
From Digital Timing Diagrams to

Natural Language and Back

Josep Carmona

Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. Digital Timing Diagrams have been and are and effective
visualization aid for the understanding of a digital circuit. However, in
case of complex circuits, the interplay between signals and the corre-
sponding hidden dependencies may be missed. In this paper we consider
the textual representation of digital timing diagrams, as an alternative
way of describing a digital circuit. We provide ideas on how to trans-
form a digital timing diagram into a textual description, and the (more
challenging) opposite problem: obtaining a digital timing diagram from
a textual description.

1 Introduction

I will always remember the first time I met Alex Yakovlev: Newcastle, (very
cold) winter of 1998, my (at that time, future) PhD. advisor Jordi Cortadella
took me to the ACID workshop to convince me to do a PhD. with him on asyn-
chronous circuits synthesis. The first night I discovered two important things:
first, the warm character of Alex and his family, who hosted me in a great din-
ner, which remarkably included dancing at the end. Since then I have met Alex
in several conferences, and have collaborated with his group in different topics
(asynchronous circuits, theory of regions, process mining). And the second thing
I discovered ... Jordi is a great dancer!!!

In this paper I sketch some recent ideas I had about the use of Natural
Language Processing (NLP) techniques to support the analysis and elicitation of
timing diagrams. I shall tell a secret: my very first paper was on NLP techniques,
but at some point I got into the dark side of formal methods and never went
back to NLP. It is funny that I recently got again attracted for working on the
NLP area.

A digital timing diagram is a representation of a set of signals in the time
domain. A timing diagram can contain many rows, usually one of them being
the clock (but we do not deal always with clocks, as Alex knows very well).
It is a tool that is ubiquitous in digital electronics, hardware debugging, and
digital communications. Besides providing an overall description of the timing
relationships, the digital timing diagram can help find and diagnose digital logic
hazards.

155 x 238 mm

82 Josep Carmona

2 Motivating Example

Let us consider the following textual description of the timing diagram of Fig-
ure 1.

Example 1 (Asynchronous Circuit). The circuit contains signals A, B and C.
First, signal A goes high, which causes signal B to go high. Then, the rising of
signals B and C causes signal C to go low. Afterwards, the rising of signal C
causes signals A and B to go high. Then the falling of signal A causes signal B
to go low.

C

A

B

Fig. 1: Timing Diagram of an Asynchronous Circuit

Also, an alternative would be to describe the same behavior in a clocked way,
as depicted in Figure 2:

Example 2 (Clocked Circuit). The synchronous circuit contains signals A, B and
C. First, signal A goes high, which causes signal B to go high in the next clock
edge. Then, the rising of signals B and C causes signal C to go low two clock
cycles afterwards. In the next clock cycle, the rising of signal C causes signals A
and B to go high one cycle afterwards. One clock cycle later, the falling of signal
A causes signal B to go low.

CLK

C

A

B

Fig. 2: Synchronous version of the circuit of Fig. 1

Next sections would illustrate how to go from the textual to the graphical
description and back.

3 From Timing Diagrams to Natural Language

There are several formal descriptions of digital timing diagrams. We take a simple
one, which is used by the tool TimingDrawer [1]. For instance, the timing diagram
shown in Fig. 2 is simply specified with the following instructions:

155 x 238 mm

Digital Timing Diagrams and Natural Language 83

Fig. 3: Parsing for a sentence of the timing diagram textual description.

CLK=clock;C=0;A=0;B=0.

Dependency from previous A edge to new value of B

A=1.

A=>B=1;

Dependency from multiple signals

C=1.A=0;B=0.

C,B=>C=0.

Dependency to multiple signals

C=1.

C=>A=1,B=1.

Vertical dependency

A=0.

A=>B=0.

Given a text file in the previous format, one can generate a textual expla-
nation by: i) parsing the file in order to get a tree-like structure of the timing
diagram, and ii) traversing the tree to generate the corresponding explanation
in natural language, using template sentences that may be instantiated with the
real names found in the tree.

4 From Natural Language to Timing Diagrams

The opposite problem to the one faced in the previous section is a challenging
one: given a text describing the main behavior of a digital timing diagram, derive

155 x 238 mm

84 Josep Carmona

Fig. 4: Semantic Graph for a sentence of the timing diagram textual description.

a formal representation (e.g., the one used by TimingDrawer) of it. Inspired by
the approach presented in [2] to obtain process diagrams from textual descrip-
tions, Natural Language Processing (NLP) techniques can be used to tackle this
problem.

Likewise it is done in [2] for the case of process diagrams, the generation
of a digital timing diagram can be done in three steps. However, given the
narrower focus considered in this paper, some of the steps can be significantly
simplified. Below we provide an informal description of each one of the three
steps considered.

Step 1: Sentence Level Analysis Using NLP techniques (e.g., tokenization, pars-
ing, and similar), sentences in the input text can be analyzed to decompose
the input into phrases with clear actors (signals, in our case) and the actions
corresponding to them. Also, irrelevant or unrelated sentences are filtered. Mor-
phosyntactic analysis is one of the prominent techniques to apply, that may
derive a categorization as provided in Figure 3.

Step 2: Text Level Analysis Then the output of the previous phase is analyzed,
taking into account the relationship between signals and/or signal actions across
different phrases (a phenomena well known as anaphora resolution). For each
sentence, a semantic graph describing these relations can be obtained. Figure 4
depicts an example of the semantic graph obtained from some of the sentences
describing the digital circuit of the previous section. Nodes in this graph denote
semantic meanings of the words in the sentences, and arcs represent the semantic

155 x 238 mm

Digital Timing Diagrams and Natural Language 85

dsr

lds

ldtack

d

dtack

Fig. 5: VME Bus Timing Diagram.

relations between them. For instance, in Figure 4 it can be extracted that the
rise of B (arc between concept “rise” and concept “B”, with “B” as main actor
denoted by “A1”), causes signal C (arc between concept “induce” and “signal”
concept, with semantic arc “A1:Patient” denoting the signal to be the result)
to go low (arc between concept “induce” and concepts “go” and “low”, through
arcs “C-A1” and “A2”, respectively).

Step 3: Timing Diagram Generation Given the previous analyses, traversing
the corresponding data structures would allow to generate the timing diagram
corresponding to the input textual description. The idea would be to select
the meaningful nodes/arcs from the semantic graph that can be translated into
causalities in the timing diagram, generating a formal description as the one
used by TimingDrawer.

5 Discussion

In the last decades, Alex has been a key person in the field of asynchronous
circuits. One of the first works that I read from Alex was describing a VME
bus controller with Signal Transition Graphs, which are labeled Petri nets rep-
resenting the behavior of a digital circuit. The timing diagram of the read cycle
of the controller is shown in Figure 5. In my research on asynchronous circuits
(CSC encoding, synthesis), I was using this example all the time. I hope Alex
can consider this paper as a way to pay back his enormous influence on the area,
and in particular, on my work.

References

1. Salokin, V.: TimingDrawer Tool. https://sourceforge.net/p/timingdrawer/wiki/Home/
(2016)

2. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural
language text. In: Advanced Information Systems Engineering - 23rd International
Conference, CAiSE 2011, London, UK, June 20-24, 2011. Proceedings. (2011) 482–
496

155 x 238 mm

86 Josep Carmona

