous digital
systems. However, we also outline potential synergy of these models and ana-
lytical techniques to other self-organizing systems, which evolve over time with
loosely-coupled concurrent behavior, from an initial state to a steady-state pe-
riodic behavior.

Petri nets have been widely used for the analysis, synthesis and optimization
of asynchronous circuits and systems [3] [4]. These will be used as the founda-
tional models for the approach outlined in this article.

2 Motivation and Overview

There are several major technical difficulties involved in the performance analysis
of asynchronous systems.

155 x 238 mm

Performance Analysis and Behavior of Timed Concurrent Systems 337

2

Unlike clocked systems where clock boundaries form natural partitions for
logic between stages to be analyzed individually, an asynchronous system is
inherently nonlinear, meaning there is no easy way to partition the system into
independent subsystems. The system has to be analyzed as a whole. This has
often led to unmanageable state space problems.

In addition, as the system is event-driven, arbitrary arrival time of inputs
and variations in data-dependent delays in individual components can have sig-
nificant impact on the overall performance of the system, and must therefore be
taken into account during performance analysis. As pointed out in [5], taking
the statistical average of the processing time of individual components is often
inadequate in determining the average performance of the overall system; the
so-called “variance” of processing times must also be considered.

Finally, there is no clear consensus in the asynchronous design community
on what performance metrics are useful for characterizing the performance of a
system and for identifying bottlenecks for optimization.

This article addresses these issues by providing an efficient and general method
for analyzing the asymptotic performance of asynchronous systems. In our ap-
proach, an asynchronous system is modeled as a marked graph, a subclass of
Petri nets that captures concurrency and data-dependent relationships between
interacting components in decision-free systems [6].1 The variations in input ar-
rival time and component delays are captured in a probabilistic delay model.
The probability distribution of input arrival at a component can provide indi-
cation of system bottlenecks. Component utilization, as well as system latency
and throughput, can be derived as measures of system performance.

This article focuses on the subclass of asynchronous systems that can be
modeled by strongly-connected marked graphs, namely, decision-free systems. A
sketch of how to extend our approach to systems with choice is presented in [7]
[8]. The subclass of decision-free systems, while limited, has been shown to be
capable of modeling many interesting concurrent systems [9]. More importantly,
it forms a foundation to develop theories and algorithms for analyzing more
complex systems, which we will consider in future work. We also focus on mod-
eling at the system architecture level; we do not currently consider circuit-level
modeling issues such as delay variations due to process variations.

There are some key differences between our method and previous work. First,
this article shows that the state transitions of a system modeled by a strongly-
connected marked graph exhibit an inherent periodic structure, and the sys-
tem is analyzed as a periodic Markov chain. Previous approaches do not take
into account the inherent periodic property of the system, and the system is
analyzed as aperiodic. Theoretically, one cannot properly adopt an aperiodic
Markov model to describe a periodic system, or the system would not converge.
Second, by exploiting the periodicity of the system, we derive an algorithm to
generate an exact, tight state space of the system, and exploit the regularity of
its structure for efficient memory management and to reduce the complexity of

1 These systems are also referred to as “deterministic” concurrent systems, or concur-
rent systems without conditional behavior (or without “choice”), in the literature.

155 x 238 mm

338 Steven M. Nowick

3

computation. In contrast, previous approaches can generate a large number of
unreachable (and unnecessary) states, resulting in excessive memory usage and
runtime. Third, our approach is targeted to generating the probability distri-
bution of input arrival time to components, as well as component utilization,
as metrics for performance. The approach in [10] targets the time separation
of events. Though it is also possible for our tool to generate metrics based on
time separation of events, we believe input arrival time gives more directly useful
information for subsequent system optimization.

The key contributions summarized in this article are as follows. First, we
identify that the state transitions in decision-free asynchronous systems exhibit
an inherent periodic structure.2 To the best of our knowledge, this is the first time
this property has been exploited in analyzing the performance of such systems.
Second, we present an algorithm to construct the precise reachable state space
of the system. Third, we propose the use of the probability distribution of input
arrival time as a metric for performance optimization. Finally, we present a
practical tool to demonstrate the feasibility our approach. Initial experimental
results are promising, showing several orders of magnitude improvement in both
runtime and the size of the state space over previously published results.

