
Event splitting:

the way to survive when regions fail

Jordi Cortadella

Department of Computer Science
Universitat Politècnica de Catalunya, Barcelona

Abstract. The theory of regions, originated from the work by Ehren-
feucht and Rozenberg, established the bridge between transition systems
and Petri nets and a path towards the friendly visualization of concurrent
behaviors. Unfortunately, not every transition system can be represented
with a Petri net in which every event corresponds to a single transition.
However, a Petri net can always be found if events can be split and
represented by multiple transitions. When applying event splitting, an
exponential space of solutions arises, each one delivering a different Petri
net. Selecting one with gracious properties is a challenge and an open
problem. This paper will informally illustrate the impact of event split-
ting using simple examples and will discuss directions of research for this
problem.

1 Motivation

Since I first met Alex Yakovlev in 1994, I have had the pleasure to share many
unforgettable experiences in our professional and personal lives. Petri nets, asyn-
chronous circuits and design automation have been permanent leitmotifs in our
academic research. Along with our endearing colleagues, Mike Kishinevsky, Alex
Kondratyev and Luciano Lavagno, we managed to solve challenging problems
and many of them ended up enhancing the functionality of petrify [4], a tool
that is still alive today.

During the nineties, our passion was to introduce automation in the design
and verification of asynchronous circuits. We had a devotion for Petri nets and
their interpretation as Signal Transition Graphs (STGs) [11]. Since logic syn-
thesis techniques required state information with explicit values for the binary
signals [5], we were often generating transition systems (TSs) from Petri nets. At
that time, we decided to use Binary Decision Diagrams [2] for representing sets
of states symbolically and handle the state explosion problem in a manageable
way.

Figure 1 shows a classical synthesis example. Figure 1a depicts the specifi-
cation of an asynchronous controller with an STG1, whereas the corresponding
TS is shown in Fig. 1b. Each state has an associated binary code with as many

1 Most drawings in this paper have been automatically generated by graphviz [9], a
tool set that can be found in www.graphviz.org.

155 x 238 mm

96 Jordi Cortadella

la-

lr+

rr-

la+

lr-

rr+

ra+ ra-

(a) Signal Transition Graph.

0000

1000

lr+

1010

la+

0010

lr-

0000

la-

0011

rr+

0001

rr+

1000

lr+

0111

ra+la-

0101

la-ra+

1001

lr+

0100

rr-

1101

lr+

ra-

1100

lr+rr-

1111

la+

ra-

1110

la+rr-

0111

lr-

ra+

ra-

0110

lr-

rr+

rr-

1100

ra-

ra-

0100

la-

ra-

lr+

(b) TS with encoding conflicts.

Fig. 1. Generation of a binary-encoded TS from an STG.

digits as signals in the system. The shadowed states represent encoding conflicts,
i.e., multiple states sharing the same binary code.

The state encoding problem was one of the many problems we had to solve for
the synthesis of asynchronous controllers [6]. We managed to find a satisfactory
solution adding new signals and transforming the TS, as shown in Fig. 2a. In
this particular example, two new internal signals, x and y, are introduced to
disambiguate the state encoding conflicts.

We were often facing problems that required transformations at the level of
TS: hiding signals, adding new state signals, reducing concurrency, etc. How-
ever, evaluating the impact of those transformations was a challenge, since the
visualization and analysis of TSs was an extremely arduous task.

The TSs we had to manage often had hundreds or thousands of states, with a
lot of concurrency embedded in their semantics. Unfortunately, we were no able
of analysing the results of the transformations with a reasonable human effort.
We were asking ourselves: why should not we be able to visualise the behaviour
of a TS as an STG? It was then when the theory of regions came into play [8, 1]
as the instrument to return to the Petri net world from a TS.

155 x 238 mm

Event Splitting 97

000010

100010

lr+

101010

la+

001010

lr-

001000

x-

001100

rr+

000000

la-

001011

y-

101011

y-

lr-

000100

la-

011100

ra+

100100

lr+

010100

ra+

100011

y-

la+

la-

110100

ra+lr+

010101

y+

000011

y-

lr+

100000

rr+

110101

y+

010111

x+ lr+

110000

ra-

rr+

lr+

110111

lr+

010011

rr- x+

111101

la+

010000

lr+ ra-

110011

rr-

111111

la+

ra-

010010

y- lr+

011101

lr-x+

011000

ra-

la-

ra-

110010

lr+

ra-

y-

111011

la+

011111

x+rr- lr-

ra-

111010

la+

ra-

011011

lr-y- rr-

011010

ra-

x-

ra-

y-

ra-

lr-

(a) TS without encoding conflicts.

y+

la+ x+ ra+

lr- rr-lr+ rr+

x-

ra-y-la-

(b) STG with the new signals.

