
Investigating the side-effects of synchronisers on

GALS circuits

Frank Burns

Newcastle University, Newcastle Upon Tyne, UK,
frank.burns@newcastle.ac.uk

Abstract. A choice of synchroniser may be crucial for the correct op-
eration of a GALS circuit. GALS NOCs currently require thousands
of synchronisers to communicate information accross clock boundaries.
Carefully designed synchronisers are capable of mitigating the effects of
metastability errors within a chips lifetime. An arbitrary choice of syn-
chroniser, however, may be affected by metastability or timing issues
early on in a chips lifetime, resulting in detrimental side-effects and ulti-
mately failure. This, however, is largely dependent on the circuit design.
This paper models GALS communication circuits using xMAS models to
investigate the potential side-effects of different types of synchroniser on
a variety of xMAS circuits. Different xMAS models are analysed to quan-
tify and classify the level of robustness and the exposure to side-effects
based on the synchroniser selection.

Keywords: xMAS models, GALS, Synchronisers, Verification

1 Introduction

Whilst there has been a lot of interest in researching new architectures for
GALS [1][2][3], there have been few attempts at providing synthesis solutions
for GALS communication. Thus, generation of GALS from specifications has
been limited to hardware description languages such as Verilog, VHDL, Sys-
temC [4][5] or synchronous programming languages such as C or ESTEREL [6].
Models for communication logic in the past have relied on standard languages,
e.g. Verilog, which require a significant amount of ”glue logic” to connect com-
munication primitives together. This kind of modelling tends to be unwieldy
and non-intuitive. xMAS [7][8][9][10][11] represents a significant improvement in
the representation and modelling of communication systems. It provides a set
of graphical communication primitives which are more natural and their higher
level of abstraction enables them to be easily understood.

Circuit Petri nets [12] provide a natural means for translation of the xMAS
equations and they are also well suited to the visualisation of distributed mod-
els of local machines in terms of concurrency. For verification they capture a
complete knowledge in the unfolding hence providing a represention of the full
causality. In [13] basic techniques for GALS synthesis to Circuit Petri nets for
xMAS were presented offering some distinct advantages: they are well suited to

155 x 238 mm

Side-Effects of Synchronisers on GALS circuits 59

the visualisation of distributed models of local machines in terms of concurrency
and for verification they capture a complete knowledge in the unfolding hence
providing a representation of the full causality. Basic techniques for GALS veri-
fication were also presented including unfolding to occurrence nets and deadlock
analysis.

In [13] an additional xMAS synchroniser primitive was introduced to provide
a synchronisation wrapper for synthesising a range of ”glue” solutions e.g. asyn-
chronous, mesochronous, etc. The system is capable of detecting the side-effects
of synchronisation problems through unfolding and verification and signalling a
potential shutdown. To improve metastability MTBF, designers can take spe-
cific measures. For example, they can change the metastability settling time by
adding extra register stages to synchronization register chains. The timing slack
on each additional register-to-register connection is added to the metastabil-
ity settling time value. Designers commonly use two registers to synchronize a
signal, but some companies recommend using a standard of three registers for
better metastability protection. However, adding a register adds an additional
latency stage to the synchronization logic, so arises a trade-off between logic
and robustness. Also the choice of a specific synchroniser can have a significant
impact depending on the particular design.

This paper models GALS communication circuits using xMAS models to
investigate the potential side-effects of different types of synchroniser on a variety
of xMAS circuits. An arbitrary choice of synchroniser may cause metastability
problems and another may not. This, however, is largely dependent on the circuit
design. Different xMAS models are analysed to quantify and classify the level of
robustness and the exposure to side-effects based on the synchroniser selection.

The main contributions of this work are:

– Analysis of deadlocks in xMAS models due to synchronisers;
– investigaton of the potential side-effects of different types of synchroniser

using a variety of xMAS circuits;
– testing the level of robustness of a design based on synchroniser selection.

2 xMAS modelling

2.1 xMAS Primitives

xMAS models are based on a set of communication primitives which have inputs
and outputs and which can be glued together according to the equations which
define them [7]. There are eight communication primitives altogether and these
are depicted in Fig. 1.