This article summarizes our approach to the efficient analysis of asynchronous
circuits and systems using probabilistic delay models. More details can be found
in [7] [8] [12].

3 Marked graphs

Marked graphs are used to model concurrency and data-dependent relationships
between interacting components in a concurrent system. They specify the reach-
able states of the system and their causality.

A marked graph is a triple N = (E, T, F) where E is the set of places,
T the set of transitions, and F ⊆ (E × T) ∪ (T × E) the flow relation. In a
marked graph, every place has at most one input and one output transition. A
transition is enabled to fire whenever there is a token in each of its input places.
An enabled transition fires by removing one token from each of its input places,
and depositing a token in each of its output places. A marking is an assignment
of tokens to the places in the graph. A marked graph is safe if in any marking
reachable from an initial marking Mo, every place contains no more than one
token. A marked graph is live if every transition is fireable, or can be made
fireable through some sequence of firings from the initial marking Mo.

In the context of discrete-event systems, the marking of a marked graph
corresponds to the state of the concurrent system, and the firing of a transition
corresponds to the occurrence of an event.

2 Both [9] and [11] also exploited the existence of repeating structures in marked
graphs in their approaches. However, the repeating structure they used is related to
the events in the graph structure, rather than to the states in the dynamic behavior
of the model.

155 x 238 mm

Performance Analysis and Behavior of Timed Concurrent Systems 339

4

Fig. 1. Control circuit for a micropipeline.

Fig. 2. Marked graph model for a micropipeline: (a) low level (b) abstract level.

Example: Figure 1 shows the the control circuit for a three-stage asyn-
chronous micropipeline [13] proposed by Sutherland. Figures 2(a) and (b) show
its corresponding marked graph models, representing two views: the former at a
more detailed level with some low-level circuit components, and the latter at a
more abstract level.

4 Periodicity of Strongly-Connected Marked Graphs

This section presents the first new research result: given a system which is mod-
eled by a strongly-connected marked graph, the corresponding STG always ex-
hibits a periodic behavior.

The following three theorems were proved by Commoner et al. [6] for marked
graphs:

Theorem 1. A given marking of a graph is live and safe iff every simple cycle
has exactly one token, and through every place in the graph there is a simple
cycle of token count one. A marking which is live remains live after firing.

Theorem 2. For every finite, directed, strongly-connected graph there exists a
live, safe marking.

Theorem 3. Let M be a live marking of a strongly-connected marked graph, then
for any firing sequence that leads back to the initial marking M, all i transitions
have been fired an equal number of times. Furthermore, there exists a firing
sequence leading from M to itself, in which every transition fires exactly once.

155 x 238 mm

340 Steven M. Nowick

5

Fig. 3. A simple unit: (a) marked graph (MG) (b) signal transition graph (STG).

Fig. 4. Two coupled simple units: (a) marked graph (MG) (b) signal transition graph
(STG).

Intuitively, Theorem 1 indicates that the marked graph can be viewed as a
set of interacting simple cycles; a marking can only be live if there is at least one
token circulating on each cycle, and can only be safe if each cycle has at most one
token. The next two theorems address the existence of such a live safe marking,
and the steady-state regular behavior of marked graphs with live markings.

The key result that is proved in this section is that any strongly-connected
marked graph corresponds to an STG with periodic structure. This result is
formalized in the following proposition:

Proposition 1. Periodic STG for strongly-connected MG

Given any strongly-connected marked graph, its reachable set S of all live, safe
markings (states) can be divided into δ disjoint sets B1, B2, .., Bδ such that for
any state i, j in S, and if state i belongs to set Bk, i can make a transition to j

iff j belongs to the immediate next set Bk+1. More formally, P (i, j) = 0 unless
i ∈ Bk and j ∈ Bk+1 for k ∈ 1, 2, ..., δ − 1, or i ∈ Bδ and j ∈ B1, where P (i, j)
is the probability of the system making a transition from state i to state j in one
transition. In other words, after a state in set Bi is visited, it always takes δ

firings for a state in the same set to be visited again. Such an STG is called a
periodic STG, and its period is δ.

