
An approach for designing a real-time intelligent
distributed surveillance system

By

Maria Valera Espina

A thesis submitted in partial fulfilment of the
 requirements for the degree of

Doctor of Philosophy
May, Year 2006

Digital Imaging Research Centre
Faculty of Computing, Information Systems and Mathematics

Kingston University

 i

ABSTRACT

The main aim of this PhD is to investigate how a methodology rooted in systems

engineering concepts can be established and applied to the design of distributed

wide-area visual surveillance systems. Nowadays, the research community in

surveillance systems tends to be mostly focused on the computer vision part of

these systems, researching and developing more intelligent algorithms. The

integration and finally the creation of the system per se, are usually regarded as a

secondary priority. We postulate here that until a robust systems-centred, rather

than algorithmic-centred approach is used, the realisation of realistic distributed

surveillance systems is unlikely to happen.

The future generation of surveillance systems can be categorised, from a system

engineering point of view, as concurrent, distributed, embedded, real time systems.

An important aspect of these systems is the inherent temporal diversity

(heterogeneous timing) that arises from a variety of timing requirements and from

the parallelisation and distribution of the processes that compose the system.

Embedded, real-time systems are often naturally asynchronous. However, the

computer vision part of these surveillance systems is commonly conceived and

designed in a sequential and synchronous manner, in many cases using an object-

oriented approach. Moreover, to cope with the distributed nature of these systems,

technologies such as CORBA are applied. Designing processes in a synchronous

manner plus the run-time overheads associated with object oriented

implementations may cause communication bottlenecks. Perhaps more importantly,

it may produce unpredictable behaviour of some components of the system and

hence undetermined performance from a system as a whole. Clearly, this is a major

problem on surveillance systems that can often be expected to be safety-critical.

This research has explored the use of an alternative approach to object-orientation

for the design and implementation of intelligent distributed surveillance systems.

The approach is known as Real-Time Networks (exemplified by system engineering

methodologies such as MASCOT and extensions such as DORIS). This approach is

based conceptually on conceiving solutions as being naturally concurrent, from the

highest level of abstraction, with concurrent activities communicating through well-

 ii

defined data-centred mechanisms. The methodology favours a disciplined approach

to design, which yields a modular structure that has close correspondence between

functional elements in design and constructional elements for system integration. It

is such characteristics that we believe will become essential in overcoming the

complexities of going from small-scale computer vision prototypes to large-scale

working systems.

To justify the selection of this methodology, an overview of different software

approach methods that may be used for designing wide-area intelligent surveillance

systems is given. This is then, narrowed down to a comparison between Real-Time

Networks and Object Orientation. The comparison is followed by an illustration of

two different design solutions of an existing real-time distributed surveillance

system called ADVISOR. One of the design solutions, based on Object Oriented

concepts, uses CORBA as a means for the integration and distribution

characteristics of the system. The other design solution, based on Real-Time

Networks, uses DORIS methodology as a solution for the design of the system.

Once the justification over the selection is done, a novel design of a generic visual

surveillance system using the proposed Real-Time Networks method is presented.

Finally, the conclusions and future work are explained in the last chapter.

 iii

Acknowledgements

I would like to honour many people who have kindly contributed to this PhD study

over the course of its development at Kingston University. I would like to express

my thorough gratitude to my supervisor, Dr. Sergio A. Velastin for his support and

assistance, especially during this last year. I appreciate the discussions, comments

and suggestions, which have helped me to present this work. I am also pleased to

express my sincere appreciation to Professor Hugo Simpson for his time, the

constant supply of documents and for the lively discussions that we have had during

this Ph.D. study that have formed the basis of my academic arguments.

I would also like to express my gratitude to: Mr. David Fraser, Professor Anthony

Davies and Dr. James Orwell for their valuable comments, suggestions and

criticism. I would also like to thank the United Kingdom’s Engineering and

Physical Sciences Research Council (EPSRC) for the financial support to this Ph.D.

study and the researchers from the COHERENT project, especially Dr. Ian Clark. I

also would like to express my sincere gratitude to Mrs Bee-Lian Tang, member of

staff at Kingston University and Dr. A. Souheil Khaddaj for their help and courtesy.

Finally, I would like to express my deep gratitude to all my friends and family for

the support, understanding, comfort and encouragement which they have offered me

during the course of this study. They were always there when I needed them,

without their support I would have been unable to finish, and so this work is part of

them and I cannot end this acknowledgement without mentioning every single one

of them. Thanks to every member of my wonderful family and especially to my

brother-in-law, José for their invaluable support. I would also like to thank my

friends: Oriol, Marta, Susana, Vasco, Joel, Daniel, Robert, Anil, Abi, Yan and the

Adamson’s family. I would especially like to thank Jelena, Maria, Mª Carmen,

Cristina, Annabel and Carme Tello for their help and support during the worst

periods of time. I would also like to thank Manel, Paresh and Dr. Boghossian for

their constructive advice, comfort and encouragement. Thanks to all of you.

 iv

 To my loving parents, sister and brother
 To my country, Catalunya

 v

Table of contents

1 Introduction...1
1.1 Motivation...1
1.2 Context of the research ...3

1.2.1 Distributed systems...3
1.2.2 Real-Time systems..9
1.2.3 Asynchronous and Synchronous systems ...10

1.3 Aim and original contributions ...15
1.4 Structure of the thesis ...16

2 The state of art of Intelligent Surveillance Systems ...18
2.1 Introduction...18
2.2 Vision Systems ...18
2.3 Evolution of Intelligent Surveillance Systems..19
2.4 Requirements of an Intelligent Surveillance System................................22

2.4.1 Surveillance system requirements for transit applications23
2.4.2 Surveillance system requirements for port applications24
2.4.3 Metro and Railway Stations surveillance system requirements25

2.5 State-of-art in the design of visual surveillance systems..........................27
2.5.1 Processing components in surveillance systems...............................27

2.6 Examples of surveillance systems ..33
2.6.1 Commercial surveillance system for outdoor applications...............33
2.6.2 Surveillance systems for parking lots applications...........................34
2.6.3 Surveillance systems for traffic control application36
2.6.4 Surveillance system for port applications...37
2.6.5 Surveillance systems for public transport applications.....................38
2.6.6 Multi-camera surveillance system ..40
2.6.7 Co-operative camera systems ...41

2.7 Distribution and communication ..44
2.8 Summary...46

3 Design methodologies for real-time distributed intelligent surveillance systems
 49

3.1 Introduction...49
3.2 Design methods...50

3.2.1 Design methods in surveillance systems ..51
3.2.2 Classification by structural principles...52
3.2.3 Current research in design methods..53
3.2.4 General criteria for comparing design methods................................55

3.3 Traditional design methods for real-time systems....................................55
3.3.1 The Yourdon Structure Method (YSM)..56
3.3.2 Jackson System Development (JSD) ..57
3.3.3 NRL ..58
3.3.4 ADARTS ..60

3.4 Survey of some important OO design methods ..61
3.4.1 ROOM ..62
3.4.2 BOOCH ..64
3.4.3 Rumbaugh (OMT) ..66
3.4.4 HOOD...67
3.4.5 UML (Unified Modelling Language) ...70

 vi

3.5 Real Time Networks (RTN) ...75
3.5.1 MASCOT- RTN principles...76
3.5.2 The MASCOT network design ...77
3.5.3 MASCOT communication model...80

3.6 DORIS- further extension of RTN principles...84
3.6.1 Definition: COntrolled Requirements Expression (CORE)..............86
3.6.2 Design: MASCOT ..87
3.6.3 Implementation: DIA..89
3.6.4 Communication mechanisms..89

3.7 Comparison between the OO and the MASCOT/DORIS approaches95
3.7.1 The difference of abstract model between the two approaches96
3.7.2 Communications ...97
3.7.3 Concurrency and Information hiding..102
3.7.4 Inheritance ..104
3.7.5 Polymorphism and dynamic binding ..106
3.7.6 Performance ..107

3.8 Summary...109
4 Case study: ADVISOR ...112

4.1 Introduction...112
4.2 CORBA (Common Object Request Broker Architecture)114

4.2.1 CORBA components ..115
4.2.2 CORBA features ...117

4.3 ADVISOR...120
4.3.1 Specifications of the ADVISOR system...120
4.3.2 Specifications that ADVISOR Prototype did not accomplish122
4.3.3 ADVISOR system architecture design ...122
4.3.4 Data types in the system and communication between modules....130

4.4 The CORBA architecture design implemented in ADVISOR Prototype
using DORIS graphical notation...132

4.4.1 ORB and COM subsystem..136
4.5 The ADVISOR Prototype architecture using CORBA platform
technology in DORIS notation ...139

4.5.1 The decomposition of ADVISOR architecture design140
4.5.2 First level of the Architecture design: ADVISORSYSTEM..........146
4.5.3 Second level of the Architecture design: HCICENTRAL..............147
4.5.4 Second level of the Architecture design:
LOCALDATAPROCESSING..148
4.5.5 Third level of the Architecture design: CORBA_SUBSYSTEM,
HUMANINTERFACE and ASUSUBSYSTEM..151

4.6 The ADVISOR Prototype architecture using the DORIS method and its
concepts ..163

4.6.1 First level of the architecture design: ADVISORSYSTEM164
4.6.2 Second level of the architecture design: COMMUNICATION165
4.6.3 Second level of the architecture design: HCICENTRAL...............166
4.6.4 Second level of the architecture design: HCINODE167
4.6.5 Third level of the architecture design: CROWD_MONITOR........168

4.7 Comparison between the two architectures ..169
4.7.1 Communication techniques...170
4.7.2 Concurrency and distribution..175
4.7.3 Run-time ...177

 vii

4.7.4 Development aspects ..179
4.8 Summary...180

5 Design of a Real-Time Distributed Surveillance System with multiple cameras
 182

5.1 Introduction...182
5.2 First level of the system design...183

5.2.1 Functional definition of the system ..183
5.2.2 RTN components used in the design ..188

5.3 Functional description of different parts of the design190
5.3.1 Classification of data used in the system..191
5.3.2 Monitoring part of the design ...202
5.3.3 Data processing part of the design..207
5.3.4 Feedback part of the design ..209
5.3.5 Control part of the design ...212

5.4 Design of the system...219
5.4.1 Partitioning..222

5.5 Network Design of the system..223
5.5.1 Logical design topology..224
5.5.2 Traffic behaviour- Multicasting..228

5.6 Quality of Service (QoS) ..229
5.6.1 Bandwidth...230
5.6.2 Resource management- Scheduling..231

5.7 Summary...233
6 Conclusions and Future work ...235

6.1 Introduction...235
6.2 Conclusions...235

6.2.1 How this research linked to COHERENT236
6.2.2 Design methodologies...237
6.2.3 RTN/CORBA for designing real-time distributed surveillance
systems 240

6.3 Future work...244
6.3.1 Framework for designing real-time distributed surveillance systems
 244
6.3.2 Inclusion of Formal Methods to the framework249

 viii

List of Figures

Figure 1-1. Message communication between distributed entities. Tasks a and c
from node 1 communicate between them and with tasks d, e from node 2...............5

Figure 1-2. Remote procedure mechanism. The process is illustrated from step (1)
to (6)..6

Figure 3-1. Simple communication model between two activities (producer,
consumer) through an IDA component. ...81

Figure 3-2. Basic protocol taxonomy refers to effects on data from read and write
operations..83

Figure 3-3. DORIS development process from [Simpson 1994e]...........................86

Figure 3-4. The Extended communications of Route protocols [Simpson 2003f]. ..91

Figure 3-5. Example of the stretched form of the channel protocol [Simpson 1994e],
[Simpson 2003f]. ..95

Figure 3-6.Distributed model of remote function call [Simpson 2003f].95

Figure 3-7. Example of different approaches to the communication model; in OO
objects communicate to objects. In RTN communication is from/to activity to/from
IDA. ..101

Figure 4-1.The states of a CORBA object and servant object life cycle [Henning
and Vinoski 1999]...117

Figure 4-2.Common Object Request Broker Architecture (CORBA)[Henning and
Vinoski 1999]. ..117

Figure 4-3. The flow of requests to the server side and how POA dispatches them.
..119

Figure 4-4. Logical view of ADVISOR system. ..124

Figure 4-5. The logical view of the ADVISOR Prototype (tested at Barcelona). ..125

Figure 4-6.Top level design of ADVISOR System Unit (ASU). Note that, the
ADVISOR Prototype consists of one HCI that is connected to one ASU..............127

Figure 4-7. Top level design of Image Processing Unit (IPU).128

Figure 4-8.Top-level design Symbol Processing Unit (SPU).................................130

 ix

Figure 4-9. Links between the CORBA features illustrated in Figure 4-2 with the
CORBA design of ADVISOR. ...133

Figure 4-10. The CORBA design of ADVISOR using DORIS graphical notation.
ASU_ SUBSYSTEM (Appendix C-14, pp. 298), COM (Appendix C-13, pp. 297),
CORBA_SUBSYSTEM (Appendix C-15, pp. 299), IMPLREPOSITORYSUBS
(Appendix C-22, pp. 306), CONFI_PARAMETERS (Appendix C-21, pp. 305),
CROWD_MONITOR (Appendix C-20, pp.304). ..135

Figure 4-11. The configuration of COM subsystem (Appendix C-13, pp. 297). See
Appendix C for more detailed view of each of the components that appear in this
figure: COMSUBSYSTEM (Appendix C-19, pp. 303), MULTIDISTRIBUTION
(Appendix C-17, pp. 301), DISTRIBUTSIGNAL (Appendix C-18, pp.302).137

Figure 4-12. The whole path of one of the signals coming from
CORBA_SUBSYSTEM to ASUSUBSYSTEM. This signal comes from OA_OUT
inside CORBA_SUBSYSTEM (see interface called Sync_put) to one of the objects
inside the ASUSUBSYSTEM (see interface called Sync_get).139

Figure 4-13. The links between the modules used below to express the architecture
design of ADVISOR Prototype using MAGDE tool. Moreover, this figure
illustrates the differences between the ADVISOR system and the ADVISOR
Prototype (see also Figure 4-4 and Figure 4-5). ...142

Figure 4-14. Most of the levels of decomposition of the ADVISOR Prototype
system. The figure also illustrate the modules that represent the CORBA solution
for ADVISOR Prototype. All the subsystems that are represented in this figure are
described in more detail in the main text. All the subsystems can also be found, in
clearer separate diagrams, in Appendix C. The bidirectional arrows illustrate the
data communication flow between modules of different levels. Bear in mind, that
some modules have been introduced due to tool restrictions even though they are
not needed to model CORBA (e.g. COMUHCISUBSYSTEM in Appendix C-4, pp.
288). ..144