The Source and the Sink primitives are used for inputting and outputting
information in the form of packets or tokens. These are the ports of the xMAS
model which allow the model to be interfaced to its environment. The equations
governing the Source and Sink are shown below

155 x 238 mm

60 Frank Burns

Source Switch Merge Function QueueSink Fork Join

Fig. 1. xMAS primitives.

Source:

o.irdy = oracle or pre(o.irdy and not o.trdy)

o.data = e

Sink:

i.trdy = oracle or pre(i.trdy and not i.irdy)

The Source is parameterised by a constant expression e : α. Each cycle, it
non-deterministically attempts to send a packet e through its output port o :
α. In the equations pre is the standard synchronous operator that returns the
value of its (Boolean) argument in the previous cycle and the value zero in the
first cycle. The signals irdy and trdy stand for initiator ready to send and target
ready to receive. The Source and the Sink have a number of different types of
operation:

– eager - always ready to send or receive packets;
– dead - never ready to send or receive packets;
– non− deterministic - the value of the oracle is set randomly.

The Fork and Join primitives are the basic synchronisation primitives. The
equations governing the Fork and Join are shown below:

Fork:

a.irdy = i.irdy and b.trdy a.data = f(i.data)

b.irdy = i.irdy and a.trdy b.data = g(i.data)

i.trdy = a.trdy and b.trdy

Join:

a.trdy = o.trdy and b.irdy

b.trdy = o.trdy and a.irdy

o.irdy = a.irdy and b.irdy

o.data = h(a.data, b.data)

A Fork coordinates the input i and outputs a, b so that a transfer only takes
place when the input is ready to send and the outputs are ready to receive. A
Join primitive operates as the inverse of the fork in which the roles of the irdy

and trdy signals are reversed.
The Switch and Merge primitives are used for routing and selection of packets

or tokens through the xMAS circuit. The Switch primitive is governed by the
following equations:

155 x 238 mm

Side-Effects of Synchronisers on GALS circuits 61

Switch:

a.irdy = i.irdy and s(i.data)

b.irdy = i.irdy and not s(i.data)

a.data = i.data b.data = i.data

i.trdy = (a.irdy and a.trdy) or (b.irdy and b.trdy)

Informally, the Switch applies s to a packet x at its input, and if s(x) is true,
it routes the packet to port a, and otherwise it routes it to port b.

The Merge primitive is used for modelling arbitration by selecting one packet
among multiple competing input packets.

Merge:

a.trdy = mg and o.trdy and a.irdy

b.trdy = not mg and o.trdy and b.irdy

o.irdy = a.irdy or b.irdy

o.data = a.data if mg and a.irdy

b.data if not mg and b.irdy

A merge has multiple input ports and one output port. Requests for a shared
resource are modelled by sending packets to a merge, and a grant is modelled
by the selected packet. A local Boolean state variable mg is used to ensure
fairness [7].

The Function primitives are used for representing functions. The xMAS equa-
tions for the function are shown below.

Function:

o.irdy = i.irdy o.data = f(i.data)

i.trdy = o.trdy

In xMAS storage is implemented by queues. The equations for the queue are
shown below.

Queue:

hd = if (o.irdy and o.trdy) then inc(pre(hd))

else pre(hd)

tl = if (i.irdy and i.trdy) then inc(pre(tl))

else pre(tl)

where inc(x) = if x=k-1 then 0 else x+1

o.irdy = not qempty i.trdy = not qfull

For j = 0 to k-1

memj = if (i.irdy and i.trdy and j=pre(tl))

then i.data else pre(memj)

The queue is characterised by a non-negative integer k that indicates the
capacity of the queue. It has one input port i which is connected to the target
end of a channel that is used to write data into the queue. Likewise the output
of the queue is connected to the initiating end of the channel that reads data
out of the queue. The elements in the queue are stored in an array called mem
of size k. These are indexed by head (hd) and tail (tl) pointers used for reading
and writing.

155 x 238 mm

62 Frank Burns

2.2 GALS Asynchronous Primitive

We have developed a modelling tool in Workcraft [14] for graphical entry of
xMAS diagrams. It incorporates an xMAS module for constructing the xMAS
models. In addition to the symbols for all the basic primitives a new asyn-
chronous synchronisation primitive has been added to the basic set of primitives
shown in Fig. 2. The primitive is used for inserting asynchronous ”glue” compo-
nents in communication channels that cross clock domains. The interface signals
are defined using the xMAS format so that it can be interfaced to other xMAS
primitives.