Figure 3 illustrates the intuitive idea behind Proposition 1. We define a syn-
chronization point as a transition in a marked graph with more than one input

155 x 238 mm

Performance Analysis and Behavior of Timed Concurrent Systems 341

6

place. Figure 3(a) shows an example of a marked graph with a single synchro-
nization point, which is defined as a simple unit. Figure 3(b) shows the corre-
sponding STG of the marked graph. States in the same row of the STG form a
set which can be reached through one firing only from states from the row above,
and can reach through one firing only states from the row below. Intuitively, the
synchronization point acts as a “gate” to constrain the movement of tokens in
the marked graph, as it must wait for all its input tokens to arrive before it can
fire. This gives a structural pattern to the transition of states.

Two corollaries follow immediately from Proposition 1. Corollary 1 shows
that the periodicity of the state transitions in a strongly-connected marked graph
is preserved through the composition of two such graphs. This property will be
used in in the next section to derive an algorithm to construct the state space
of the system.

Two marked graphs are said to be “composed together” if they are joined at
one or more transitions. An example is shown in Figure 4(a), where two simple
units are composed at transitions C1 and C2. The corresponding STG is shown
in Figure 4(b).

Corollary 1. Given two marked graphs with periodic STG’s, the STG of their
composition is also periodic.

The next corollary shows that the state transitions in a system modeled by a
strongly-connected marked graph can be represented in a canonical form. This
result will be used later to efficiently solve for the stationary distribution of the
resulting Markov transition matrix.

Corollary 2. The transition matrix of the underlying Markov chain of a strongly-
connected marked graph can always be expressed in the following canonical form,
where δ is the period, and B1, B2, ..., Bδ are disjoint sets of states.

P =





0 B1 . . 0
. . .

. . .

0 Bδ−1

Bδ 0 . . 0





5 Constructing the STG: an Algorithm

Now that it has been shown that an STG derived from any strongly-connected
marked graph exhibits a periodic structure, this section presents an algorithm
for constructing the periodic STG itself. The algorithm has two operators: de-
composition and composition. The decomposition operator decomposes a marked
graph into simple units with single synchronization points. The algorithm then
constructs an STG for each of the simple units. Note that, from Proposition 1,
the STG’s of these simple units are periodic. The composition operator combines

155 x 238 mm

342 Steven M. Nowick

7

decompose(marked_graph)

foreach sync_pt in marked graph

// find all simple cycles that goes through sync_pt

foreach output_place at sync_pt

find simple path that leads back to sync_pt

// build state transition graph

i = 0; // counts period

s[0][0] = concat(output places at sync_pt)

do until (next_transition == sync_pt)

i++;

j=0;

foreach enabled_transition in current_state

fire;

s[i][j] = new_state

j++;

Fig. 5. decompose

compose(stg1, stg2)

foreach state s1 in stg1

foreach state s2 in stg2

if s1 and s2 shares common places

combine into new state and put in new_stg

else if s1 and s2 do not share common places

put state into single_state_vec

while (single_state_vec != empty) do

foreach state ss in single_state_vec

foreach state ns in new_stg

if ss and nw share common places

combine into new state and put in new_stg

return new_stg

Fig. 6. compose

155 x 238 mm

Performance Analysis and Behavior of Timed Concurrent Systems 343

8

the periodic STG’s from two intersecting simple units into a single STG. The
new STG is again periodic according to Corollary 1.

The entire state space of a live, safe marked graph can thus be built by first
applying the decomposition operator, and then the binary composition operator
on all decomposed units recursively. Figures 5 and 6 show the pseudo-code for
the decomposition and composition operators, respectively. The state space con-
structed using this algorithm is tight: it includes only states that are reachable
from an initial live, safe marking, and no others. No extra reachability analysis
steps such as that used in [10] is required. Furthermore, the constructed state
space can immediately be put into the canonical form shown in Corollary 2.