Figure 4-15. ADVISOR Prototype system using DORIS notation. This figure
represents the first level of ADVISORSYSTEM. This ADVISORSYSTEM
consists of three human interface subsystems and one central human interface
subsystem..146

Figure 4-16. The second level of decomposition of the ADVISOR Prototype
system. It represents the internal composition of the HCICENTRAL subsystem.
HCICENTRAL deals with the control signals coming from the central control user.
..148

Figure 4-17. Three levels of decomposition of the ADVISOR Prototype system
(following the hierarchical DORIS notation). It starts with the internal composition
of LOCALDATAPROCESSING (Appendix C-3, pp. 287) subsystem, which is
presented in the second level of this hierarchical structure. This is followed by the
decomposition of DATAPROCESSINGNODE (Appendix C-5, pp. 289), which
corresponds to the third level and it finishes with the decomposition of

 x

LOCALASU (Appendix C-10, pp.294) and LOCALHCI- STATION (Appendix C-
11, pp. 295) that are the third level of the hierarchical structure.150

Figure 4-18. The three subsystems (CORBA_SUBSYSTEM, HUMANINTER-
FACE and ASUSUBSYSTEM), which belong to the third level of the ADVISOR
Prototype system design decomposition...152

Figure 4-19. Following the hierarchical MASCOT/DORIS notation,
CORBA_SUBSYSTEM represents the fifth level of the ADVISOR Prototype
system. CORBA_SUBSYSTEM subsystem illustrates the communication
functionality of an ORB in CORBA technology. ...155

Figure 4-20. CONFI_PARAMETERS (the sixth level of the ADVISOR Prototype
decomposition) is introduced in the fifth level of the hierarchical structure in
CORBA_SUBSYSTEM. CONFI_PARAMETERS gives the configuration
parameters required for other components outside the subsystem.156

Figure 4-21. HUMANINTERFACE subsystem presented in the third level of the
hierarchical structure of the ADVISOR Prototype system. HUMANINTERFACE is
introduced in LOCALHCISTATION subsystem. HUMANINTERFACE deals with
the control signals coming from the HCICENTRAL and it also deals with local
control signals coming from the user in the local HCI subsystem.157

Figure 4-22. ASUSUBSYSTEM is presented in the third level of the
decomposition of ADVISOR Prototype system. ASUSUBSYSTEM is composed of
image processing subsystems. ..159

Figure 4-23. The CROWD_MONITOR subsystem (the fourth level of ADVISOR
Prototype system). It performs an image processing task detecting crowds.159

Figure 4-24. The MONITOR subsystem (the fifth level of ADVISOR Prototype
system) deals with control signal coming from upper levels and petitions from
lower levels. ..160

Figure 4-25. DEVICE (fifth level of the decomposition of the ADVISOR Prototype
system) is a subsystem that deals with the control signals coming from upper levels.
It also deals with the signals of a subsystem where the low-level image processing
tasks are carried out. ...161

Figure 4-26. CORBA_SUB subsystem (fifth level of decomposition of the
ADVISOR Prototype system) illustrates the communication functionality of an
ORB in CORBA technology like in CORBA_SUBSYSTEM.162

Figure 4-27. The IMAGEPROCESSING (the fifth level of decomposition the
ADVISOR Prototype system) subsystem, which performs the image processing
tasks. ...163

Figure 4-28. This figure represents the ADVISOR system using RTN concepts.
ADVISORSUBSYSTEM (Appendix C-33, pp. 317) represents the first level of the

 xi

design system. The system is composed of four computing nodes and one
communication element. ...165

Figure 4-29. COMMUNICATION (Appendix C-35, pp. 319) composite IDA
(second level of decomposition of the ADVISOR Prototype system), is shown in
the first level of the hierarchical structure of ADVISOR. This communication
element links the HCICENTRAL subsystem with each HCINODE......................166

Figure 4-30. The HCICENTRAL (Appendix C-34, pp. 318) subsystem purely
displays, if a user requires, data coming from any HCINODE. It also deals with
control signals coming from any HCINODE. ..167

Figure 4-31. The HCINODE (Appendix C-36, pp. 320) is the second level of the
hierarchical structure of the ADVISOR Prototype system. It is composed of six
subsystems, which communicate between them through IDAs: channels, pools and
signals. ..168

Figure 4-32. The CROWD_MONITOR (Appendix C-37, pp. 321) represents the
third level of the hierarchical structure of the ADVISOR Prototype system. It is
composed of two activities and two servers which communicate between them
through a channel, a pool and a signal...169

Figure 4-33. Comparison at a first level of design of ADVISOR Prototype system
using the two approaches..170

Figure 4-34. Comparison of LOCALHCISTATION subsystem designs using the
two approaches. ..173

Figure 4-35. Comparison of CROWD_MONITOR subsystem designed using both
approaches. ...175

Figure 5-1. Functional representation of the system...187

Figure 5-2. Local ARchive (LAR) component. Note that in Appendix D this
subsystem the signal Trigger does not appear. ...193

Figure 5-3. The design of LOCAL_DPU_info_MODULE...................................195

Figure 5-4. Decomposition of DPU_info_MODULE subsystem...........................196

Figure 5-5. Design of CCo_info_MODULE. ...198

Figure 5-6.Design decomposition of CC1_info_MODULE...................................200

Figure 5-7. Composition of the subsystem called Locator_user.201

Figure 5-8. The design of the subsystem called VISUAL.....................................203

Figure 5-9. The subsystem called Visual_CC. This subsystem is the visual
subsystem for any CC1 node. ...205

 xii

Figure 5-10. The design of a subsystem that represents a visual subsystem for any
mobile user..207

Figure 5-11. DPU subsystem. The sensors are attached to this subsystem through
the CA subsystem. ..208

Figure 5-12. The ALARM FEEDBACK CONTROL subsystem that represents a
feedback part of the system. ...211

Figure 5-13. The ALARMS FEEDBACK CONTROL CC1 subsystem that
represents a feedback part of the system. ...212

Figure 5-14. Design of the config_module used by the CCo to change configuration
parameters. ..214

Figure 5-15. The CC0 subsystem, which represents the first level of hierarchical
control structure of the system..215

Figure 5-16. The CC1 subsystem, which represents the second level of the
hierarchical structure of the system. ...217

Figure 5-17. The CC2 subsystem design if the system was scaled one more level.
..218

Figure 5-18. The changes that should be applied to CC1 (shown in red) if a CC2
subsystem is introduced in the design of the system. ...219

Figure 5-19. Design represented using MADGE tools in Appendix D.221

Figure 5-20. Two previous candidate topologies of the system design, before the
final topology..226

Figure 5-21. The final logical design network topology of the system.228

Figure 6-1. Topological network view of the generic 3GSS presented in chapter 5.
..247

 xiii

List of Tables

Table 2-1. Summary of the technical evolution of intelligent surveillance systems
(from Valera and Velastin 2005b])...21

Table 3-1. Different software tools used in computer vision. This table is extracted
from a Summer school in computer vision at Surrey University [Summer School
2004] and shows the wide range of tools currently available...................................52

Table 3-2. Summary of the aspects to compare at the conceptual model.................96

Table 4-1. The concepts that will be compared between CORBA and
MASCOT3/DORIS...114

Table 4-2. The following figures in their respective level are indexed, assigning a
level number to each figure to assist in following the hierarchical designs. For a
clearer representation of the figures see Appendix C. ..145

Table 4-3. The following figures in their respective level are indexed, assigning a
number level to clarify the hierarchical designs. ..164

Table 5-1.Summary of some of the RTN components that appear in the proposed
design system..188

Table 6-1. Summary of advantages and disadvantages using CORBA and
RTN/DORIS. ...242

 1

1 Introduction

1.1 Motivation

This research project was carried out as part of an EPSRC1-funded project referred

to as Computational Heterogeneously Timed Networks (COHERENT). The aim of

COHERENT was to model, design and verify embedded real-time systems on-chip

systems (SoCs) with heterogeneous timing in order to improve timing and energy

efficiency of systems with potential applications in control and image processing.

As suggested in [COHERENT2005], the proposed hardware-oriented architecture

called real-time network on a chip (RTNoC) should consist of computational units

of diversity processing and response rates and communication components from (a

finite set) of generic Asynchronous Communication Mechanisms (ACMs).

COHERENT based the investigation on ACMs and asynchronous techniques to

design and verify such systems rather than improving the performance of the

computational units that constitute the system. Within that general context, the

work reported here, investigated how potentially large scale distributed real-time

visual surveillance systems might benefit from design and implementation

techniques derived for asynchronous systems.

The technological evolution of vision surveillance systems starts with video-based

surveillance systems consisting of analogue Closed Circuit TeleVision (CCTV)

systems, i.e. a number of cameras connected to a smaller number of monitors

through switches. The technological improvement of these systems led to the

development of semi-automatic systems. These systems are able, separately for one

or more cameras, to attract the attention of a human operator by detecting unusual

conditions and raising an alarm. Current research is towards the design of large-scale

automatic surveillance systems. The usual design challenge for these advanced

vision systems is to distribute sensors over geographically wide areas. This

distribution, from the computational point of view, consists of distributing the

processing capacities over the computer network and the use of embedded signal

processing devices.

1 United Kingdom’s Engineering and Physical Sciences Research Council

 2

Such surveillance systems can be categorised as concurrent, distributed, embedded,

real time systems. An important aspect of these systems is their inherent temporal

diversity (heterogeneous timing), arising from the variety of timing requirements

from different response times and processing rates of the functional elements of these

systems, and from the parallelisation and distribution in the implementation

architectures. Moreover, embedded, real-time systems are often naturally

asynchronous. Nevertheless, currently the computer vision part of these systems is

largely designed in a sequential and synchronous manner using an object-oriented

approach. Furthermore, Common Object Request Broker Architecture (CORBA)

technology is the mechanism commonly used to deal with the integration and

distribution of different parts that constitute the system. The design of these systems

in a synchronous manner and the run-time overhead, that object oriented and

CORBA approaches might produce, may cause exhaustion of resources caused by

unpredictable behaviour of some components of the system.

Moreover, forcing such systems to operate on a synchronous or semi synchronous

manner when, as mentioned, they are often naturally asynchronous, might cause

other important limitations at different levels. For example, at a network-level these

limitations may reduce communications performance (i.e. bottlenecks) while at a

chip level these limitations may increase manufacturing costs and reduce the

effectiveness of the system in terms of speed. Currently, there are many ways to

deal with these problems at both levels. For example, at a chip level, a possible

hardware solution relies on distributing the computation between several processing

elements (distributed System on Chip).

Apart from developing a general hardware-oriented architecture, the aim of

COHERENT project was also to develop a design methodology which would

enable the solution of “distributed SoC (System on Chip)” to be more robust and

more widely applicable, enhancing its advantages whilst eliminating some of its

limitations. This methodology was expected to incorporate asynchronism

throughout a full spectrum, from fully synchronised to fully asynchronous, in

processing and data communication aspects using heterogeneous timing. Therefore,

the aim of this PhD, within the context of COHERENT, was to investigate and

appraise the use of Modular Approach to Software Construction Operation and Test

 3

(MASCOT), which is a design method based on the Real Time Network (RTN)

principles, and also to investigate the use of ACMs provided by RTN, to the design

of generic wide-area visual surveillance systems.

1.2 Context of the research

Chapter 1 and chapter 2 present the context and background of this research. This

research project has been carried out inside a research group called the Digital

Imaging Research Centre (DIRC), which is concerned with computer vision

solutions. The leading research activity and perhaps the most challenging one in this

group, is visual surveillance in widespread geographical systems. Traditionally the

effort has been concentrated on specific computer vision algorithms for one video

source. More recently, due to the advance in the power and sophistication of

computer vision algorithms, the research activities are focusing on issues such as

the tracking of people in a small network of video sources including conditions

where people move outside the field of view of one camera and into the field of

view of a neighbouring one. Therefore, it has become useful to consider if it is

feasible to deploy these algorithms in real large systems. At this point, the lack of a

simple and powerful way of designing and implementing large distributed vision

systems became evident and this project, linked with the COHERENT project,

sought to address that question. Thus, chapter 1 presents within the context of

COHERENT, the background of three main fields: distributed systems, real-time

systems and asynchronous design and communication techniques. The background

of this research is continued in chapter 2 by presenting the literature review within

the context of surveillance systems.

1.2.1 Distributed systems

A common distributed processing environment is constituted by several “nodes”

that are interconnected forming a network and they communicate and coordinate

their actions by passing messages2. These “nodes” may consist of one or more

processors sharing memory. The “logical node” also called subsystem, can be

2 Message passing is a form of communication used in concurrent, parallel and object-oriented

programming. It is also used in interprocess communication. Communication is made by the sending

of messages.

 4

defined as groups of concurrent executing tasks, which can be allocated in a same

or in a different “physical node” [Gomaa 1993c]. An important design decision is to

develop these subsystems in ways that minimise the number of interactions between

subsystems (low coupling) and maximise the degree of interaction within the

subsystem (high cohesion). If this design decision can be achieved, then an

individual subsystem may be designed, coded and tested mostly in a standalone

manner. Another beneficial effect of this design decision is that when an error

occurs in a subsystem, the spread of damage to other subsystems may be limited.

Once subsystems have been designed, the communication between parts is done by

sending messages through the network, which implies that even though they should

synchronise through signals to perform such communications, there is no single

global notion of the correct time [Coulouris et al. 2001]. Thus, the characteristics

that may define general distributed systems may be summarised as: concurrency

between components that constitute the system, the lack of a global clock and some

resilience to component failure. In the following subsections, approaches to

distribution and integration of systems are presented.

1.2.1.1 Distributed Kernel
In distributed computing, a common assumption is that when a task sends a

message to some other task it should not need to know where this task is situated,

making the message communication transparent [Gomaa 1993c]. Some commercial

operating systems (e.g. VAX/ELN) provided a distributed kernel, which directly

supports this transparency in the message communication. If this property is not

available then a Distributed Task Manager (DTM) is usually developed to provide

this transparency. The DTM is a layer of software that stands above each operating

system on each node. See Figure 1-1.

 5

Figure 1-1. Message communication between distributed entities. Tasks a and c from node 1
communicate between them and with tasks d, e from node 2.