Fig. 2. Specification of the asynchronous controller after solving the encoding problem.

At that time, we were fascinated by the theory proposed by Ehrenfeucht and
Rozenberg, that gave us the vehicle to synthesise STGs after manipulating our
TSs. The implementation of that theory was the genesis of petrify [7]. With
that vehicle we could generate the STG shown in Fig. 2b in which the causality
relations of the new signals could be cleanly observed and analysed.

2 Petri net synthesis is not that simple

We immediately realised that things were not as simple as expected. For a TS
to be representable as a Petri net, with each event represented by a single tran-
sition, a set of conditions must be fulfilled: the TS must be elementary [8]. In [7]
we presented a more general concept, excitation closure, that defined a set of
conditions to generate a Petri net with bisimilar behaviour [10]. A TS fulfilling
those conditions is called an Excitation-Closed TS (ECTS). Unfortunately, most
TSs are not ECTSs. A very simple example is shown in Fig. 3a.

However, the synthesis of a bisimilar Petri net is always possible by applying
event splitting, i.e., allowing each event to be represented by more than one
transition in the Petri net. For example, an event a could be represented by two
transitions with labels a0 and a1 (the subindices represent different instances of
the same label).

In the worst case, a degenerated solution consisting of a Petri net structurally
isomorphic to the TS can be constructed: each place corresponds to one state

155 x 238 mm

98 Jordi Cortadella

a
b

b

c

c
a

(a) Non-elementary TS.

a0

b1

b0

c1

c0

a1

(b) Petri net obtained after splitting all events.

Fig. 3. Synthesis of a non-elementary transition system by event splitting.

of the TS and each transition to an arc. The initial state is represented by a
marked place, as shown in Fig. 3b.

Unfortunately, this solution is quite uninteresting since it does not bring any
additional information for the analysis of the system. The obvious question that
comes to our mind is: can we minimise the number of events that need to be
split to guarantee the synthesis of a Petri net?

b1

a

b0

c

(a) Splitting event b.

b0

c0

a

c1b1

(b) Splitting events b and c.

Fig. 4. Different solutions obtained after event splitting. Arcs with double arrow
(#↔2) represent two arcs (#⇄2).

Figure 4 depicts two bisimilar solutions obtained by splitting a different set
of events. If we also consider the Petri net in Fig. 3b, we end up by having three
different solutions with the following characteristics:

Figure Places Transitions Arcs
3b 6 6 12
4a 5 4 18
4b 6 5 14

In this particular example, no solution with three transitions exists, since the
original TS is not an ECTS. By analysing the previous table it is obvious to

155 x 238 mm

Event Splitting 99

realise that minimizing the number of transitions (event splits) is not always the
best choice.

Even in the case of an ECTS, event splitting can be an option to generate a
better visualisation of the behaviour. Figure 5 shows an ECTS with five events.
A bisimilar Petri net with five transitions is depicted in Fig. 6a. The intricate
relationship between places and transitions makes the analysis of this structure
very tortuous. Instead, by simply splitting event a, the Petri in Fig. 6b is ob-
tained, which clearly visualises the concurrency of events b and c and the choice
between d and e.

a

b

c

c

a

d

e

b

Fig. 5. Transition system.

d

a

b

c

e

(a) Without event splitting.

a0

b c

a1

d e

(b) Splitting event a.

Fig. 6. Two bisimilar Petri nets representing the behavior of the TS in Fig. 5.

155 x 238 mm

100 Jordi Cortadella

3 Which events to split?

Event splitting is at the core of the Petri net synthesis problem. As we can
suspect from the previous examples, the space of solutions can be exponential
on the size of the TS. An essential question is the following:

How to measure the quality of a solution after selecting a set of

events for splitting?

As shown in Fig. 6, minimising the number of transitions may not always be the
best choice, but doing a frenetic splitting may result in uninformative solutions.
There is no clear answer for such question, but some directions for exploration
are next discussed.