The intuition behind the algorithm is as follows. Since the marked graph
is strongly connected, it can be broken down into a finite number of simple
cycles, each of which with a token circling around it, according to Theorem 1.
Each of these simple cycles can then be viewed as a oscillator, with a “period”
equal to the number of transitions in the cycle. The composition of two simple
cycles is then analogous to the coupling of two oscillators. The two coupled
oscillators form a new oscillatory system, with a new period determined by the
number of transitions in the new system, according to Corollary 1. The number
of transitions in the new system is in turn determined by how “strong” the
coupling between the two oscillators are: the stronger the coupling (meaning the
more transitions they share in common), the shorter is the period of the resulting
coupled system.

Another interesting observation that can be made on the algorithm is that
once the STG’s of the decomposed simple units are constructed, the STG of
the entire design space is composed by simply “stitching” the lower level STG’s
together recursively. In other words, the state space of the entire system is con-
structed based solely on the structure of marked graph. There is no notion of the
dynamic behavior of the system during the construction, i.e., the actual marking
plays no role in the analysis. In contrast, most existing algorithms for state space
exploration requires keeping track of a set of current states and computing a set
of legal next states using a search strategy. The complexity of our algorithm is
considerably lower.

6 Obtaining Performance Analysis Results

The result of the previous algorithm is a periodic STG, which can be transformed
into a periodic Markov transition matrix (see [7] [8]). From the transition matrix
of a Markov chain, one can obtain the asymptotic behavior of a system by solving
the matrix for its stationary distribution. Techniques for finding the stationary
distribution of Markov chains can be found in standard textbooks on stochastic
processes.

Let P be the transition matrix of an irreducible Markov chain with recurrent
periodic states of period δ. Then the transition matrix P̄ = P δ can expressed
as:

155 x 238 mm

344 Steven M. Nowick

9

Fig. 7. Tool flow summary.

P̄ =





P1 0
P2

.

.

0 Pδ





The sub-matrices P1, P2, ...Pδ form δ closed sets, each of which is irreducible,
recurrent and aperiodic. The stationary distribution π1, π2, ..., πδ for each of the
sub-matrices can be solved.

Figure 7 shows a summary of the performance analysis flow.

Once the stationary distribution for each sub-matrix is found, useful per-
formance metrics can be obtained as guides for optimization. For example, the
stationary state distribution gives direct information on input arrival time, i.e.,
the probability of each input to a component arriving last (or first). System bot-
tlenecks can be identified as paths in the system that lead to a late input arrivals
with a high probability. Component utilization can be obtained by computing
the probability of the component being in a state waiting for one or more of its
inputs to arrive, divided by the probability of it being in a state where all input
tokens are present. System latency, i.e., the average time separation between a
given input event and output event of the system, can be found by computing
the weighted average of all paths of executions of the corresponding states in
the STG. Similarly, system throughput can be found by computing the average
time separation between two events of the same output in successive iterations
of the system.

155 x 238 mm

Performance Analysis and Behavior of Timed Concurrent Systems 345

10

7 Public-Domain Tool: DES Analyzer

We have developed a public-domain asynchronous performance and timing anal-
ysis package, DES (Discrete Event System) Analyzer (for download access and
tutorials, see [12]).

It includes two tools: (i) DES-PERF, which uses user-supplied stochastic in-
formation to compute asymptotic system performance, and (ii) DES-TSE, which
uses user-supplied min/max delay bounds on individual events to compute the
global min/max “time separation of events” between any two pairs of events.

The algorithm flow in this article is implemented in the former tool, DES-
PERF. (The latter tool explores an alternative timing model, using min/max
delays on each marked graph edge.)

The package also contains a detailed tutorial, test examples, and overview of
theory.

8 Experimental Results

Table 1 shows a summary of results for a number test cases ran on an Intel Xeon
CPU at 3.06GHz with 1GB of memory.

test case design # reach- CPU Time
instance able states (seconds)

micropipeline [13] 3-stage 29 0.003
4-stage 70 0.007
5-stage 169 0.031
6-stage 408 0.164
7-stage 985 0.986
8-stage 2377 7.820
9-stage 5740 29.835
10-stage 13859 361.621
11-stage 33460 4686.126

Huffman decoder [14] 160 0.036

DiffEq [15] 175 0.039

DCT [16] 169 0.031

Table 1. Experimental Results
The first set of test cases are different variants of Sutherland’s micropipeline

design [13] shown in Figure 1. The second test case is an asynchronous Huffman
decoder design proposed in [14]. The third test case is a low-control-overhead
asynchronous differential equation solver proposed in [15], and the fourth is an
asynchronous DCT matrix-vector multiplier proposed in [16]. In each testcase,
the architectural flow diagram is converted to a marked graph to capture data
dependency between functional unit and concurrency.