Fig. 2. xMAS synchronisation primitive.

A synchronisation primitive is used for communication between two islands.
The synchronisation primitive accepts a variable number of send signals, i1.irdy ..
in.irdy, from the incoming primitives from one island and returns the required
number of receive signals, i1.trdy .. in.trdy. Similarly it communicates with the
target island by issuing the required number of send signals, o1.irdy .. on.irdy and
by accepting the required number of receive signals, o1.trdy .. on.trdy. The new
asynchronous primitive is generic and incorporates a number of synchronisation
schemes. A black box is used to house the specific implementation style used for
synchronisation, which is designed to accommodate different GALS implemen-
tation styles: asynchronous, mesochronous, pausible clocking, etc.

2.3 Synchroniser modelling

For modelling synchronisers [15] inWorkcraft the user connects the communi-
cating GALS modules by means of synchronisation primitives and subsequently
from a selection menu chooses the implementation style for each synchroniser.
This enables the user to make a decision with regard the internal details based
on the GALS style that is required. The GALS style is chosen from a selection
of available GALS implementation schemes [16]

The basic synchroniser schemes provided by the tool are as follows:
asynchronous - an implementation based on the use of synchronisers to transfer
signals arriving from an outside timing domain to the local timing domain e.g.

155 x 238 mm

Side-Effects of Synchronisers on GALS circuits 63

Fig. 3. Asynchronous synchronisation.

two flip-flops to synchronise signal with local clock; mesochronous - an imple-
mentation in which clocks are derived from the same source and the bounds
on the frequencies of communicating blocks are exploited to meet the timing
requirements; pausible - an implementation based on ring oscillators in which
each locally synchronous block generates its own clock with a ring oscillator.

An implementation style that is provided for the asynchronous scheme is
shown in Fig. 3. The implementation in Fig. 3 uses a FIFO and synchroniser
circuits to transfer signals between the global timing domain and the local tim-
ing domain. In this implementation the FIFO buffer handshake signals may be
asserted at any time relative to the transmitter or receiver clocks. The imple-
mentation uses two flip-flops to synchronise a signal with the local clock. To
account for the synchronisers delay, the wait signal generated by the gates pre-
vents the transmitter from sending until the FIFO buffer status following the
previous write operation has propagated through the synchroniser.

The synchroniser is used to synchronise the asynchronous communication
signal with the local clock. The synchroniser circuit, which is a two-flop syn-
chroniser, is designed to protect the communication signal when it synchronises
with the clock from metastability errors. If the synchroniser and clock edges
arrive too close together the synchroniser can become metastable with a proba-
bility which is related to Mean Time Before Failure (MTBF) [15].

The MTBF for a specific signal transfer, or all the transfers in a design, can
be calculated using information about the design and the device characteristics.
The MTBF of a synchroniser chain is calculated with the following formula and
parameters:

etMET /C2

C1 · fCLK · fDATA
(1)

where the C1 and C2 constants depend on the device process and operating
conditions; fCLK is the clock frequency of the receiving clock domain; fDATA

is the toggling frequency of the input data signal and the tMET parameter is
the metastability settling time. For a synchroniser chain tMET is the sum of the
output timing slacks for each register in the chain.

155 x 238 mm

64 Frank Burns

The overall design MTBF can be determined by the MTBF of each synchro-
niser chain in the design. The failure rate for a synchroniser is 1/MTBF , and
the failure rate for the entire design is calculated by adding the failure rates for
each synchroniser chain, as follows:

Failratedesign =
1

MTBFdesign
=

nochains∑

n=1

1

MTBFi
(2)

For the two-flop synchroniser a failure could result in the addition of a clock
cycle to the latency.

For each implementation style details of the clocking are entered by the
user. Inside the tool menus are provided which allow the clocking details to be
modified for each synchroniser. Frequencies are set as relative values to reflect
changes across module boundaries. The clocking details entered are used later
in the verification. Potential synchronisation problems due to metastability are
exploited in the unfolding by varying or altering the clock cycles. This is used
as a margin of error for the two-flop synchroniser to investigate the effect of a
change in the latency.