3.1 Minimising the number of transitions

Minimising the number of transitions is a strategy that may lead to more com-
pact models. A possible approach could consist of finding a small set of events for
splitting. This set would generate new regions to enforce the excitation closure
for all events.

Figure 7a depicts a transition system and the set of minimal regions, {r1, . . . , r6},
represented as shadowed sets of states. The excitation closure holds for all events
except e. The only pre-region of e is r4, but e is only enabled in one of the states.

c2c1

a1 a2

c2c1

b1 b2

d1 d2

r
1

r
6

r
4

r
2

r
3

r
5

e

a a

b b

d d

e

a a

b b

c cd d

e

(a) (b) (c)

...

Fig. 7. The domino effect of greedy splitting (example from [3]).

A greedy approach, as proposed in [3], would consist in creating another re-
gion that would separate the two states in r4. This could be achieved by splitting
event c into c1 and c2 (Fig. 7b).

However, this myopic view solves the problem for e but creates another prob-
lem for c1 and c2. Applying the same strategy, excitation closure for c1 and c2
could be enforced by splitting b, etc, thus unleashing a domino effect that, in this
particular case, would produce a complete event splitting, as shown in Fig. 7c.

155 x 238 mm

Event Splitting 101

This example shows that using näıve strategies for splitting may result in poor
quality solutions.

An alternative approach could be proposed by globally analysing the excita-
tion closure problem and resorting to the concept of state separation from the
theory of regions [8]. This is illustrated in Fig. 8.

a1 a2

s0

s2

s4

s8

s9

s7

a1 a2

b

c d

e

r
1

r
3

r
7

r
5

r
4

r
6

r
2

s6

s3

s1

s5

r
7

b b

c cd d

e

Fig. 8. New region (r7) and Petri net synthesis after splitting event a.

By analysing the set of minimal regions {r1, . . . , r6} in Fig. 7a, we can calcu-
late the pairs of non-bisimilar states that cannot be distinguished by the regions.
Two states cannot be distinguished if there is no region such that one state is in
the region and the other is not. In the example, the set of non-bisimilar pairs is:

{(s1, s2), (s3, s4), (s6, s7)}

Proposing heuristics to find set of states that separate these pairs is an interesting
direction of research.

For example, the set {s1, s3, s6} could be a good candidate, but it would re-
quire two event splits to become a region: a and d. Instead, the set {s1, s3, s5, s6}
would guarantee the same separation with only one event split. This set corre-
sponds to region r7 in Fig. 8 and leads to the Petri net on the right, in which
each place is annotated with the corresponding region.

3.2 Simplifying the structure of the Petri net

Having a nice visualisation contributes to giving a graphical intuition of the
relationship between events. For example, producing series-parallel graphs or
minimising the number of arc crossings in a picture is always a desired property
for a Petri net.

Analysing the connectivity and the causality relations between events can
help to decompose sets of states in which an event is enabled. The TS in Fig. 5
is one example. Event a has two dispersed states in which the event is enabled.
Additionally, each state is triggered by different sets of events ({b, c} in one state
and {d, e} in the other state). The separation of enabling sets and the distinction

155 x 238 mm

102 Jordi Cortadella

of trigger sets may be a criterion to split events. In this case, splitting event a

results in the Petri net shown in Fig. 6b, which has nice structural and graphical
properties.

3.3 An unexpected guest: τ

An alternative strategy to simplify the structure of a Petri net is to intention-
ally insert silent events (τ). In some cases, a new event can collect causality
information between groups of events and contribute to better visualize their
relationship.

An example is depicted in Fig. 9a, where two concurrent events (a and b)
trigger another group of three concurrent events (c, d and e). This is represented
by a two-way diamond preceding another three-way diamond. Similarly, c, d and
e trigger two events in conflict (f and g) that later trigger events a and b.

ba

a

f g

b ed

cde

c

dececd

(a) Transition system.

f

b a g

dec

(b) Petri net with bisimilar behaviour.

Fig. 9. TS with complex relationships between events.

τ d

e

a

c

bf

g

τ
τ

Fig. 10. Petri net after the insertion of τ events.