In [10], results were reported for a 6-stage pipeline design similar to our test
case 1, and reported reachable states of up to 28,000 and runtime of just less
than one hour on a SPARC 20. As a followup, in [11], it was indicated that the

155 x 238 mm

346 Steven M. Nowick

11

approach in [10] cannot handle pipeline designs of more than 8 stages. Our re-
sult shows significant improvements over their reported results. The performance
results for an 8-stage pipeline can be obtained in 7.8 seconds. While different
computing environment precludes any meaningful comparison in runtime, we
would like to point out that, first, our state space is much smaller, as our al-
gorithm prunes all unreachable and transient states from analysis. Second, the
matrices we solve are also smaller, as their average size is the total number of
states divided by the period of the system. Third, a stationary distribution for
each of the sub-matrices in our analysis is guaranteed to exist. In fact, with-
out our pruning of unreachable and transient states, and without taking into
account the periodicity of the system, a stationary distribution for the system
theoretically does not exist.

A few other notes can be made on the results. First, the size of the state space
is exponential in the number of parallel operations that can run in the system at
the same time. When applied to real designs, this result is not as pessimistic as it
seems, as the number of process running in parallel is often limited. A full-buffer
pipeline where each stage performs a different operation represent the worst case
scenario, while many highly-concurrent systems have more moderate amounts
of concurrency.

Secondly, while prior work [10] reported the solving for the stationary dis-
tribution of the transition matrix of the Markov chain as the bottleneck of the
analysis, the same operation does not present a problem in our analysis. In fact,
profiling shows the runtime is dominated by the matrix multiplication in Step
5 of the tool flow. Matrix multiplication is an O(n3) operation in general. Due
to the regular structure of the matrix in our application, the multiplication can
be simplified, and the complexity is O(m3), where m is the size of the largest
sub-matrix of the system. The memory requirement for storing the matrix is
greatly reduced as well, as only the submatrices need to be stored.

9 Conclusions, Observations and Future Work

We have presented an efficient solution for in analyzing the asymptotic perfor-
mance of asynchronous systems.

We model an asynchronous system as a marked graph, and capture its un-
derlying state transition as a Markov chain. We showed that the state transition
graph of a system modeled by a marked graph exhibits a periodic structure, and
proposed an algorithm for constructing a tight state space of the system based
on this property, which is then transformed to a Markov chain. Local asymptotic
performance metrics, such as distribution of input arrival time and component
utilization, are obtained by solving the transition matrix of the Markov chain
for its stationary state distribution. Using this information, global metrics for
system bottleneck and cycle slack can then be derived, which can in turn be
used to in the future as a guide for system-level optimization, such as through
cycle balancing. We demonstrated our method via a tool. Experimental results

155 x 238 mm

Performance Analysis and Behavior of Timed Concurrent Systems 347

12

show significant improvement over previously published results in terms of both
the size of state space and run time.

Our proposed approach effectively views an asynchronous system as cyclical,
compositional and recursive in structure, and periodic in its dynamics. This view
has facilitated us to derive an efficient method to analyze system performance,
and to define meaningful performance metrics for optimization. In contrast, ex-
isting work on the performance analysis of asynchronous systems often views the
cyclic structure of these systems as an undesirable property and seek to analyze
them as acyclic by unfolding their corresponding marked graph model.

We have offered a new, and in our view, potentially more suitable, way of
looking at asynchronous systems, which we believe would lead to our ultimate
goal of building optimal systems. In more detail, our compositional method for
constructing the state space of the system under investigation based on their
periodic property is analogous to the coupling of a system of oscillators. Oscilla-
tor models have been used for modeling various systems in the natural sciences
and in engineering, for example, in robotics and in distributing clock signals in
clocked systems, as well as in models of turbulence.