3 Modelling of deadlocks in Synchronisers

The modelling of the GALS circuits and deadlock analysis is conducted us-
ing the Workcraft tool. In [13] we described a methodology and approach
for analysing deadlocks in GALS communication circuits using an unfolding
algorithm. In [14] the analysis method has been augmented using deadlock
relations which are derived from Communication Structured Occurrence Nets
CSONs [17].

For unfolding the GALS model is mapped to Structured Occurrence nets
and the local modules LN are mapped to ordinary occurrence nets. The GALS
unfolding enables mapping by assigning occurrence nets to divisions correspond-
ing to local module boundaries; occurrence nets are generated automatically for
each local module and the individual ONs are subsequently connected using
communication channels.

3.1 Deadlock relations

Deadlock relations are derived from the nets. The advantage of deadlock relations
is they are more compact and they can be used inside the tool to relay critical
information to the user in the form of statements about the type and causality of
the blocking i.e. which queue is the source of the blocking for another queue in a
particular module. Deadlock relations can be specified either locally or globally.

Deadlock relations can be defined in terms of queue blocking or idleness.
A queue which is found to be blocked in local module LA may cause a queue
to be blocked in LB . Correspondingly a queue which is found to be idle in

155 x 238 mm

Side-Effects of Synchronisers on GALS circuits 65

local module LA may cause a queue to be idle in LB . The following definitions
introduce deadlock relations for local queue blocking and local queue idleness.

Definition 1 A blocking deadlock relation occurs locally between two queues on

the same path in module LA if a queue q1LA is blocked thereby causing a queue

that precedes it q2LA to be blocked. This relation is expressed as follows q2LA
B
←

q1LA .

Definition 2 An idle deadlock relation occurs locally between two queues on the

same path in module LA if a queue q1LA is idle thereby causing a queue that

follows it q2LA to be idle. This relation is expressed as follows q1LA
I
→ q2LA .

For the GALS models the process can be extended to analyse which queue
in a local module causes blocking or idleness in a synchroniser. The following
definitions introduce the different types of deadlock relations for synchronisers.

Definition 3 A blocking deadlock relation occurs between a synchroniser S and

queue that precedes it in module LA connecting the queue if the synchroniser is

blocked thereby causing the connecting queue q1LA to be blocked. This is expressed

using the relation q1LA
B
← S1. The reverse relation of this can be expressed using

S1
B
← q1LA .

Definition 4 An idle deadlock relation occurs between a synchroniser and a

queue in module LB that follows it connecting the synchroniser if the synchro-

niser is idle thereby causing the connecting queue q1LB to be idle. This is ex-

pressed using the relation S1
I
→ q1LB . The reverse relation of this can be ex-

pressed using q1LB
I
→ S1.

The above relations can be chained together. The following equations show
examples of chained relations. Equation (3) shows a deadlock relation between a
synchroniser S0 and its two connecting queues Q1 and Q2 from local modules LA

and LB . Equation (4) shows an internal local blocking relation between queues
Q2 and Q3 in module LB , in conjunction with blocking relations between the
synchroniser S0 and corresponding local connecting queues.

q1LA
I

→ S0
I

→ q2LB (3)

q1LA
B

← S0
B

← (q2LB
B

← q3LB) (4)

The following definitions are used to define deadlock relations for queues
which are connected on the same path.

155 x 238 mm

66 Frank Burns

Definition 5 A bde is a set of queues connected via the same communication

path in which contiguous communicating queue pairs exhibit blocking deadlock

relations.

Definition 6 An ide is a set of queues connected via the same communication

path in which contiguous communicating queue pairs exhibit idle deadlock rela-

tions.

Equation (3), above, is an example of an ide relation and equation (4) is an
example of a bde relation.

Using the deadlock relations a relational map is generated to show complete
instances of deadlock activity inside the model. This is achieved by deriving
all the deadlock relations from the unfolding to analyse the activity across the
channel links and internally inside the local modules. This is expressed in terms
of sets of blocking bde equations and idle ide equations. A complete set of bde
and ide equations is generated by the analyser.

Indirect relations can also be formed between ide and bde providing rela-
tional links between blocking and idle paths. Here the queues on an ide and
bde may not be in direct communication with each other but may be influenced
by the communication links between. The causality between an ide and a bde

is established by analysing the corresponding cross-communication links via the
net. Using this information it is possible to analyse a number of unique solutions
and trace the set of the original source(s) of the deadlocks.