1.2.1.2 Message Passing Interface (MPI)
As claimed in [MPI 2003a], MPI technology tends to provide an efficient and

portable standard for message passing communication programs used in distributed

memory and parallel computing. It is also a specification (standard) for Message

Passing Libraries3.The target platforms are systems which consist of massive

parallel computing (the programmer is responsible for identifying the parallelism)

such as workstation clusters or heterogeneous networks. There are currently several

MPI implementations such as MPI/Pro, IBM MPI, and LAM. It is stated in [MPI

2006b] that these implementations provide different communication modes such as

asynchronous communication, virtual topologies and efficient message buffer

management.

1.2.1.3 Remote Procedure Call
Another technology that has been used to provide the communication in distributed

systems is that of Remote Procedure Calls (RPC). This technology is based on a

client-server model (local procedure call) where the client subsystem makes a

request or “call” to the server subsystem and waits for the answer. In RPC the

server subsystem is in a remote node hidden from the client subsystem. The

procedure in the client subsystem is often called the client stub, and it handles the

3 […] refers to a collection of routines which are embedded in application code to accomplish send,
receive and other message passing operations [MPI 2003].

 6

request with any relevant parameters, encapsulates them in a message and sends it

to the server subsystem. The server procedure called server stub unpacks the

message and calls the appropriate procedure to process the call. Once the request

has been processed the sever stub packs the results in a response message and sends

them back to the client. The client stub unpacks the message and sends the results as

output parameters to the clients. Thus the functions of the client and server stubs are

to make the remote procedure call look like a local procedure call . See Figure 1-2.

Figure 1-2. Remote procedure mechanism. The process is illustrated from step (1) to (6).

1.2.1.4 Sockets
A socket technology is an end-pair communication model between two processes

across a network following a client-server communication model like that of the

RPC. The client initiates the rendezvous communication by sending a connexion

request to the server machine’s port. If the server accepts the request, the

connection creates another socket, which is bound to a new port, to connect with the

client. Therefore, the initial socket remains free to listen for new connection

requests from other clients. Socket technology allows creating software packages

like SocketPro [Yuancai 2002] to design the communication between the client and

server process to operate in a non-blocking mode, thus allowing the client and

server to carry on with their own processing tasks while they are communicating.

1.2.1.5 Middleware technology
One of the recent research areas in distributed systems is the use of technologies

referred to as Middleware that are applied to facilitate and manage the

communication between nodes and also to allow different platforms (operating

 7

systems) to be integrated in a distributed subsystem. Middleware is a layer of

software between the network and the application, which provides services such as

identification, authorization, directories and security. The philosophy of these

technologies is similar to that of the distributed kernel. There are different types of

middleware depending of the technology applied or the application system required

[Carnegie Mellon Software Engineering Institute 2005]:

• Object Oriented Middleware (OOM): The most popular middleware model.

It extends the object oriented paradigm to distributed systems. The

applications are potentially distributed objects that interact through a

transparent method similar to RPC, but with the difference that in OOM

instances of objects can be returned from remote call. Examples of OOM

technology include Distributed Computing Environment (DCE), Common

Object Request Broker Architecture (CORBA), Microsoft’s Common

Object Model (COM) and Java Remote Method Invocation (RMI).

• Message-Oriented Middleware (MOM): Unlike RPC or OOM this

middleware is based on asynchronous communications, thus the producer is

not blocked waiting for the consumer to receive the message. Even though

the caller and the receiver are loosely coupled, messages are addressed to

their recipients and it can be disadvantageous in wide-area distributed

systems for the overhead that it generates. The development of e.g.

publisher-subscribers systems is a possible solution to decouple producer

and consumer from the naming property. Publishers publish to the entire

network and subscribers subscribe to the message.

• Event-Based Middleware: Refers to technology that is applied to systems

that must react to events that can represent changes in the environment or

process status. The request-reply paradigm that is commonly used in OOM

is not suitable for this kind of system. Therefore, the communication pattern

established in this middleware is based on a one-way or loosely coupled

communication mechanism similar to MOM.

• Reflexive Middleware: Refers to technology that tries to include

a “reflection” property in the middleware to achieve openness,

configurability and reconfigurability. Reflection understood to be the

 8

capacity of an entity to reason about and act upon itself, a reflective system

contains a representation of its own behaviour and it is capable of change,

therefore all changes made to the system’s self-representation are

immediately reflected [Middleware 2005].

Another current research area in distributed systems is based on the use of a called

Component technology (conceptually similar to OOM). This technology considers a

component entity as the fundamental building block of any application. CORBA

technology and COM may also be considered Component technology. Other

alternative Component technologies may be JavaBeans [JavaBeans 2006] and .NET

[Microsoft .Net 2006] in a platform dependant application. JavaBeans is a

component technology easy to integrate in java environments (java platform). .NET

is a component-oriented development that replaces COM technology; it allows the

creation of components more easily than COM..NET also allows greater

interoperability than COM. Although it allows language independency it is still

platform dependant (Microsoft technology).

1.2.1.6 Message communication by ports
In some distributed systems communication is based on a loosely-coupled

communication pattern between source and sink by means of ports. Tasks are

attached to ports, therefore the producer task does not send a message to an explicit

consumer but sends the message to the output of its port and, consequently, the

consumer does not need to know who the producer is. This communication model

contributes to a higher degree of flexibility in the design due to the decoupling in

communication between tasks, and contributes to the possibility of re-use since

tasks do not need to know who and where the consumers or producers are when

there are designed. Some Architectural Description Languages (ADLs) use this

communication model to define their architectural designs [Medvidovic and Taylor

2000]. In successive versions of MASCOT and further extensions of RTN such as

the Data Oriented Requirements Implementation Scheme (DORIS), the

communication model, which will be explained in chapter 3, is based not only on

ports but also on what are called windows, paths and Intercommunication Data

Area (IDAs). In MASCOT there are two basic types of components: the activity

component, which is concerned with information processing and the passive

 9

component (IDA), which is concerned with information storage and transmission.

Activities communicate through IDAs, which provide the necessary

synchronisation, mutual exclusion and cross-stimulation facilities through

appropriate access procedures.

1.2.2 Real-Time systems

In terms of computational timing, a Real Time System (RTS) not only has to

produce its results but must produce the results within specified time intervals

(response-time constraints) [Phillip 1996], [Naedele 2001]. “what is predictability

for RTS” introduced in [Stankovic and Ramamritham 1990, pp.247], is an

interesting question because the answer permits linking the predictability of RTS (in

terms of timing requirements) with the underlying assumptions. The following list

presents the definition of four important characteristics of any RTS. Thus,

depending on these characteristics, the design of a RTS may vary significantly:

• Granularity of the deadlines: in RTS some tasks have deadlines and/or

periodic timing constraints. For example, when a task is executed and the

period of execution must be short, the task has a tight deadline, which means

that the operating system has to react promptly. Therefore, the scheduling

algorithm should be fast and simple.

• How strict are these deadlines? This can depend on the RTS and the

application of it. There are some tasks that can be classified as soft real time

tasks. These tasks are defined as tasks that still could be executed when the

deadline is passed. Hard real time or critical tasks are the ones that should be

executed before the deadline is passed otherwise they may cause major

problems, e.g., in a safety critical system to miss a deadline of a critical task

may provoke a loss of life.

• Size of the system and the degree of co-ordination: RTS vary considerably

in size and consequently in complexity. For example, increasing the size and

the degree of co-ordination between tasks may complicate the notion of

predictability. Therefore, the ability to load entire systems into memory and

to limit task interactions simplifies many aspects of building and analysing

 10

RTS. However, dynamic RTS with fully resident code and highly

independent tasks may not always be practical.

• Environment: the environment in which the RTS operates plays an

important role on the design step. In small and well defined systems (e.g. a

lab experiment), from the point of view of a designer, it is possible to think

of these systems as deterministic even though they may not be intrinsically

deterministic. For example, in hard real time or critical tasks, it is desirable

to force the system to be fully deterministic, in the sense that it is imperative

that the system fulfils all the timing constraints.

A common approach used to force a complex and distributed system to be

deterministic is taken by imposing these systems to work in a synchronous manner.

From a circuit design point of view, distributed RTSs working on synchronous

modes impose the need for a common clock, which makes the practical design and

implementation of these systems very difficult. Furthermore, the advance of Very

Large Scale Integration (VLSI) technology, that allows the integration of large

numbers of high-performance processors on one chip, makes the idea of

synchronising these processors with a common clock even more difficult

[COHERENT 2005]. Thus, currently there is substantial research work (including

the COHERENT project) on ideas such as applying asynchronous circuits instead of

synchronous circuits, also on applying different design techniques to the building of

distributed RTS, and finally, applying asynchronous communication techniques

such as Globally Asynchronous, Locally Synchronous (GALS) and ACMs

(especially in the COHERENT project). The next sections will briefly discuss these

different lines of research.

1.2.3 Asynchronous and Synchronous systems

To simplify design, most of the designs of logic circuits are based on two major

assumptions: all the signals are binary and time is a discrete function. By assuming

that time is a discrete function, hazards (undesired signals transitions) and feedback

can be ignored [Hauck 1995]. Asynchronous circuits keep the assumption that

signals are binary, but remove the assumption that time is a discrete function. This,

as suggested in [Hauck 1995], may imply several possible benefits such as: no clock

 11

skew (i.e. “the difference between arrival times of the clock signal at different parts

of the circuit”) since asynchronous circuits by definition have no globally

distributed clock. Exploiting asynchronous mechanisms also can lead to lower

power consumption because these circuits only need to have transitions in areas

involved in the current computation. Asynchronous systems (circuits) indicate that

when a computation is completed rather than waiting until all possible computations

have completed, as is often necessary in synchronous systems. Moreover, in many

asynchronous systems as suggested in [Hauck 1995], the migration to a new

technology of only the most critical parts of the system may improve the overall

performance, because performance in asynchronous systems tends to depend only

on the current active path rather than the longest path as it happens in synchronous

systems. Furthermore, asynchronous systems can wait an arbitrarily long time for

an element to complete, allowing robust mutual exclusion. The last advantage of

asynchronous circuits over synchronous circuits resides on the fact that, since there

is no clock to which signals must be synchronised, asynchronous circuits may

handle inputs from the outside word more elegantly than synchronous circuits,

because the inputs usually are by nature asynchronous [Ghosh 2001].

Nevertheless, asynchronous circuits also have some problems. Firstly,

asynchronous circuits are more difficult to design in an ad-hoc fashion than

synchronous circuits. In synchronous circuits, by setting the clock rate to a long

enough period, all worries about hazards and dynamic states of the circuit are

normally removed. Nevertheless, designers of asynchronous systems must pay a

great deal of attention to the dynamic state of the circuit. Notice that as mentioned,

asynchronous designs do not have assumption of taking time as a discrete function

rather than a continuous function; therefore the hazards that occur between

transitions have to be considered. Moreover, placement, routing, partitioning, logic

synthesis and other existing CAD tools in synchronous systems have to be modified

(or even are not applicable at all) for asynchronous design circuits. Furthermore,

although most of the advantages of asynchronous circuits are towards higher

performance, it is not clear that they are actually faster in practice [Hauck 1995].

 12

1.2.3.1 Synchronous and asynchronous design styles
The design methodologies to produce reliable (software) systems, address the

problem in three different phases [O’Donoghue and Hull 1996], [Naedele 2001]:

specification or definition, design and implementation. The first step is the creation

of a logical or abstract model (process of specification). Secondly we have the

process of design where the implementation model for a virtual machine is

developed from the abstract model. The last phase corresponds to the process of

implementation where virtual machine is placed in a physical machine [Muñoz

2002]. Design methodologies commonly require the support of CASE (Computer

Aided Software Engineering) tools for their effective use. Some design

methodologies are discussed further in chapter 3.

At this point, a brief introduction to a formal description for designing embedded

real-time systems is presented, because of the importance that this design

methodology has in the research work. Modular Approach to Software Construction

Operation and Test (MASCOT), as introduced earlier on, is one of the real-time

software development methodologies that has been considered in this work. It

incorporates design representation, a method of deriving the design, a way of

constructing software consistent with the design and tools for executing the

constructed software and for testing it. The MASCOT method provides a design

language (textual form) and a graphical notation (MASCOT network diagram).

There are other design tools based on a given formalism (a “formal method”).

Although these methodologies are not going to be discussed in further chapters,

they are introduced for completeness here. These design tools, used also to design

asynchronous circuits, could be grouped in three different categories based on their

underlying models [Muñoz 2002]: models based on logic such as Hardware

Description Languages (HDL) descriptions, models that extend process algebra

(both usually expressed in textual notation) like Signal Transition Graph (STG)/

State Graph (SG) synthesis, and state machine models that are often expressed in

graphical notations such as Petri Nets or Timed Transition models like the multiple-

input change Asynchronous Finite State Machine (AFSM) synthesis (e.g. burst-

mode).

 13

Petri Nets [Naedele 2001], [Mustafa 2000] is a mathematical model, which is used

to specify the operations to be performed in a multiprocessing or multitasking

environment, in others words; it is a model suitable to express concurrency. Petri

Nets can be used to model systems and to analyse timing constraints and race

conditions. However, if the system is highly complex, timing can become obscured.

The method of STG is an interpreted free-choice Petri Nets (PN). The main goal of

STG is to have the ability of expressing concurrency, but a weak point lies on its

difficulty in specifying choices. This means that, future behaviour depends on a

non-deterministic choice of equally likely choices. On the other hand, a burst-mode

AFSM is specified by a state diagram which consists of a finite number of states, a

set of labelled arcs connecting pair states, and a start state. Each arc is labelled with

a set of possible signal transitions. Each transition consists of an input and an output

burst. Given a state, when all of the specified sets of input transitions occur, the

order of which is arbitrary, the machine generates a set of concurrent output

changes and moves to a new state. Although the input choice of the burst-mode can

be more flexible than STG, and e.g., it has been useful in specifying a number of

controllers such as the Small Computer System Interface (SCSI) data transfer

protocol [Yun et al. 1993], its main disadvantage is that the burst-mode still does

not allow input transitions to be concurrent with output transitions.

The correctness of the RTS not only depends on the logical result of computations,

but also on the time at which the results are produced. Therefore, the test for

correctness of such systems is usually performed by formal proof (specification)

and by verification, which is the process of proving that the system fits the

assumptions made. Correctness proofs (sometimes called formal verification) are

associated with formal methods. There are two techniques for going through the

verification: analysis and synthesis. There is a fine distinction between them and

sometimes they are intermingled (sometimes synthesis implies analysis). Analysis

tries to verify all the properties of the RTS (e.g. timing constraints between tasks)

by inspecting each part of the system and studying it. Synthesis tries to verify the

properties of the system by building the system from the specification and then,

examining all constraints. Then the analysis technique examines the different parts

constituting the system in order to deduce its correct operation as a logical

 14

consequence of design decisions, while synthesis experiments with the behaviour of

the system by examining if the built system accomplishes the expected results.