In a Petri net, a group of n concurrent events triggering another group of m
concurrent events requires a set of n×m places representing the cross product

155 x 238 mm

Event Splitting 103

of relationships between pairs of events (see Fig. 9b). This situation can be anal-
ysed at the level of TS and insert silent events in strategic states that separate
relationships between multiple events.

Figure 10 depicts a Petri net exhibiting the same behaviour as the one in
Fig. 9b, but including some τ transitions. To be more precise, both Petri nets
are weakly bisimilar [10]. The following table reports a comparative study about
the structural properties of both Petri nets.

Figure Places Transitions Arcs Arcs/Nodes Arc crossings
9b 11 7 27 1.50 12
10 12 10 26 1.18 0

For a fair comparison, both layouts have been generated by graphviz. The
number of arc crossings is reported by the tool and gives an idea of the intricate-
ness of the layout. Clearly, the layout shown in Fig. 10 is much more graphically
intuitive. Quantitatively speaking, the ratio of arcs per node and the number of
arc crossings are parameters highly related to the visualisation of the layout.

4 Surprise, surprise, . . .

During a discussion on the problem of duplicate tasks in process mining, an
interesting example came up. In process mining, the goal is to obtain a formal
model from a set of behaviours represented by an event log.

Figure 11 shows a TS obtained by the event log at the left. Each one of the
traces from the log corresponds to a different trajectory in the TS. The figure
also shows a bisimilar Petri net after event splitting.

Event log

aabc

aacb

abac

acab

=⇒

a

a

aa

b

b

b

c

c

c

=⇒

a0

a1

c0

c1

a2

b

Fig. 11. TS and Petri net obtained from an event log.

It was interesting to realize that a much simpler Petri net, shown in Fig. 12,
was able to generate exactly the same language. However, there is a small sub-
tlety that differentiates them. The underlying TSs are not bisimilar, but they
still are trace equivalent.

155 x 238 mm

104 Jordi Cortadella

a

b

a

c

a

a

a

a

b

b

b

c

c

a

a c

Fig. 12. Petri net generating the same language as the event log in Fig. 11.

The previous example suggests that event splitting can be solved in differ-
ent ways depending on the equivalence that needs to be preserved during the
synthesis of a Petri net.

5 Conclusions

For many years I have had the opportunity to share many exciting discussions
about a large variety of research problems with Alex Yakovlev. After such a long
time, some of the problems we have tackled have been solved, many of them are
still open and many others are still unknown.

This paper just showed one of the open problems that will surely draw the
attention of some researchers in the near future. My only hope is that the ex-
amples shown in the paper stimulate new ideas and discussions such as the one
we had with Alex in Dresden (March 2016) when chatting about this topic and,
more in particular, about the last example shown in the previous section.

References

1. Eric Badouel, Luca Bernardinello, and Philippe Darondeau. Petri Net Synthesis.
Springer-Verlag, 2015.

2. Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Comput., 35(8):677–691, August 1986.

3. Josep Carmona. The label splitting problem. Trans. Petri Nets and Other Models

of Concurrency, 6:1–23, 2012.
4. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.

Petrify: a tool for manipulating concurrent specifications and synthesis of asyn-
chronous controllers. IEICE Transactions on Information and Systems, E80-
D(3):315–325, March 1997.

5. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic
Synthesis of Asynchronous Controllers and Interfaces. Springer-Verlag, 2002.

6. Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and
Alexandre Yakovlev. A region-based theory for state assignment in speed-
independent circuits. IEEE Transactions on Computer-Aided Design, 16(8):793–
812, August 1997.

7. Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alexandre Yakovlev.
Deriving Petri nets from finite transition systems. IEEE Transactions on Comput-

ers, 47(8):859–882, August 1998.

155 x 238 mm

Event Splitting 105

8. Andrzej Ehrenfeucht and Grzegorz Rozenberg. Partial (set) 2-structures, parts i-ii.
Acta Informatica, 27:315–368, 1990.

9. John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Gordon Woodhull. Graphviz - Open Source Graph Drawing Tools. Graph Drawing,
pages 483–484, 2001.

10. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
11. Leonid Ya. Rosenblum and Alexandre Yakovlev. Signal graphs: From self-timed

to timed ones. In International Workshop on Timed Petri Nets, pages 199–206,
Washington, DC, USA, 1985. IEEE Computer Society.

155 x 238 mm

106 Jordi Cortadella