Applying the relational model it becomes practicable to query the effects be-
tween different queues and synchronisers. The querying process uses transitivity
to establish links between specific queues. Transitivity may be applied to equa-
tion (3), for example, to produce equation (5), reflecting the relation between
q1LA and q2LB :

q1LA
I
→ S0 · S0

I
→ q2LB =⇒ q1LA

B
→ q2LB (5)

Hence, it becomes possible using the relational model to query directly point-
to-point causality between queues in different modules.

3.2 Modelling of deadlocks due to synchroniser problems

Deadlocks related to the synchroniser can be split into two types: (i) direct i.e.
the deadlock is due to a synchroniser handshake failure. This can be caused by
an error in the synchroniser or its environment due to handshake problems [18].
(ii) indirect: i.e. timing problems due to the latency. This is a result of setup time
and metastability problems which can result in latency mismatch and subsequent
functional errors in the adjoining modules.

155 x 238 mm

Side-Effects of Synchronisers on GALS circuits 67

Direct deadlock The example below is based on a direct deadlock error caused
by a synchroniser S0. In this example module LB communicates with two mod-
ules LA and LC via asynchronous channels. LB transmits packets to LA. As
a result of a synchronisation handshake error in synchroniser S0, S0 fails to
communicate with LB causing it to become idle resulting in a shutdown in com-
munication between LA and LB . However, due to its design LB only partially
shuts down and still manages to communicate packets with LC .

Fig. 4. Direct deadlock example.

The equation showing the synchroniser deadlocks are shown below.

S0
I

→ (q2
I

→ q3
I

→ q4
I

→ q5)LA (6)

q5LA
I

→ S1
I

→ q6LB (7)

Here an indirect idle deadlock occurs in S1 due to the chain of ide deadlock
relations.

Indirect deadlock The example below, in Fig. 5, is based on deadlock due
to timing mismatch issues caused by a synchroniser. Module LA communicates
with LB accross an asynchronous channel. LB merges its own internal source
with the incoming stream from LA and a switch is used to filter all external
packets upwards and all native packets downwards. All sources in the example
are eager.

The circuit on the right requires a specific relative timing between the infor-
mation flows to operate properly. Specifically the feedback from q8LB and q9LB

are used to limit the upward and downward packet flow so that the upward and
downward transfers become balanced. Queue q4LB represents a common chan-
nel. Due to the setup and MTBF time window for the synchroniser being larger
than the restricted flow limit will allow, the common channel as a consequence
will sequence too many native packets. Thus, when q9LB is emptied this channel

155 x 238 mm

68 Frank Burns

Fig. 5. Synchroniser deadlock example.

becomes blocked. If the synchroniser is removed or replaced by an ordinary queue
the balance requirements of the circuit are met so it will operate according to
the flow requirements. The deadlock is indirectly caused by the synchroniser due
to latency problems with setup and MTBF resulting in downstream functional
errors. The equations related to the deadlock are.

q9LB
I

→ q6LB
I

→ q7LB (8)

(q0LB
B

← q1LB)
B

← S
B

← (q4LB
B

← q5LB) (9)

An indirect relation between (8) and (9) via the join means that when q9 is
emptied q5 becomes blocked.

For the same circuit a mesochronous synchroniser can be substituted in place
of the asynchronous synchroniser and the synchroniser will only deadlock with
a level of probability which is significantly lower. The level of robustness of the
implementation of the mesochronous case can be approximated based on an
estimate of the relative timing gap in relation to metastability.

This estimate is measured in terms of the following equation:

nochains∑

n=1

1

k · e−(t′·n)/ti
(10)

where t′ · n provides a measure of the relative timing gap.