Another formal description technique is called LOTOS (Language Of Temporal

Ordering Specification). It is an ISO (International Standardisation Organisation)

standard for designing services and protocols used in the communications of open

systems [Muñoz 2002], [Turner 1993]. It is generally applicable to distributed,

concurrent processing systems. The behaviour of a system can be characterised by

LOTOS as a sequence of events or actions that happen in an orderly way in time.

These actions are stated by gates and in order to represent the temporary sequence

of these gates there is a set of operators, which can be built by behaviour

expressions.

1.2.3.2 GALS
Globally Asynchronous, Locally Synchronous (GALS) is an approach based on the

idea of guiding the overall hardware design towards a global asynchrony, although

each part, that integrates the system, works in synchronous manner. There is

substantial research work in GALS techniques, and as stated in [COHERENT 2005]

“is widely expected to become popular”. The next paragraph refers to an example of

the GALS approach as a matter of illustration.

In [Cristian and Fetzer 1999], the authors present a formal definition of a model

called ‘timed asynchronous distributed system model’ or ‘timed model’ in short.

The authors believe that this model is a good descriptor for existing distributed

systems built from networked workstations. The main reason for it is that the timed

model allows the processes to have access to the hardware clocks in a local access.

It means that all the processes that are in one workstation (which is called a node in

terms of the network) are considered as local processes and they have access to the

hardware clock of the machine, but they do not have access to the clocks of other

nodes. Hence, there is a locally synchronous process, because local processes are

synchronised with the local nodes’ clock, but globally, the system is asynchronous

because there is no global clock in the network.

 15

1.2.3.3 Asynchronous Communication Mechanisms (ACMs)
ACMs may be defined as inter-process communication devices which allow writer

and reader processes that are communicating, unconstrained access to the

mechanism. In this way, the communicating processes do not share a clock. ACM

are essentially implemented through shared variables or registers commonly as

FIFO queue model. Even though there is significant research work conducted on the

verification of existent ACMs [Clark 2000], [Xia 2000], [Mustafa 2000] or on the

creation of new components which follow the ideas of ACMs like in [Cristian and

Fetzer 1999]. The work here is focussed on the presentation and discussion of a

specific taxonomy of ACMs [Simpson 1994e] which is presented in chapter 3 and

used in chapters 4 and 5. [Simpson 1990c] defined three main properties:

asynchrony, data coherence and data freshness, which are important in order to

define certain types of ACMs. Therefore, the taxonomy of protocols illustrated in

chapter 3, depends on how these protocols deal with data asynchrony, coherence

and freshness. The asynchrony property refers to the unconstrained access to the

mechanism, in terms of “when” and at “what” rate the writer and the reader can

access the mechanism. The data coherence property refers to the atomicity of the

data inside the mechanism, i.e. when the writer accesses the data the reader cannot

read the same data at the same time. The data freshness property refers to the fact

that the data that the reader and writer are dealing with is always the newest one.

1.3 Aim and original contributions

The aim of this project, within the context of COHERENT, has been the study of

the application of specific ACMs and RTN principles to the system design of

surveillance (multimedia) applications. The other aim of this work has been to try to

overcome a major obstacle so as to enable the field (visual surveillance) to move

forward by highlighting the need of a creation of a framework for designing

surveillance systems. In chapter 2 a full review of the state-of-art in visual

surveillance field has been presented, which has been published in a journal and

included as the Introduction Chapter of a recent book. The original contributions of

this work are presented in chapters 3, 4 and 5. The contributions presented in two

workshops and two conferences correspond mainly to the work presented in

chapters 4 and 5. The contribution of chapter 3 is based on establishing a

 16

comparison framework between two software techniques Object Oriented (OO) and

RTN; the conclusions of chapter 3 establish the theoretical ideas that can guide the

creation of the framework for designing surveillance systems. Once the theoretical

ideas for the framework are established, one of chapter 4’s contributions consists in

applying these ideas to the design of an existing surveillance system. The other

contribution of chapter 4 consists of the comparison of the architecture design of the

same surveillance system using two different software approaches based on OO and

RTN concepts respectively. The bases for the creation of the framework are finally

established in chapter 5 which presents and discusses an original design of a generic

surveillance system.

1.4 Structure of the thesis

This thesis is structured into six chapters. Chapter 1 discusses the background of the

research within the field from the point of view of the main areas addressed by the

COHERENT project. In chapter 2, a brief introduction to computer vision systems

is given followed by a historical review of the evolution of visual surveillance, the

general requirements for designing surveillance systems and concluding with an

overview of currently popular image processing techniques and design approaches

used in non-trivial surveillance systems. As mentioned, the main original

contributions of the work are contained in chapters 3, chapter 4 and chapter 5. In

chapter 3, an overview is given of different (software) system development methods

that may be used for designing wide-area intelligent surveillance systems. We show

that it is important to consider what is a major trend in current approaches, mainly

the use of the object-oriented paradigm, against a methodology more firmly rooted

in distributed safety-critical systems namely that of Real Time Networks (RTN).

Then, we develop a framework, which is presented in chapter 4, to compare a

popular object-oriented tool used to build these systems (CORBA) and those

associated with the proposed method RTN method (MASCOT, DORIS through a

case study. In chapter 5, a design of a new distributed surveillance system is

proposed using the recommended method. Conclusions and future work are

discussed in chapter 6.

 17

 18

2 The state of art of Intelligent Surveillance Systems

2.1 Introduction

In this chapter a preamble of vision systems is presented with an overview of

surveillance systems mainly based on [Valera and Velastin 2005b]. The overview

consists of three main parts: an historical introduction of these systems, a

description of the general requirements and finally the state-of-art of the existing

vision surveillance systems at the time of writing. The historical introduction looks

at the wider picture of the evolution of these systems, starting from the first vision

surveillance systems to the latest systems which are still a subject of current

research. Then, an introduction of the general requirements in surveillance systems

on different applications is presented, illustrating the essential functionality of such

systems. After that, a survey of the state-of-art of different existing vision

surveillance systems is presented, starting by an overview of conventional

techniques used to build these systems, moving afterwards to the presentation of

some examples of such systems and finishing with a discussion of some properties

that we find very important to include in the analysis of these systems such as

distribution and communication.

2.2 Vision Systems

One of the major historical society advances was industrialization and therefore the

automation of certain processes. Since then, research and development has leant

towards the automation of most activities in industry, reducing cost, time and use of

human resources. Vision systems may increase, in some fields, the degree of

automation in processes or even introduce a certain degree of automation in

processes that were not automated. For instance, the application of vision system is

widely used in the medical field for diagnostic purposes as in [Tierney et al. 2000],

or to improve the efficiency in information cataloguing. High-speed data streams

resulting from the operation of on-line instruments and imaging systems are

important steps leading to a modern health care system in which the communication

between centres allows one to exchange information and consequently improve the

efficiency of health care.

 19

Traditionally, surveillance systems were built for monitoring certain activities in

military units such as planes and ships using sensors like radars or sonars. Recent

events, including major terrorist attacks, have led to the increase in demand for

security in society. This in turn has forced governments to make personal and asset

security a priority in their policies. Vision systems are rapidly gaining more

importance in the surveillance field, providing a form of automation within the

surveillance task of the environment where it is applied. Therefore, the demand for

remote monitoring for safety and security purposes has received particular attention

in some areas like road traffic control and public or private installations such as car

parks, airports or public transport installations such as bus or underground railway

networks. To see more applications please refer to [Valera and Velastin 2005b].

2.3 Evolution of Intelligent Surveillance Systems

As mentioned in chapter 1, the historical evolution of vision systems in surveillance

applications goes from what literature in the field calls the first generation vision

surveillance system through to the second and then third generation surveillance

systems. Table 2-1 shows a summary of the evolution of such systems. Analogue

Closed Circuit TeleVision (CCTV) systems are considered as the first generation of

surveillance systems. These systems consisted of groups of cameras connected

directly to monitors. In subsequent developments, the cameras were connected

through a switch or matrix which distributed the analogue signal to one or more

monitors. Initially the systems were installed in closed spaces, although rapidly they

were installed in open spaces as well. In [Nwagboso 1998] the integration of these

systems to monitor transport systems is discussed. As shown in Table 2-1,

currently, the majority of CCTV systems use analogue techniques for image

distribution and storage, even though conventional CCTV cameras generally use a

digital Charge Coupled Device (CCD) to capture images. The digital image is then

converted into an analogue composite video signal, causing some picture

degradation, which is then connected to the CCTV matrix, monitors and recording

equipment generally via coaxial cables. The current research on these systems is

based on switching the analogue CCTV systems to digital technology.

 20

The rapid increase in the use of CCTV systems implied an expansion in size and

complexity. At the same time this expansion resulted, perhaps surprisingly, in a

decrease in the relative effectiveness of surveillance and of recognition of activities

of interest in real-time. The substantial improvement in the techniques of digital

image processing and the low cost of dedicated PCs for these image processing

techniques influenced the introduction of new technologies in surveillance systems.

Then, a new second generation of surveillance system arose. The introduction of

such systems has provided improvements in surveillance applications by providing

certain automation, for example, as is the case for motion detection methods used to

detect presence and to minimise recordings of uneventful (empty) scenes or the very

successful introduction of automatic plate number recognition systems e.g. for road

traffic congestion/offence charging. The type of image processing techniques

ranges from simple change detection or the elimination of image noise to more

complicated processing tasks like recognition and tracking of objects and the

interpretation of scenarios. The current research in this second generation is based

on improving the efficiency and robustness of computer vision algorithms such as

event detection. There is also some research on automatic learning techniques for

recognising patterns of behaviours and scene variations.

The introduction of new technologies in the market such as high speed networks has

led to the creation of remote control surveillance. These systems are based on the

use of sensors, like cameras installed for the purpose of surveying where all the

information is processed in a remote location. The third generation of surveillance

systems consists of the integration of these new technologies with the processing

techniques coming from previous systems. Therefore, such systems are based on the

distribution and separation of the processing tasks into a low level and high level

partly due to the proliferation of the devices called Digital Signal Processors (DSP),

which allows building intelligent cameras or smart cameras with autonomous

(local) processing capacities.

 21

1st generation

Techniques Analogue CCTV systems

Advantages − They give good performance in some
situations.

− Mature technology.
Problems Use analogue techniques for image

distribution and storage

Current Research − Digital versus analogue
• Digital video recording
− CCTV video compression

2nd generation

Techniques Automated visual surveillance by
combining computer vision technology
with CCTV systems

Advantages Increase the surveillance efficiency of
CCTV systems

Problems Robust detection and tracking
algorithms required for behavioural
analysis

Current Research − Real-time robust computer vision
algorithms.

− Automatic learning of scene variability
and patterns of behaviours.

− Bridging the gap between the statistical
analysis of a scene and producing natural
language interpretations.

3rd generation

Techniques Automated wide-area surveillance
system

Advantages − More accurate information as a result of
combining different kind of sensors.

− Distribution

Problems − Distribution of information (integration
and communication)

− Design methodology
− Moving platforms
− Multi-sensor platforms

Current Research − Distributed versus centralised intelligence
− Data fusion
− Probabilistic reasoning framework
� Multi-camera surveillance techniques

Table 2-1. Summary of the technical evolution of intelligent surveillance systems (from Valera

and Velastin 2005b])

 22

2.4 Requirements of an Intelligent Surveillance System

To create and develop such systems it is essential to define the requirements of the

system, which match the needs of the user enabling these demands to be satisfied.

The main goal that is expected of third generation vision surveillance application,

based on end-user requirements, is to provide cost effective good scene

understanding (and learning) aimed at attracting the attention of human operators in

real-time in a widespread geographic area, using a variety of sensors and sources of

contextual information necessary for decision support (such as the availability of

response units in an area where a problem has been detected).

From the architectural design point of view, this requirement implies different

constraints. In scene understanding, e.g., the high variability in the scene conditions

and the poor structure of monitoring hint of the need to use more sophisticated

image processing algorithms, pattern recognition methods and robust scene

description. For example, the mounting position of the cameras in a metro-station

and consequently the video-signal of the digital pictures are often not in optimal

conditions. Problems may be caused by poor lighting, environments that cause

reflections or by the heights and the perspective of the resulting mounted cameras

(the position of the cameras is generally optimised to traffic monitoring or to give a

human monitor maximum visual coverage and not necessarily to security or to

machine monitoring).

Good performance processing capacities are required in multi-sensor environments,

especially when there are different kinds of sensors in diverse spatial locations

acquiring the same type of real-time information in a monitored area. Therefore,

spatially distributed multi-sensor environments present interesting opportunities and

challenges for surveillance. Recently, there has been some investigation of data

fusion techniques in surveillance to cope with the sharing of information obtained

from different types of sensors [Collins et al. 2000a]. The communication aspects

within different parts of the system play an important role either due to the

bandwidth constraints or the asymmetric nature of the communication [Regazzoni

et al. 2001]. Another relevant aspect is the security in the communications between

modules. For some vision surveillance systems, data needs to be sent over open

 23

networks and the information protection leads to a critical issue for ensuring privacy

and for authenticating [Barni et al. 2000] conditions of these services. The trend in

the requirements of such systems also tends to include the viability of adding an

automatic learning capability in these systems to improve the end-user constraints

factors, by automatically developing models of scenes to be recognised as

potentially dangerous events from a training set of presented examples [Thonnat

and Rota 2000], [Ivanov and Bobick 2000], [Gong and Xiang 2003].

2.4.1 Surveillance system requirements for transit applications

Requirements may differ from one surveillance application to another. In

surveillance systems for intelligent transport [Pellegrini and Tonani 1998], the

continued increase in traffic density emphasises the need to take action on the

deterioration of traffic congestion through competent traffic management,

enhancing safety and security within the traffic network. Therefore, the

functionality and the effectiveness of the measurement of traffic scenes by

monitoring and collecting data using vision surveillance systems should

substantially assist in better traffic control, incident management and traffic law

enforcement.

To achieve this, the system should be an integrated system which can link into

incident monitoring system, in-vehicle systems which are likely to accept

information related to safety and security from the law enforcement and the existing

traffic control systems. Most of the technology on the current traffic control systems

in the UK is mainly CCTV linked into a control unit and generally used for passive

traffic monitoring. The natural linkage that should be implemented is the control

interface systems, the surveillance signal processing unit and the central processing

systems, which encapsulates the database of the vehicle details in the traffic

network. In extensive capability of the control and processing unit, the users needs,

in terms of the organisational and personnel requirements will have to also be met.