We believe that investigating this connection further can lead to interest-
ing methods for engineering the design and synthesis of efficient asynchronous
systems.

We see many avenues for further investigation. Research goals in the imme-
diate future include extensions to analyze asynchronous systems with choice, the
development of performance optimization algorithms for asynchronous systems
driven by our analysis technique, and the application of our method to a broader
class of concurrent systems, such as GALS and embedded systems.

In addition, a number of social and biological systems exhibit continuous-
time behavior, with highly-concurrent operation and loosely-coupled synchro-
nization. These include stochastic communication systems, and various swarming
and flocking behaviors (e.g. fish, birds) in nature, which appear as self-regulating.
Fundamentally, the notion of concurrent models, composed of simple cyclical op-
erating units that are inter-coupled to form large-scale organizational behavior,
which converges to steady-state periodicity, is a rich domain, and which suggests
a great potential of discovery in applying computing models to real-world phe-
nomena. It also suggests new paradigms to to understand the “self-clocking”, and
stochastic timing, of such systems, where the organizational movement comes
from the consensus of individual distributed simpler behaviors, and no central
control exists. (Happy 60th Birthday, Alex!)

References

1. Nowick, S.M., Singh, M.: Asynchronous design – part 1: overview and recent ad-
vances. IEEE Design & Test 22:3, 5–18 (2015)

2. Nowick, S.M., Singh, M.: Asynchronous design – part 2: systems and methodolo-
gies. IEEE Design & Test 22:3, 19–28 (2015)

3. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets
from finite transition systems. IEEE Trans. Computers 47:8, 859–882 (1998)

155 x 238 mm

348 Steven M. Nowick

13

4. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify:
a tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. IEICE Trans. Information and Systems E80-D:3, 315–325 (1997)

5. Pang, P.B.K., Greenstreet, M.: Self-timed meshes are faster than synchronous.
Proc. IEEE Async. Symp., 30–39 (1997)

6. Commoner, F., Holt, A.W., Pnueli, A.: Marked directed graphs. J. Comput. System
Sciences 78, 511–523 (1971)

7. McGee, P.B., Nowick, S.M., Coffman Jr., E.G.: Efficient performance analysis of
asynchronous systems based on periodicity. Proc. CODES/ISSS Symp., 225–230
(2005)

8. McGee, P.B.: On the timing behavior of concurrent digital systems: analysis, tools
and applications. PhD Dissertation (Columbia University, CS Dept.) (2009)

9. Hulgaard, H., Burns, S.M., Amon, T., Borriello, G: An algorithm for exact bounds
on the time separation of events in concurrent systems. IEEE Trans. Computers
44:11, 1306–1317 (1995)

10. Xie, A., Beerel, P.A.: Symbolic techniques for performance analysis of asynchronous
systems based on average time separation of events. Proc. IEEE Async. Symp., 64–
75 (1997)

11. Xie, A., Kim, S., Beerel, P.A.: Bounding average time separations of events in
stochastic timed Petri nets with choice. Proc. IEEE Async. Symp., 94–107 (1999)

12. McGee, P.B., Nowick, S.M.: Discrete Event System (DES) Analyzer [part of public
domain CaSCADE asynchronous tool package]. (for download access, see
http://www.cs.columbia.edu/~nowick/asynctools)

13. Sutherland, I.E.: Micropipelines. Comm. ACM 32:6, 720–738 (1989)
14. Benes, R., Nowick, S.M., Wolfe, A.: A fast asynchronous Huffman decoder for

compressed-code embedded processors. Proc. IEEE Async. Symp., 43–56 (1998)
15. Yun, K.Y., Beerel, P.A., Vakilotojar, V., Dooply, A.E., Arceo, J.: The design and

verification of a high-performance low-control-overhead asynchronous differential
equation solver. IEEE Trans. VLSI Systems 6:4, 643–655 (1998)

16. Tugsinavisut, S., Hong, Y., Kim, D., Kim, K., Beerel, P.A.: Efficient asynchronous
bundled-data pipelines for DCT matrix-vector multiplication. IEEE Trans. VLSI
Systems 13:4, 448–461 (2005)

155 x 238 mm

Performance Analysis and Behavior of Timed Concurrent Systems 349