4 Analysis and experiments

A set of experiments was conducted using a variety of xMAS circuits and different
synchronisers. Verification proceeds by searching for direct deadlocks or those

155 x 238 mm

Side-Effects of Synchronisers on GALS circuits 69

Table 1. xMAS Verification Results [k=2]

Example i s n asynch dlk lrb time(s)

PC1 4 4 34 asynch 2 0 0.291

PC2 3 1 30 asynch 1 0 0.430

PC3 3 1 30 mesoch 0 0.055 0.341

Agent1 6 2 50 asynch 2 0 0.402

Agent2 6 2 50 mesoch 0 0.028 0.360

Agent3 6 2 52 mesoch 0 1.515 0.368

Mesh1 8 4 104 asynch 4 0 1.550

Mesh2 8 8 104 asynch 0 0.007 1.628

Mesh3 16 12 228 asynch 0 0.004 5.770

due to setup problems which are reported immediately if they are present. In
the presence of deadlocks the level of robustness is set to 0. In the absence of
deadlocks the level of robustness is measured in terms of a metric based on the
metastability gap. The level of robustness of the designs was measured based
on its relative level to the circuit and the choice of synchroniser. A trade-off is
possible in certain cases based on the choice of synchroniser versus the level of
robustness.

To limit the verification effort experiments were conducted using a mixed-
mode consisting of eager and non-deterministic. In this mode the sources are
varied between eager and non-deterministic. This mode is significant because it is
faster than full non-deterministic which in conjunction with a non-deterministic
limit generates a more efficient unfolding leading to faster verification in which
the analysis can be performed more efficiently. The experiments were conducted
using an Intel Core i7 3.4GHz processor.

For the experiments a number of different xMAS circuits were tested. The
results of the verification are shown in Table 1. The results are shown in terms
of the queue size k = 2, the number of sources i, the number of synchronisers
s, the number of xMAS primitives n, the type of GALS implementation, the
number of synchroniser deadlocks dlk, the level of robustness lrb, and the time
in seconds it takes to calculate the results.

The first set of experiments are producer consumer examples. These are
basic communication examples using point-to-point communication only. The
first example calculates a direct deadlock in 0.291s. The second example PC2
uses an asynchronous synchroniser has 1 deadlock due to setup problems and
its level of robustness is 0. The third example PC3 which uses a mesochronous
synchroniser for the same design, is deadlock free, and, therefore, its level of
robustness is is estimated. This appears as 0.055 in Table 1.

The next set of experiments, shown in Table 1, are agent examples in which
the GALS modules are structurally designed so that varying numbers of commu-
nicating agents communicate with each other. The first example uses an asyn-
chronous synchroniser has 2 deadlocks due to setup problems. The second ex-

155 x 238 mm

70 Frank Burns

Table 2. xMAS Verification Results [k=3]

Example i s n asynch dlk lrb time(s)

PC1 4 4 34 asynch 2 0 0.452

PC2 3 1 30 asynch 1 0 1.135

PC3 3 1 30 mesoch 0 0.055 1.062

Agent1 6 2 50 asynch 2 0 1.165

Agent2 6 2 50 mesoch 0 0.028 1.129

Agent3 6 2 52 mesoch 0 1.515 1.142

Mesh1 8 4 104 asynch 4 0 4.520

Mesh2 8 8 104 asynch 0 0.007 4.692

Mesh3 16 12 228 asynch 0 0.004 18.532

ample Agent2 uses a mesochronous synchroniser has 0 deadlocks and its level
of robustness is 0.028. The third example Agent3 which uses two mesochronous
synchronisers is deadlock free but the level of robustness is much higher 1.515
due to the estimate for the metastability gap being larger.

Finally, the examples Mesh1 to Mesh4 are mesh structures comprising more
than 100 nodes. These were split into two sizes using more complex structures
consisting of many intra-modular and inter-modular loops. The number of syn-
chronisation units was varied for each experiment. These experiments were used
to test the scalability of the verification. The results for the experiments show
the level of robustness is much lower for an increase in the number of synchro-
nisation units used. For the larger examples it takes significantly longer to test
the level of robustness to synchronisation problems.

Table 2 shows results for the same set of experiments using a different queue
size [k=3] which shows a comparison of times.

5 Conclusions

We have provided a GALS synthesis and verification environment for xMAS.
This has been used for analysing problems caused by synchronisation. It is based
on unfolding and deadlock analysis which allows for both checking and visuali-
sation of different types of synchroniser deadlocks. A unique deadlock analysis
approach using relations has been described for verifying the examples.

The verification approach is flexible and adaptable to the timing of alternate
GALS implementations. Different GALS synchronisers can be selected based on
the chosen implementation style. The approach taken enables the investigaton
of the potential side-effects of different types of synchroniser using a variety of
xMAS circuits. The approach allows for testing the level of robustness of a design
based on synchroniser selection.