In [Pellegrini and Tonani 1998] it is considered that the response time of the whole

system, including human response to an accident in a highway shall be very fast

(less than 5 min) in order to avoid another possible collision and minimise the false

alarm rate (ideally to zero).

 24

The incident monitoring system can be a network of smart surveillance cameras that

should automatically trigger image save routines in order to provide the footage of

vehicle crashes on the computer. Five minutes of the recording prior to the incident

and the incident itself are stored in a computer for a post analysis by the

enforcement agencies or insurance companies [Pellegrini and Tonani 1998]. The

surveillance should work by continuously monitoring accident black spots on the

network by storing the video images uninterruptedly on a computer in a loop and re-

recorded over the past scenes until the smart camera detects the start of vehicle

collision. The localization of these cameras over the road network follows the same

criteria as the CCTV cameras. Adverse weather conditions such as fog or dense rain

may limit their efficacy. In closed areas like tunnels, because of geometrical

constraints, fixed cameras should be used each covering no more than 300 metres of

straight road in order to avoid possible occlusions. In non-straight roads, up to one

camera every 100 m might be needed [Pellegrini and Tonani 1998]. The image

acquisition and recording of air-pollution monitoring system should be triggered

using the same techniques as that of incident monitoring system.

2.4.2 Surveillance system requirements for port applications

In another environment such as ports, security (in its boundaries and inner areas) is

a growing issue as it represents the main gates for international trades around the

world, where several personnel work day and night for different activities. In fact,

port areas differ in the destination of use such as industrial, commercial, tourism or

marinas for pleasure boats activities. All these activities are associated with

different infrastructures and are carried out during different periods requiring

specific personnel and equipment. Then surveillance is required to guarantee the

“feeling of” security and control at gates or at public areas opening. Although

usually the video-based control of cargo handling and transfer equipment exist in

many port terminals, surveillance in the form of traffic control applications like

truck access management and the control of their movements inside ports and

terminals is also applicable in this domain, as well as the surveillance of goods and

workers. In this environment, the installation of an impressive amount of cameras is

required because of the usual wide extension of surveillance area, providing great

 25

amounts of data to process and transmit. Therefore, bandwidth constraints

requirements and good performance in the processing units are required. Moreover,

the difficulty to survey increases depending on the kind of traffic, e.g. cargo is

enclosed in containers which all look the same and furthermore, it is not possible to

see the contents inside them, thus a multi-sensor environment is required. In this

type of scenario, clearly an availability of 365 days per year, 24 hours a day is what

is required.

2.4.3 Metro and Railway Stations surveillance system
requirements

End-user requirements for Railway Station Surveillance Systems and Metro

Stations are based on two principles obtained from statistical studies of real

situations that occur in railway and metro stations [Ronetti and Dambra 2000]. The

first principle is grounded on the need of the company; to survey the people, end-

users and employees, and to survey their assets, which may be damaged as a cause

of vandal behaviours or failures. The second principle is based upon the need to

increase the perception (or feeling) of security; reducing the feeling of security

tends to produce losses for the company because people choose not to travel in their

networks. From these two basic end-user requirements consequent requirements can

be extrapolated: to be able to detect and recognise certain events and to have a

better scene understanding. A good monitored infrastructure and location is

required giving a good view of all areas of the facilities. Therefore, a skilful

management of all this information is required, in other words, the system should

have a full-coverage, be extensible and may integrate different technologies and

consequently bandwidth constrains should be taken into account and of course be

usable by staff. For example, the linking of different technologies allows a wireless

call from a train operator to generate its position on a display, hence it gives a better

control and easier maintenance, because it is possible to know straightaway if there

is any problem and sometimes to know which kind of problem it is because the

operator is able to report it.

To reduce the passengers’ feeling of insecurity and guarantee security, a fast

response is vital in a dangerous situation. The system must produce the necessary

alarms in real-time and provide the results with sufficient clarity to attract a human

 26

operator’s attention by pre-selecting only the interesting outputs, which are usually

images. For example, if an emergency call is made by the public or personnel when

an incident occurs in the installation, the conversation may be coupled with the

cameras in order to record pictures of the callers and their conversation. Thus, the

operator can be alerted of this event with enough information to handle the incident

in a proper way. It is assumed that the operator is not a computer expert so the

machine interface needs to be simple.

Therefore, the system requires good performance in terms of response time and low

false alarm rates. From a safety point of view it is preferable to have a false alarm

than a non-detected alarm. The system needs to be reliable enough to cope with

long periods of loss of video inputs and failure-tolerant as a failure on a part of the

system should not paralyse the entire system. In [London Underground Limited

(n.d.)] reliability is defined in terms of Mean Time Between Failure (MTBF) and

Mean Time To Repair (MTTR) assumed to be four hours. The MTBF has three

different delimitations depending on the kind of failure: for a complete system

failure the MTBF should be greater than 2.6x10ˆ4 hours, for a single failure with

more than one output it should be greater than 1.8x10ˆ4 hours and finally for a

single failure with one output the MTBF should be greater than 10ˆ4. The

availability should be 99%, 24 hours per day, 365 days per year. The systems needs

to be capable of storing all the information extracted from different sensors,

especially the outputs from the cameras, with enough quality to allow them to be

used in other fields like a police investigation or court of law. In countries like the

UK, the surveillance videotapes may be used as evidence in court [Geradts and

Bijhold 2000] or used in crime investigation by the police.

The last important requirement in these applications is that the system should

interface with existing equipment without much cost for a technical adaptation. This

technical compatibility concerns the type of cameras (b/w, colour, pan-tilt-zoom),

the transmission types (fibre optical, coaxial, wire), switching matrix with possible

special interfaces, monitor-places with associated panels and keyboards.

 27

2.5 State-of-art in the design of visual surveillance
systems

This section is divided in two main subsections: the first part (subsection 2.5.1)

summarises research that addresses the main image processing tasks that were

mentioned in the previous section i.e. object detection, object recognition, tracking,

behaviour, activities analysis and databases. It is important to highlight that the

availability of a given technique or set of techniques is necessary but not sufficient

to deploy a potentially large surveillance system, which implies networks of

cameras and distribution of processing capacities to deal with the signals from these

cameras. Therefore, in the second part of this section what has been done to propose

surveillance systems that address these requirements is reviewed. The majority of

the surveillance systems reviewed in this chapter are based on transport or parking

lots applications [Valera and Velastin 2005b]. The reason as explained in [Valera

and Velastin 2005b], is because most reported distributed systems tend to originate

from academic research which has tended to focus on these domains (e.g. by using

university campuses for experimentation or the increasing research funding to

investigate solutions in public transport).

2.5.1 Processing components in surveillance systems

A typical configuration of processing modules is illustrated in Figure 2- 1. These

modules constitute the low-level building blocks necessary for any distributed

surveillance system. Each of the following subsections outline the most popular

image processing techniques used in each of these modules.

Figure 2- 1. Traditional flow of processing in visual surveillance from [Valera and Velastin
2005b].

2.5.1.1 Object detection
There are two main conventional approaches to object detection: ‘temporal

difference’ and ‘background subtraction’. The first approach consists in the

subtraction of two consecutive frames followed by thresholding. The second

technique is based on the subtraction of a background or reference model and the

Object
detection

Object
recognition

Tracking Behaviour
and activities
analysis

Database

 28

current image followed by a labelling process. After applying one of these

approaches, morphological operations are typically applied to reduce the noise of

the image difference. The temporal difference technique has good performance in

dynamic environments because it is very adaptive, but it has a poor performance on

extracting all the relevant object pixels. On the other hand, the background

subtraction has a better performance on extracting object information but it is

sensitive to dynamic changes in the environment (see Figure 2- 2 and Figure 2- 3).

Figure 2- 2. Example of a temporal difference technique used in motion detection (from
[Valera and Velastin 2005b]).

Figure 2- 3. Example of a background subtraction technique used in motion detection. In this
example a bounding box is drawn to fit the object detected (from [Valera and Velastin 2005b]).

An adaptive background subtraction technique involves creating a background

model and continuously upgrading it to avoid poor detection when there are

changes in the environment. There are different techniques to model the

background, which are directly related to the application. For example, in indoor

environments with good lighting conditions and stationary cameras, it is possible to

create a simple background model by temporally smoothing the sequence of

acquired images in a short time as described in [Haritaoglu et al. 2000], [Nguyen et

al. 2003a], and [Jaynes 1999]

 29

Outdoor environments usually have high variability in scene conditions, thus it is

necessary to have robust adaptive background models, even though these robust

models are computationally more expensive. A typical example is the use of a

Gaussian Model (GM) that models the intensity of each pixel with a single

Gaussian distribution [Wren et al. 1997] or with more than one Gaussian

distribution Gaussian Mixture Models(GMM). In [Boult et al. 2001], due to the

particular characteristics of the environment (a forest), they use a combination of

two Gaussian Mixture Models to cope with a bimodal background (e.g. movement

of trees in the wind). The authors in [Stauffer et al. 2000] use a mixture of

Gaussians to model each pixel. The method they adopted handles slow lighting

changes by slowly adapting the values of the Gaussians. A similar method is used in

[Pavlidis et al. 2001]. In [Ng et al. 1999] the background model is based on

estimating the noise of each pixel in a sequence of background images. From the

estimated noise the pixels that represent moving regions are detected. Other

techniques use groups of pixels as the basic units for tracking, and the pixels are

grouped by clustering techniques combining colour information (R,G,B) and spatial

dimension (x, y) to make the clustering more robust. Algorithms as such

Expectation Minimisation (EM) are applied to track moving objects as clusters of

pixels significantly different from the corresponding image reference, e.g. in

[Bennewitz et al. 2002] the authors use EM to simultaneously cluster trajectories

belonging to one motion behaviour and then to learn the characteristic motions of

this behaviour.

In [Oren et al. 1997] the reported object detection technique is based on wavelet

coefficients to detect frontal and rear views of pedestrians. By using a variant of

Haar wavelet coefficients as a low-level process of the intensity of the images, it is

possible to extract high-level information of the object (pedestrian) to detect, e.g.

shape information. In a training stage, the coefficients that most accurately

represent the object to be detected are selected using large training sets. Once the

best coefficients have been selected, they use a Support Vector Machine (SVM) to

classify the training set. During the detection stage, the selected features are

extracted from the image and then the SVM is applied to verify the detection of the

object. The advantage of using wavelet techniques is that of not having to rely on

explicit colour information or textures. Therefore, they can be useful in applications

 30

where there is a lack of colour information (a usual occurrence in indoor

surveillance). Moreover, using wavelets implies a significant reduction of data in

the learning stage. However, the authors only model the front and the rear views of

pedestrian. In the case of groups of people that stop, talk or walk perpendicular to

the view of the camera, the algorithm is not able to detect the people. Furthermore,

an object, with similar intensity characteristics as a frontal or rear human, is likely

to generate a false positive. Another line of research is based on the detection of

contours of persons by using principal component analysis (PCA). Finally, as far as

motion segmentation is concerned, techniques based on optic flow may be useful

when a system uses moving cameras as in [Ferryman et al. 2000], although there are

known problems when the image size of the objects to be tracked is small.

2.5.1.2 Object recognition, tracking and performance evaluation
Tracking techniques can be split in two main approaches: 2D models with or

without explicit shape models and 3D models. For example in [Ferryman et al.

2000] the 3D geometrical model of a car, a van and a lorry is used to track vehicles

in a highway. The model-based approach uses explicit a priori geometrical

knowledge of the objects to follow, which in surveillance applications are usually

people, vehicles or both. In [Zhi-Hong 2003] the author uses two 2D models to

track cars: a rectangular model for a passing car that is close to the camera and a U-

shape model for the rear of the car in the distance or just in front of the camera. The

system consists of an image acquisition module, a lane and car detection, a process

co-ordinator and a multiple car tracker. In some multi-camera systems like [Jaynes

1999], the focus is on extracting trajectories, which are used to build a geometric

and probabilistic model for long-term prediction, and not the object itself. The a

priori knowledge can be obtained by computing the object’s appearance as a

function of its position relative to the camera. The scene geometry is obtained in the

same way. In order to build the shape models, the use of camera calibration

techniques becomes important. A survey of different techniques for camera

calibration can be found in [Hemayed 2003]. Once a priori knowledge is available,

it may be utilized in a robust tracking algorithm dealing with varying conditions

such as changing illumination, offering a better performance in solving (self)

occlusions or (self) collisions. It is relatively simple to create constraints in the

objects’ appearance model by using model-based approaches; e.g. the constraint

 31

that people appear upright and in contact with the ground is commonly used in

indoor and outdoor applications.

The object recognition task then becomes the process of utilising model-based

techniques in an attempt to exploit such knowledge. A number of approaches can be

applied to classify the new detected objects. The integrated system presented in

[Remagnino et al. 1997] and [Ferryman et al. 2000] can recognise and track

vehicles using a defined 3D model of a vehicle, giving its position in the ground

plane and its orientation. It can also recognise and track pedestrians using a prior

2D model silhouette shape, based on B-spline contours. A common tracking method

is to use a filtering mechanism to predict each movement of the recognised object.

The filter most commonly used in surveillance systems is the Kalman Filter

[Remagnino et al. 1997], [Nguyen et al. 2003a]. Fitting bounding boxes or ellipses,

which are commonly called ‘blobs’, to image regions of maximum probability

performs another tracking approach based on statistical models. In [Wren et al.

1997] the author models and tracks different parts of a human body using blobs,

which are described in statistical terms by a spatial and colour Gaussian

distribution. In some situations of interest the assumptions made to apply linear or

Gaussian filters do not hold, and then non-linear Bayesian filters, such as Extended

Kalman filters (EKF) or particle filters have been proposed. Work described in

[Arulampalam et al. 2002] illustrates that in highly non-linear environments particle

filters give better performance than EKF. A Particle Filter (PF) is a numerical

method, which weights (or ‘particle’) a representation of posterior probability

densities by resampling a set of random samples associated with a weight and

computing the estimate probabilities based on these weights. Then, the critical

design decision using particle filters relies on the choice of importance (the initial

weight) of the density function.

Another tracking approach consists in using connected-components [Boult et al.

2001] to segment the changes in the scene into different objects without any prior

knowledge. The approach has a good performance when the object is small, with a

low-resolution approximation, and the camera placement is chosen carefully.