Acknowledgments

Acknowledgments to Alex Yakovlev et. al.

155 x 238 mm

Side-Effects of Synchronisers on GALS circuits 71

References

1. Suhaib, S., Mathaikutty, D., Shukla, S.: Dataflow Architectures for GALS. ACM
Journal. Electronic Notes in Theoretical Computer Science (ENTCS), Vol. 200, No.
1, 33–50, 2008.

2. Fan, X., Krstic, M., Grass, E., Sanders, B., Heer, C.: Exploring pausible clocking
based GALS design for 40-nm system integration. Proceedings of DATE’2012, 118–
121, 2012.

3. Jungeblut, T., Ax, J., Porrmann, M., Ruckert, U.: A TCM-based architecture for
GALS NoCs. Proceedings of ISCAS’2012, 2721–2724, 2012.

4. Yakovlev, A., Vivet, P., Renaudin, M.: Advances in Asynchronous logic: from Princi-
ples to GALS and NOC, Recent Industry Applications, and Commercial CAD tools.
Proceedings of DATE’2013, 2013.

5. L. Janin and D. Edwards, “AsipIDE Tutorial - Bringing together GALS design
and open-source tools in a hardware-software-FPGA co-simulation flow,” Tutorial at
Conference ASYNC-NOCS, 2010.

6. Koch-Hofer, C., Renaudin, Y., Thonnart, Y., Vivet, P.: ASC, a System C Extension
for Modelling Asynchronous Systems, and its Application to an Asynchronous NOC.
Proc. on Networks-on-Chip NOCS’2007, 295–306, 2007.

7. Chatterjee, S., Kishinevsky, M., Ogras, U.: xMAS: Quick Formal Modelling of Com-
munication Fabrics to Enable Verification. IEEE Design and Test of Computers, Vol
29, no. 3, 80–88, 2012.

8. Chatterjee, S., Kishinevsky, M.: Automatic Generation of Inductive Invariants from
High-Level Microarchitectural Models of Communication Fabrics. Proc. of Intl. Conf.
on Computer Aided Verificationi, CAV’2010, 2010.

9. Gotmanov, A., Chatterjee, S., Kishinevsky, M.: Verifying deadlock-freedom of com-
munication fabrics. Proc. VMCIA, 214–231, 2012.

10. S. Joosten and J. Schmaltz, “Generation of inductive invariants from register trans-
fer level designs of communication fabrics,” Proc. Formal Methods and Models for
Codesign (MEMOCODE) 2013, pp. 57–64, 2013.

11. S. J. Joosten and J. Schmaltz, “Automatic Extraction of Micro-Architectural Mod-
els of Communication Fabrics from Register Transfer Level Designs,” Design and Test
Europe (DATE’15), Grenoble, France, March, pp. 9–13, 2015.

12. Yakovlev, A., Gomes, L., Lavagno, L.: Hardware Design and Petri Nets. Springer,
(2000)

13. F. Burns, D. Sokolov and A. Yakovlev, “GALS Synthesis and Verification for xMAS
models,” Proceedings of DATE’2015, pp. 1419–1424, 2015.

14. Workcraft homepage. http://workcraft.org/
15. D. Kinniment, “Synchronization and Arbitration in Digital Systems,” Wiley Pub-
lishing, 2008.

16. M. Krstic, M. Grass, E. Gurkaynak, F. and P. Vivet, “Globally Asynchronous, Lo-
cally Synchronous Circuits, Overview and Outlook” Design and Test of Computers,
IEEE, Vol. 24, No. 5, pp. 430–441, 2007.

17. Koutny, M., Randell, B.: Structured Occurrence Nets: A Formalism for Aiding
System Failure Prevention and Analysis Techniques. Proc. ACM Fundamenta Infor-
maticae, 41–91, 2009.

18. F. Verbeek, S. Joosten and J. Schmaltz, “Formal Deadlock Verification for Click
Circuits,” 19th IEEE International Symposium on Asynchronous Circuits and Sys-
tems (ASYNC’13), Santa Monica, May, pp. 19–22, 2013.

155 x 238 mm

72 Frank Burns