Hidden Markov Models (HMMs) have also been used for tracking purposes as

presented in [Hai Bui et al. 2001], where the authors use an extension of HMM to

 32

predict and track objects trajectories. Although HMM filters are suitable for

dynamic environments (because there is no assumption in the model or in the

characterisation of the type of the noise like as required when using Kalman

Filters), off-line training data are required. Recent research has been carried out on

the creation of semi-automatic tools that can help create a large set of ground truth

data that is necessary for evaluating the performance of the tracking algorithms

[Black et al. 2003].

2.5.1.3 Behavioural analysis
The next stage of a surveillance system recognises and understands activities and

behaviours of the tracked objects. This stage broadly corresponds to a classification

problem of the time-varying feature data that are provided by the preceding stages.

Therefore, it consists in matching a measured sequence to a pre-compiled library of

labelled sequences that represent prototypical actions that need to be learnt by the

system via training sequences. There are several approaches for matching time-

varying data. Dynamic Time Warping (DTW) is a time-varying technique widely

used in speech recognition, image pattern as in [Rath and Manmatha 2003] and

recently in human movement patterns [Oates et al. 2000]. It consists of matching a

test pattern with a reference pattern. Although it is a robust technique, it is now less

favoured than dynamic probabilistic network models like HMM (Hidden Markov

Models) and Bayesian Networks [Nguyen et al. 2003b], [Ivanov and Bobick 2000].

The last time-varying technique that is not as widespread as HMM, because it is

less investigated for activity recognition, is Neural Networks (NN). In [Thonnat and

Rota 2000] the recognition of behaviours and activities is done using a declarative

model to represent scenarios, and a logic-based approach to recognise predefined

scenario models.

2.5.1.4 Database
One of the final stages in a surveillance system is storage and retrieval. Relatively

little research has been done in how to store and retrieve all the obtained

surveillance information in an efficient manner, especially when it is possible to

have different data formats and type of information to retrieve. In [Makris et al.

2004] the authors investigate the definition and creation of data models to support

the storage of different levels of abstraction of tracking data into a surveillance

database.

 33

In [Decleir et al. 1999] the authors develop a data model and a rule-based query

language for video content based indexing and retrieval. Their data model allows

facts as well as objects and constraints. Retrieval is based on a rule-based query

language that has declarative and operational semantics, which can be used to

gather relations between information represented in the model. A video sequence is

split into a set of fragments and each fragment can be analysed to extract the

information (symbolic descriptions) of interest to store into the database. In [Stringa

and Regazzoni 1998] retrieval is performed on the basis of object classification. A

stored video sequence consists of 24 frames; the last frame is the key frame that

contains the information about the whole sequence. Retrieval is performed using a

feature vector where each component contains information obtained from the event

detection module.

2.6 Examples of surveillance systems

In following sections examples of surveillance systems are presented although to

read more examples refer to [Valera and Velastin 2005b] where an extend sample

of examples of surveillance systems is presented. In this section a distinction

between surveillance for indoor and outdoor applications is made. The reason is

because of the differences in the design at the architectural and algorithmic

implementation levels. The topology of indoor environments is also different from

that of the outdoor environments.

2.6.1 Commercial surveillance system for outdoor applications

An example of a commercial system intended for outdoor applications, is DETER

[Paulidis and Morellas 2002], [Pavlidis et al. 2001] (Detection of Events for Threat

Evaluation and Recognition). The architecture of the DETER system is illustrated in

Figure 2- 4. It is aimed at reporting unusual moving patterns of pedestrians and

vehicles in outdoor environments such as car parks. The system consists of two

parts: the computer vision module and the threat assessment or alarms management

module. The computer vision part deals with the detection, recognition and tracking

of objects across cameras. In order to do this, the system fuses the view of multiple

cameras into one view and then performs the tracking of the objects. The threat

 34

assessment part consists of feature assembly or high-level semantic recognition, the

off-line training and the on-line threat classifier. The system has been evaluated in a

real environment by end-users, and it had a good performance in object detection

and recognition. However, as it is pointed out in [Pavlidis et al. 2001], DETER

employs a relatively small number of cameras because it is a cost-sensitive

application. It is not clear whether the system has the functionality for retrieval and

even though the threat assessment has good performance, there is a lack of a

feedback loop in this part that could help improve performance.

Figure 2- 4. Architecture of DETER system (from [Valera and Velastin 2005b]).

2.6.2 Surveillance systems for parking lots applications

Another integrated visual surveillance for vehicles and pedestrians in parking lots is

presented in [Remagnino et al. 1997]. This system presents a novel approach to deal

with interactions between objects (vehicles and pedestrians) in a hybrid tracking

system. The system consists of two visual modules capable of identifying and

tracking vehicles and pedestrians in a complex dynamic scene. However, this is an

example of a system that considers tracking as the only surveillance task, even

though the authors pointed out in [Remagnino et al. 1997] the need for a semantic

interpretation of the tracking results for scene recognition. Furthermore, a

“handover” tracking algorithm across cameras has not been established.

!

Computer
Vision

Video
Case Labels

Feature
Assembly

Security Alert

Cluster
Analysis

Threat Assesment

Off-line

Other
Data

Model
Development

 35

It is important to have a semantic interpretation of the behaviours of the recognised

objects in order to build an automated surveillance system that is able to recognise

and learn from the events and interactions that occur in a monitored environment.

For example in [Ivanov et al. 1999], the authors illustrated a video-based

surveillance system to monitor activities in a parking lot that performs a semantic

interpretation of recognised events and interactions. The system consists of three

parts: the tracker which tracks the objects and collects their movements into partial

tracks; the event generator which generates discrete events from the partial tracks

according to a simple environment model and finally, a parser that analyses the

events according to a Stochastic Context-Free Grammar (SCFG) model which

structurally describes possible activities. This system, as the one in [Remagnino et

al. 1997], is aimed at proving the algorithms more than at creating a surveillance

system for monitoring a wide area (the system uses a single stationary camera).

Furthermore, it is not clear how the system distinguishes between cars and

pedestrians because the authors do not use any shape model.

In [Jian-Guang et al. 2003] visual traffic surveillance for automatic identification

and description of the behaviours of vehicles within parking lots scenes is

presented. The system consists of a motion module, model visualisation and pose

refinement, tracking and trajectory-based semantic interpretation of vehicle

behaviour. The system uses a combination of colour cues and brightness

information to construct the background model and applies connectivity

information for pixel classification. Using camera calibration information they

project the 3D model of a car onto the image plane and they use the 3D shape

model-based method for pose evaluation. The tracking module is performed using

EKF. The semantic interpretation module is realised by three steps: trajectory

classification, then an on-line classification step using Bayesian classifiers and

finally natural language descriptions are applied to the trajectories patterns of the

cars that have been recognised. Although this system introduces a semantic

interpretation for car behaviours, it is not clear how this system handles the

interactions of several objects in the same scene at the time, and consequently the

occlusions between objects. Another possible limitation is the lack of different

models to represent different type of vehicles (c.f. [Remagnino et al. 1997] includes

separate 3D models for a car, van and lorry).

 36

2.6.3 Surveillance systems for traffic control application

The author in [Nwagboso 1998] expresses the need to integrate video-based

surveillance systems with existing traffic control systems to develop the next

generation of advanced traffic control and management systems. Most of the

technologies in traffic control are based on CCTV technology linked to a control

unit and in most cases for reactive manual traffic monitoring. However, there are an

increasing number of CCTV systems using image processing techniques in urban

road network and highways. Therefore, the author in [Nwagboso 1998] proposes to

combine these systems with other existing surveillance traffic systems like

surveillance system, which are based on networks of smart cameras. The term

“smart camera” (or “intelligent camera”) is normally used to refer to a camera that

has processing capabilities (either in the same casing or nearby), so that event

detection and storage of event video can be done autonomously by the camera.

Thus, normally, it is only necessary to communicate with a central point when

significant events occur.

Usually integrated surveillance systems consist of a control unit system, which

manages the outputs from the different surveillance systems, a surveillance signal

processing unit and a central processing unit which encapsulates a vehicle

ownership database. The suggestion in [Nwagboso 1998] of having a control unit,

which is separated from the rest of the modules, is an important aspect in the design

of a third generation surveillance system. However, to survey a wide-area implies

geographical distribution of equipment and a hierarchical structure of the personnel

who deal with security. Therefore for better scalability, usability, and robustness of

the system, it is desirable to have more than one control unit. Their design is likely

to follow a hierarchical structure (from low-level to high-level control) that mirrors

what is done in image processing where there is a differentiation between low-level

and high-level processing tasks.

Following the aim of [Beymer et al. 1997], the authors in [Heikkila and Silven

1999] develop a vision-based surveillance system to monitor traffic flow on a road,

but focusing on the detection of cyclists and pedestrians. The system consists of two

main distributed processing modules: the tracking module which processes in real-

 37

time and is placed roadside on a pole and the analysis module which is performed

off-line in a PC. The tracking module consists of four tasks: motion detection,

filtering, feature extraction using Quasi-Topological features (QTC) and tracking

using first order Kalman filters. The shape and the trajectory of the recognised

objects are extracted and stored in a removable memory card, which is transferred

to the PC to achieve the analysis process using Learning Vector Quantization for

producing the final counting. This system has some shortcomings. The image

algorithms are not robust enough (the background model is not robust enough to

cope with changing conditions or shadows) and depend on the position of the

camera. The second problem is that even though tracking is performed in real time,

the analysis is performed off-line, therefore it is not possible to do flow statistics or

monitoring in real-time.

2.6.4 Surveillance system for port applications

In [Pozzobon et al. 1998] the architecture of a system for surveillance in a maritime

port is presented. The system consists of two subsystems: image acquisition and

visualisation. The architecture is based on a Client/Server design. The image

acquisition subsystem has video server module, which can handle four cameras at

the same time. This module acquires the images from camera streams, which are

compressed, and then the module broadcasts the compressed images to the network

using TCP/IP and at the same time records the images on hard disks. The

visualisation module is performed by client subsystems, which are based on PC

boards. This module allows the selection of any camera using a pre-configured map

and the configuration of the video server. Using an internet server module it is

possible to display the images through internet. The system is claimed to have the

capability of supporting more than 100 cameras and 100 client stations at the same

time, even though the reported implementation had 24 cameras installed mainly at

the gates of the port. This is an example of a simple video surveillance system

(with no image interpretation), which only consists of image acquisition,

distribution and display. The interesting point in this system is to see the use of a

client and server architecture to deal with the distribution of the multiple digital

images. Moreover, the acquisition and visualisation modules have been

 38

encapsulated in a way such that scalability of the system can be accomplished in a

straightforward way, by integrating modules into the system in a “drop” operation.

2.6.5 Surveillance systems for public transport applications

In [Ronetti and Dambra 2000] a railway station CCTV surveillance system in Italy

is presented. The system has a hierarchical structure distributed between main

(central) control rooms and peripheral site (station) control rooms. The tasks that

are performed in the central control room are: acquisition and display of the live or

recorded images. The system also allows the acquisition of images from all the

station control rooms through communication links and through specific coding and

decoding devices. Digital recording, storage and retrieval of the image sequences as

well as the selection of specific CCTV camera and the deactivation of the alarm

system are carried out in the central room. The main tasks performed in each station

control room are: acquisition of the images from the local station CCTV cameras,

the link with the central control room to transmit the acquired or archived images in

real time and to receive configuration procedures. The station control room also

handles the transmission of an image of a specific CCTV camera at higher rate

under request or automatically when an alarm has been raised. The management

and deactivation of local alarms is handled from the station control room. Apart

from the central control room and the station control rooms, there is a crisis room

for the management of railway emergencies. Although this system presents a semi-

automatic, hierarchical and distributed surveillance system, the role played by

human operators is still central because there is no processing (object recognition or

motion estimation) to channel the attention of the monitoring personnel.

Ideally, a third generation of surveillance system for public transport applications

would provide a high level of automation in the management of information as well

as that of alarms and emergencies. That is the stated aim of the following two

surveillance systems research projects (other projects in public transportation that

are not included here can be found in [Velastin 2003]).

CROMATICA [CROMATICA 1999] (Crowd Monitoring with Telematic and

Communication Assistance) was an EU-funded project whose main goal was to

 39

improve the surveillance of passengers in public transport, enabling the use and

integration of technologies like video-based detection and wireless transmission.

This was followed by another EU-funded project called PRISMATICA [Ping Lai

Lo et al. 2003] (Pro-active Integrated Systems for Security Management by

Technological Institutional and Communication Assistance) that looked at social,

ethical, organisational and technical aspects of surveillance for public transport. A

main technical output was a distributed surveillance system. It is not only a wide-

area video-based distributed system like ADVISOR (Annotated Digital Video for

Intelligent Surveillance and Optimised Retrieval) [ADVISOR 2003], but it is also a

wide-area multi-sensor distributed system, receiving inputs from CCTV, local

wireless camera networks, smart cards and audio sensors. PRISMATICA then

consists of a network of intelligent devices (that process sensor inputs) that send

and receive messages to/from a central server module (called “MIPSA”) that co-

ordinates device activity, archives/retrieves data and provides the interface with a

human operator. Figure 2-5 shows the architecture of PRISMATICA, which is a

modular and scalable architecture approach using standard commercial hardware.

PRISMATICA employs a centralised approach.

Figure 2-5. Architecture of PRISMATICA system (from [Valera and Velastin 2005b]).

 40

PRISMATICA is built with the concept of a main or central computer which

controls and supervises the whole system. This server thus becomes a critical single

point of failure for the whole system.

In [Christensen and Alblas 2000] the authors report the design of a surveillance

system with no server to avoid this centralisation, making all the independent

subsystems completely self-contained, and then setting up all these nodes to

communicate with each other without having a mutually shared communication

point. This approach avoids the disadvantages of the centralised server, and moves

all the processes directly to the camera making the system a group of smart cameras

connected across the network. The fusion of information between “crunchers” (as

they are referred to in the article) is done through a defined protocol, after the

configuration of the network of smart cameras or “crunchers”. The defined protocol

has been validated with a specific verification tool called spin. The format of the

information to share between “crunchers” is based on a common data structure or

object model with different stages depending e.g. if the object is recognised or is

migrating from the field of view of one camera to another. However, the approach

to distributed design is to build using specific commercial embedded hardware

(called EVS units). These embedded units consist of a camera, processor, frame

grabber, network adapter and database. Therefore, in cost-sensitive applications

where a large number of cameras are required, this approach might be unsuitable.

2.6.6 Multi-camera surveillance system

As part of the VSAM project, [Collins et al. 2001b] presents a multi-camera

surveillance system following the same idea as [Yuan et al. 2003], i.e. the creation

of a network of “smart” sensors that are independent and autonomous vision

modules. Nevertheless in [Collins et al. 2001b], these sensors are capable of

detecting and tracking objects, classifying the moving objects into semantic

categories such as “human” or “vehicle” and identifying simple human movements

such as walking, while in [Yuan et al. 2003], the smart sensors are only able to

detect and track moving objects. Moreover, the algorithms in [Yuan et al. 2003] are

based on indoor applications. Furthermore, in [Collins et al. 2001b] the user can

interact with the system. To achieve this interactivity, there are system-level

 41

algorithms which fuse sensor data, perform the processing tasks and display the

results in a comprehensible manner. The system consists of a central control unit

(OCU) which receives the information from multiple independent remote

processing units (SPU). The OCU interfaces with the user through a Graphical User

Interface (GUI) module.

Monitoring wide areas requires the use of a significant number of cameras to cover

as much area as possible and to achieve good performance in the automatic

surveillance operation. Therefore, the need to co-ordinate information across

cameras becomes an important issue. Current research points towards developing

surveillance systems that consist of a network of cameras (monocular, stereo, static

or PTZ (pan-tilt-zoom)) which perform the type of vision algorithms that we have

reviewed earlier, but also using information from neighbouring cameras. The

following sections highlight the main work in this field.

2.6.7 Co-operative camera systems

An example of co-operative camera system is Co-operative Camera Network

(CNN) [Paulidis and Morellas 2002], which is an indoor application surveillance

system consisting of a network of nodes. Each node is composed of a PTZ camera

connected to a PC and a central console to be used by the human operator. The

system reports the presence of a visually tagged individual inside the building by

assuming that human traffic is sparse (an assumption that becomes less valid as

crowd levels increase). Its purpose is to monitor potential shoplifters in department

stores.

In [Micheloni et al. 2003] a surveillance system for a parking lots application is

described. The architecture of system consists of one or more Static Camera

Subsystems (SCS) and one or more Active Camera Subsystems (ACS). Firstly, the

target is detected and tracked by the static subsystems, once the target has been

selected a PTZ, which forms the ACS, is activated to capture high resolution video

of the target. The data fusion for the multi-tracker is done using the Mahalanobis

distance. Kalman filters are used for tracking, as in [Xu et al. 2004].

 42

In [Krumm et al. 2000] the authors present a multi-camera tracking system that is

included in an intelligent environment system called ‘EasyLiving’ which aims at

assisting the occupants of that environment by understanding their behaviour. The

multi-camera tracking system consists of two sets of stereo cameras (each set has

three small colour cameras). Each set is connected to a PC that runs the “stereo

module”. The two stereo modules are connected to a PC which runs the tracker

module. The output of the tracker module is the localisation and identity of the

people in the room. This identity does not correspond to the natural identity of the

person, but to an internal temporary identity which is generated for each person

using a colour histogram that is provided by the stereo module each time. The

authors use the depth and the colour information provided from the cameras to

apply background subtraction and to allocate 3D blobs, which are merged into

person shapes by clustering regions. Each stereo module reports the 2D ground

plane locations of its person blobs to the tracking module. Then, the tracker module

uses knowledge of the relative locations of the cameras, field of view, and heuristics

of the movement of people to produce the locations and identities of the people in

the room. The performance of the tracking system is good when there are fewer

than three people in the room and when the people wear different colour outfits,

otherwise, due to the poor clustering results, performance is reduced drastically.

In [Marchesotti et al. 2003] a multi camera surveillance system for face detection is

illustrated. The system consists of two cameras (one of the cameras is a CCD pan-

tilt and the other one is a remote control camera). The system architecture is based

on three main modules using a client/server approach as a solution for the

distribution. The three modules are: sensor control, data fusion and image

processing. The sensor control module is a dedicated unit to control directly the two

cameras and the information that flows between them. The data fusion module

controls the position of the remote control camera depending on the inputs received

from the image processing and sensor control module. It is interesting to see how

the authors use the information obtained from the static camera (the position of the

recognised object) to feed the other camera. Therefore, the remote control camera

can zoom to the recognised human to detect the face.

 43

An interesting example of a multi tracking camera surveillance system for indoor

environments is presented in [Nguyen et al. 2003a]. The system is a network of

camera processing modules, each of which consists of a camera connected to a

computer, and a control module, which is a PC that maintains the database of the

current objects in the scene. Each camera processing module realises the tracking

process using Kalman filters. The authors develop an algorithm which divides the

tracking task between the cameras by assigning the tracking to the camera which

has better visibility of the object, taking into account the occlusions. This algorithm

is implemented in the control module. In this way, unnecessary processing is

reduced. Also, it makes it possible to solve some occlusion problems in the tracker

by switching from one camera to another camera when the object is not visible

enough. The idea is interesting because it shows a technique that exploits

distributed processing to improve detection performance. Nevertheless, the way that

the algorithm decides which camera is more appropriate is performed using a

“quality service of tracking” function. This function is defined based on the sizes of

the objects in the image, estimated from the Kalman filter, and the object occlusion

status. Consequently, in order to calculate the size of the object with respect to the

camera, all the cameras have to try to track the object. Moreover, the system has

been built with the constraint that all the cameras have overlapping views (if there

were topographic knowledge of the cameras the calculation of this function could

be applied only to the cameras which have overlapping views). Furthermore, in

zones where there is a gap between views, the quality service of tracking function

would drop to zero, and if the object reappears it would be tracked as a new object.

As it has been illustrated, in a distributed multi-camera surveillance system it is

important to know the topology of the links between the cameras that make up the

system in order to recognise, understand and follow an event that may be captured

on one camera and to follow it in other cameras. Most of the multi-camera systems

that have been discussed in this review use a calibration method to compute the

network camera topology. Moreover, most of these systems try to combine the

tracks of the same target that are simultaneously visible in different camera views.

 44

Figure 2- 6. The architecture of a multi-camera surveillance system (from [Valera and
Velastin 2005b]).

In [Makris et al. 2004] the authors present a distributed multi camera tracking

surveillance system for outdoor environments (its architecture can be seen in Figure

2- 6). An approach is presented which is based on learning a probabilistic model of

an activity in order to establish links between camera views in a correspondence-

free manner. The approach can be used to calibrate the network of cameras and

does not require correspondence information. The method correlates the number of

incoming and outgoing targets for each camera view, through detected entry and

exit points. The entry and exit zones are modelled by a GMM and initially these

zones are learnt automatically from a database using an EM algorithm. This

approach provides two main advantages: no previous calibration method is required

and the system allows tracking of targets across the “blind” regions between camera

views. The first advantage is particularly useful because of the otherwise resource-

consuming process of camera calibration for wide-area distributed multi camera

surveillance systems with a large number of cameras [ADVISOR 2003], [Ronetti

and Dambra 2000], [Pellegrini and Tonani 1998], [Velastin 2003].

2.7 Distribution and communication

In section 2.5.1 different techniques that have been applied to develop more robust

and adaptive algorithms have been exemplified. In section 2.5.2 a review of

different architectures of distributed surveillance systems has been presented.

 45

Although the design of some of these systems can look impressive, there are some

aspects where it will be advantageous to dedicate more attention for the

development of distributed surveillance systems for the next years. These include

the distribution of processing tasks, the use of new technologies as well as the

creation of metadata standards or new protocols to cope with current limitations in

bandwidth capacities. In [Berris et al. 2003] the authors propose the use of MPEG-7

as the standard format data for surveillance systems.

Other aspects that should be taken into consideration for the next generation of

surveillance system are the design of scheduling control and more robust and

adaptive algorithms. A field that needs further research is that of alarm

management, which is an important part of an automatic surveillance system e.g.

when different priorities and goals need to be considered. For example in [Garcia et

al. 2000] the authors describe work carried out in a robotics field, where the robot is

able to focus attention in a certain region of interest, extract its features and

recognise objects in the region. The control part of the system allows the robot to

refocus its attention in a different region of interest, and skip a region of interest that

already has been analysed. Another example can be found in [ADVISOR 2003]

where in the specification of the system, requirements of the system like “to dial an

emergency number automatically if a specific alarm has been detected” are

included. To be able to carry out these kinds of actions command and control

systems must be included as an integral part of a surveillance system.

Other work worth mentioning in the context of large distributed systems has

considered extracting information from compressed video [Norhashimah et al.

2003], dedicated protocols for distributed architectures [Ye et al. 2001], [Wu et al.

2001], [Almeida et al. 2002], and a real-time communications [Conti et al. 2002].

Work has also been conducted to build an embedded autonomous unit as part of a

distributed architecture [Brodsky et al. 2001], [Saad and Smith 2003], [Christensen

and Alblas 2000]. Several researchers are dealing with PTZ [Ng et al. 1999],

[Marchesotti et al. 2003] because this kind of camera can survey wider areas and

can interact in more efficient ways with the end-user who can zoom when

necessary. It is also important to incorporate scheduling policies to control resource

allocation as illustrated in [Jackson and Rouskas 2002]. Work in multiple robot

 46

systems [Rybski et al. 2002] illustrates how limited communications bandwidth

affects robot performance and how this performance is linked to the number of

robots that share the bandwidth. A similar idea is presented in [Marcenaro et al.

2001] and [Valera and Velastin 2003a] for surveillance systems while in [Wu et al.

2001], an overview of the state-of-the-art of multimedia communication

technologies and a standard is presented.

2.8 Summary

The growing demand for safety and security has led to more research in building

more efficient and intelligent automated surveillance systems. This chapter has

presented the state of development of intelligent distributed surveillance systems,

including a review of current image processing techniques that are used in different

modules that constitute part of surveillance systems and a short historical summary

of surveillance systems. The main future challenge is to develop a wide-area

distributed multi-sensor surveillance system which has robust, real-time computer

algorithms able to perform with minimal manual reconfiguration on variable

applications. Such systems should be adaptable enough to adjust automatically and

cope with changes in the environment like lighting, scene geometry or scene

activity. The system should be extensible enough, be based on standard hardware

and exploit plug-and-play technology.

Such systems should be built through a combination of different disciplines being

clearly needed such as computer vision, telecommunications and system

engineering. Moreover, much could be borrowed from other fields such as

autonomous robotic systems on the use of multi-agents, where non-centralised

collections of relatively autonomous entities interact with each other in a dynamic

environment. In a surveillance system, one of the principal costs is the sensor suite

and payload. A distributed multi-agent approach may offer several advantages.

First, intelligent co-operation between agents may allow the use of less expensive

sensors and therefore a larger number of sensors may be deployed over a greater

area. Secondly, robustness is increased, since even if some agents fail, others

remain to perform the mission. Thirdly, performance is more flexible, there is a

distribution of tasks at various locations between groups of agents. For example, the

 47

likelihood of correctly classifying an object or target increases if multiple sensors

are focused on it from different locations.

On the whole, the work on intelligent distributed surveillance systems has been led

by computer vision laboratories perhaps at the expense of system engineering

issues. It may be essential in the coming future for the development of distributed

surveillance systems, to have available a well-defined framework to design

distributed architectures firmly rooted on systems engineering best practice, as used

routinely in other disciplines such as aerospace control systems. This is where we

have concentrated on the work reported here. Therefore, the next chapter introduces

the field of system engineering by focusing on design methodologies. Chapter 3,

after presenting a brief historical review of different design methodologies used

mainly to design real time systems, emphasises the discussion of design

methodologies through the comparison between two design methodologies: Object

Oriented methodologies and RTN.

 48

 49

3 Design methodologies for real-time distributed
intelligent surveillance systems

3.1 Introduction

This chapter considers the methods that may be used for designing wide-area

distributed intelligent surveillance systems. The design of these systems presents

significant challenges, as they can be categorised as having distributed, concurrent,

real-time and embedded properties. It is desirable, and indeed necessary, to apply

sound systems engineering principles and practices in their specification, design and

realisation in order to ensure that these complex systems operate as required

(functionally and temporally). This chapter will outline the importance of design

methods in the development of these systems. We start by summarising the

conventional concepts required in software engineering to create the architecture for

a system, followed by an overview of applicable software design methods. In this

work, system architecture is defined as the underlying structure of a system (an

abstract representation), i.e. the constituent components and the relationship

between these various components.

Chapter 2 contained examples of real-time distributed intelligent surveillance

systems that have been realised without applying any specific methodical design

approach. This is only feasible when the systems are relatively small and simple.

More recently, Object Oriented (OO) design approaches are starting to be widely

used to design these systems. In this work, an alternative design approach called

Real Time Networks (RTN) is considered for the design of such systems. The use

of distributed object oriented technologies has led to the development of

environments such as CORBA to deal with the design and integration of distributed

systems. ADVISOR and PRISMATICA are some of the latest surveillance systems

at the time of writing that use CORBA, as has been mentioned in chapter 2.

However, our survey of methods indicates that OO/CORBA may not be suitable for

this kind of system and that the use of Real Time Networks (particularly MASCOT

3/DORIS) may offer significant advantages, so the investigation of methods

continues with a comparison of the conceptual models of OO/CORBA and

RTN/DORIS.

 50

To provide a historical context, the survey of design methods starts with a brief

introduction to several well-known, but not strictly either OO or RTN, real-time

design methods such as HOOD, Yourdon and Constantine, Jackson System

Development (JSD), NRL and DARTS. Even though these design methods do not

appear to have been reported as being used in the design of surveillance systems,

they are presented here because they highlight some important characteristics of

real time systems, which are also significant for the third generation of surveillance

systems. This is followed by an introduction to OO design methods like ROOM,

BOOCH, OMT and UML by giving a summary of the important features of each

method. Subsequent sections will then introduce MASCOT 3 and DORIS in greater

depth.

This chapter finishes with a comparison between the essential concepts of Real-

Time Networks (as embedded in MASCOT 2-3/DORIS), and OO by discussing the

abstract models, the communication models, functional aspects and performance

aspects of both approaches. Chapter 4, through a case study, compares the structural

design (architectural) level as well as run-time aspects of the two technologies:

DORIS and CORBA.

3.2 Design methods

System or design system engineering may be defined as an interdisciplinary

approach to build large and/or highly complex systems. This approach emerged

around the World War II period especially in military systems. As stated in

[Wikipedia 2001] “[]…While hardware engineering typically deals with just

hardware and software engineering deals typically with the software, the systems

engineer is responsible for seeing that the software properly operates on the

hardware, and that the system composed of the two entities is capable of properly

interacting with its external environment, especially the user, while performing its

intended function…[]”. System engineering will be necessary in the deployment of

future generations of surveillance systems, which will be larger and more complex

than those being researched at present. This work focuses upon the software design

phase in the development cycle of a system, defining and characterising such

 51

systems and subsystems and the interactions among them. Therefore, to

successfully build a third generation surveillance system requires traceable design

methods capable of encapsulating the different levels of abstraction that need to be

handled (from a global view of the system down to the detailed implementation

aspects).

3.2.1 Design methods in surveillance systems

Real-time systems such as surveillance systems must respond to external events

within required time limits, therefore timing requirements are very important in the

design of these systems. To meet critical response time requirements, the system is

often composed of a hierarchy of concurrent processes that communicate and co-

operate to perform the overall function of the system. Other attributes that are

important for designing real-time systems are performance, reliability, traceability

and dependability4 constraints.

There are four important objectives that design methods for distributed real-time

systems (e.g. surveillance systems) should accomplish. First, these methods need to

be able to deal with concurrent operations in the system. The second objective is the

capability of developing reusable software through modularisation and information

hiding. The third objective is to be able to define the behavioural aspects of the

system in terms of timing constraints and functional aspects. The last objective is

the analysis of the operation of the design by determining its performance and the

fulfilment of requirements.

OO has become popular in computer vision. Particularly, OO libraries, packages

and programming languages like C++ and Java, and recently design notations like

UML [Summer School 2004] have been common software tools to use to develop

video-surveillance systems, see Table 3-1. The OO approach is used in this field

because of the advantages claimed for OO in giving a modular approach to analysis

and design. Another reason for using OO is because experts in video-based

surveillance are mainly familiar with OO technology. Moreover, the design

developers, who use object oriented techniques argue that OO techniques reduce

4 In computer science dependability is defined as: "[..] the trustworthiness of a computing system
which allows reliance to be justifiably placed on the service it delivers [..]".

 52

complexity within design and are suitable for prototyping. They also argue that OO

implementations are flexible and easily accommodate changes so reducing

maintenance costs, and that OO techniques can provide other important benefits like

extensibility and reusability; design and analysis results can be stored in libraries

that can be used again at a later time. Many design patterns exist that can be used to

find already proven structures reducing development time.

Likewise, they believe that OO techniques improve stability when the requirements

change, they have good support for reliability and safety concerns and also that, OO

techniques have an inherent support for concurrency. In later sections, a discussion

of all these properties, through a comparison with the RTN design method proposed

in this work, is presented.

YEAR LANGUAGES PACKAGES

2002 C,C++,Java, Lisp, Matlab, Python, Tcl Maple, Matlab,

MathCAD, Mathematica,

OpenGL, Statistica, VTR,

WiT

2003 C, C++, Java, Lisp, Matlab, Python,

Verilog, Mathematica, Maple

Matlab, OpenGL, VXL

2004 C,C++, Java, Matlab, Mathematica,

Maple, Python, Perl,

Matlab, OpenGL, VTR

Table 3-1. Different software tools used in computer vision. This table is extracted from a

Summer school in computer vision at Surrey University [Summer School 2004] and shows the

wide range of tools currently available.

3.2.2 Classification by structural principles
There are several design methods for real-time systems such as structured design

methods (SD), Jackson System Design (JSD), MASCOT 2-3, DORIS or Object

Oriented Design (ODD). Each of these design methods emphasises a particular set

of criteria to characterise the components of the system [Peters and Pedrycz 2000]

e.g. procedural modules in structured design, concurrent tasks in MASCOT, or

 53

objects in OOD. Each item in the following list emphasises a particular in structural

principle supporting a particular method, even though each structured principle is

not necessarily exclusive to any one method.

• Structured design: is based on applying algorithm decomposition to break a

large problem down into smaller steps. The design method realises a top-

down decomposition of a system into modules.

• Parnas Information Hiding: is based on the decomposition of the software

system into modules, where each module should hide a design decision that

could change [Parnas 1972].

• Jackson design: is based on the idea that data structure is the key component

of the software design. Hence, program structure, which reflects the problem

structure, is best obtained from the consideration of the data structure

[Jackson 1983].

• Data-driven design: consists of deriving the structure of a software system by

mapping system inputs to outputs. This method has been applied to build a

number of complex systems like management systems where there exists a

direct relation between the inputs and the outputs of the system, but in which

there is a little concern for time-critical events.

• Event-driven design: generates the architecture of a system by mapping an

event to a response of external stimulus depending not only on the stimuli

itself but on what happened previously on the system. Such systems are

called reactive systems and usually are state dependent.

• Object-Oriented design: models the software system as a collection of

cooperating objects. It can be considered as a bottom-up design approach

[Graham 1994].

3.2.3 Current research in design methods

A formal software development method, which addresses the problem of producing

embedded, real-time, distributed, dependable systems, is normally made up of three

important phases: specifications, architectural modelling and implementation. The

different activities which are involved in these phases are: requirements capture,

architectural description for large/small-scale design, coding, testing, validation and

 54

verification. Some significant ideas used in the current research into the

development of such methods, and tools that help to create good software for large

complex, systems are the following [Carnegie Mellon Software Engineering

Institute 2005]:

• There is a wish to create methods that allow all stages of development to be

carried out in a semi or fully automatic way (from the specification and

requirements capture of the system to the implementation and building). One

example is MDA (Model Driven Architecture) technology which is created

by the OMG (Object Management Group). It puts forward the value of

separating application logic from platform technology (i.e. CORBA, J2EE,

.NET or Web Services). By having fully specified platform-independent

models, it helps to insulate applications from technology evolution,

supporting interoperability between platforms and applications and

promoting the creation of a methodology to migrate from platform to

platform.

• Another theme in current research, which was discussed in one of the invited

talks in [ICSE2004], is centred on AOSD, which stands for Aspect Object

Software Development. AOSD is a new set of software development

techniques that supports the modularisation of system properties or

‘crosscutting concerns’ and their subsequent composition with other parts of

software system. Typical crosscutting concerns are error handling,

performance optimisation and design patterns.

• Following the importance in creating methods in order to develop good

software, there is a need for computer assistance to help the software

development processes: software tools, software development environments,

and Computer Aided Software Engineering (CASE). Without such tools, the

methods become too laborious for use on large complex systems.

• Emphasis on finding out exactly what the users of the system really want and

need (requirements engineering) and validation and verification of the design

using formal methods.

 55

• Formal specification of the requirements of a system. There is an emphasis

as well on trying to ensure in an automatic way that the software is free of

errors (verification).

3.2.4 General criteria for comparing design methods

There are many different software methods at present. Each of them has its own

advantages or disadvantages. It is not possible to identify a collection of tools and

methods that are ideal in all circumstances; some development methods are not

applicable to particular domains and can therefore be disregarded. Therefore, a

relevant step is to establish and decide the most important criteria against which

software methods could be compared. It is difficult to find a universal set of factors

that allows comparison between any numbers of methods. However, comparison

criteria applicable to the design methods relevant to this project and presented in

sections 3.3 and 3.4 can be identified as:

• Underlying concepts resulting from the application of a given set of structural

principles.

• Clarity of the proposed designs

• Integration of the different development phases

• How appropriate/inappropriate a method is for a given application area and

scalability (good for small/large-scale design?)

• Run-time support

• Extent of tool support

• Formalisation of the designs

3.3 Traditional design methods for real-time systems
As has been mentioned before, during the last forty years, increasing emphasis has

been placed on formalising the process of specification, design and implementation

resulting in the development of several methods. In the past twenty years several

software design methods have been developed. Up to the 1980s most design

methods followed the structured design approach. The following sections highlight

some significant design methods that have been used to design industrial real time

 56

concurrent systems mainly based on control application. These include the Yourdon

Systems Method, Jackson, NRL and DARTS.

3.3.1 The Yourdon Structure Method (YSM)

The Yourdon Structure Method (YSM) had its origins in structure methods back in

the late 70s. YSM is the evolution of different Yourdon methods and it may be

considered one of the most recent and extensive structure analysis design method

for real-time systems [Yourdon and Constantine 1979]. The evolution of YSM

starts with a first generation of Yourdon methods, which included structure analysis

(contribution from DeMarco) where the system is modelled as a network of

processes transforming data, and structure design (described by Constantine), which

is based on a modular hierarchical system design approach. The main modelling

components introduced were:

� Data Flow Diagram (DFD): represents the communication between

processes or components. There are five different kinds of DFD

components: data stores, instantaneous/continuous control processes and

instantaneous/ continuous data processes.

� Context diagram: represents external communications, where one node

represents the system and the rest of the nodes represent other systems in its

environment.

Later on, system dynamics (using State Transition Diagrams), semantic information

modelling and subject domain orientation were added to the second generation of

Yourdon methods:

� Entity Relationship Diagram (ERD): uses Entity Relationship Attribute

ideas and shows the conceptual structure of the data processes and each

entity type (object type) and its relationship. It also shows the contents of

data stores and dataflow.

� State Transition Diagram (STD): along with state transition table, it

specifies the transitions that occur in the state machine of each continuous

control process. Therefore, STD along with “minispecs”, which represent

 57

the behaviour of a continuing data process, is used to represent the

behaviour of the component of the system.

Major advances were achieved in 1984 by McMenamin and Palmer who introduced

event partitioning. By using event partitioning, it is possible to define the

functionality of the system in terms of event-response pairs, where each defined

event has a response that the system has to complete. Thus, it is possible to draw a

DFD fragment for each event-response pair. Finally, other advances were achieved

by Ward and Mellor (1985) who introduced real-time specifications. YSM is

configured by the structure analysis which is defined by ERD, context diagrams,

DFD and STD and by the structure design, which is defined by DFD and STD.

3.3.2 Jackson System Development (JSD)

The Jackson System Development (JSD) [Jackson 1983a] [Jackson 1994b] is a

design modelling (analysis) approach [Cameron 1986]. This method is based on the

Jackson Structured Programming (JSP) approach, that is a program design method

and that assumes that the specification of a program is defined by its data inputs and

its data outputs. JSD designs model the system as a combination of functions, data

and events. The first step in this method is to consider that the design models the

real world and that the system is just a simple simulation of the real world. Each

real world entity is mapped to a concurrent task, functions (executable operations)

are added to this simulation of the real world to produce the system outputs The

basic components and the notation of this method are the following (the graphical

notation can be found in Appendix A):

� Action Structure Diagram: this presents the modelled real world entity

structure in the form of a time ordered sequence of the events received by it.

The order of this sequence of events is described by three basic concepts:

sequence, iteration and selection. The graphical notation is similar to

Structure Diagrams in JSP diagrams.

� System Specification Diagram: this shows the structure of the different tasks

that constitute the designed system plus the interfaces between them. These

interfaces are represented by two different diagrams: data stream and state

 58

vector notation. Data stream shows the message communication between

tasks. State vector shows the internal data accessed by a task itself or

accessed by other tasks. Only the task that maintains the data can write on it,

the rest of the tasks can only read it.

In summary, the JSD method constitutes a complete development process for

designing and building a system. This development process is defined in three

phases: the modelling, the network and the implementation phase. In the modelling

phase real world entities are identified and hence the entity structure diagram is

configured. The attributes of each event received by an entity and the attributes of

the entity itself are also defined. Therefore, for each entity a software model task is

defined. In the network phase the message communication between the identified

tasks is defined and also the internal data of these tasks. Thus, in the network phase,

an initial network diagram is derived. Finally, at the implementation phase two

issues are discussed: firstly, how these tasks are to be mapped onto a directly

executable implementation version and scheduled, and secondly, how to organise

and manage the data (the process state vectors).

The JSD development process imposes a clear and systematic mapping of the

designed tasks to their implementation through the integration of these three phases.

Concurrency is the main design concept in JSD, making it an appropriate method

for designing concurrent systems. On the other hand, the concept of partitioning the

system into subsystems or modules is not sufficiently developed, making it difficult

to have a clear picture of the whole designed system. Besides, it may be quite

arduous sometimes to represent complex timing behaviour of some entities in the

system with the sequence events model in any of the diagrams.

3.3.3 NRL

The Naval Research Laboratory created the NRL [Gomaa 1993c] method to fulfil

the perceived gap between software engineering from academia and software

practising engineering coming from industry. In NRL “the system is viewed as a

finite state machine whose outputs define the system outputs as functions of the

state of the system’s environment” [Gomaa 1993c]. The main concept in this

 59

method is to apply information hiding and modularisation to the design of systems.

Therefore, modules that represent different parts of the system are designed

following the information hiding concept [Parnas 1972]. Thus, design decisions of

the module that are expected to be changed are hidden from the rest of the modules.

Therefore, if a change, e.g. of an attribute in the module, is made, the rest of the

modules are unaffected by this change. The visible parts of the module are defined

by the abstract interface specification. Furthermore, the modules are designed and

implemented to be stored in libraries and therefore to be reused. NRL organises the

information hiding modules (IHM) in a tree-hierarchical structure to overcome the

complexity of the design of large-scale systems where there is a substantial number

of modules, making it easier to trace the modules through subsequent development

phases of the project. The software in NRL is structured in three main orthogonal

structures:

� Module Structure: this is achieved by information hiding. There are three

different categories of IHM: Hardware and Behaviour hiding modules and

Software decision modules. Two different modules define the hardware

hiding module: extended computer modules and device interface modules.

� Uses Structure: shows the executables subsets of the software.

� Tasks Structure: determines the number of activities required at run-time,

contributing to more flexible scheduling. The tasks are determined by

analysing the operations provided by the module.

The NRL method has no graphical notation and the designs are expressed through

tables which are used to summarise the design decision and the IHMs. The states of

the system also are represented through what are called state transition tables. The

main steps in the development process associated to this method are:

� The establishment of the requirements of the system: in this phase the

method considers the specifications of the system as a white box.

� Module structuring phase: in this phase the module structure is identified

from the specifications i.e. the hardware hiding module, the behaviour

hiding module and the software decision module. Once the module structure

 60

is identified the abstract interface and the operations required by this module

are defined.

� Module internal structures: in this phase further decompositions of the

module may be done and the structure task is established and therefore the

implementation of the design.

In conclusion, NRL emphasises the information hiding concept in the design and

the creation of modules that are relatively modifiable and reusable. Although the

complexity of designing large scale of systems is reduced by allowing hierarchy in

the design of these modules, it is difficult to have a full picture of the whole system.

Besides, in NRL there is not a clear definition of the stages of the development

process, even though there exists a clear differentiation between requirements and

design. Moreover, it is not straightforward to go from the specification document to

task structure.

3.3.4 ADARTS

Ada based Design Approach for Real Time Systems (ADARTS) is a refinement of

a previous method called Design Approach for Real Time Systems (DARTS) to

support Ada based design [Gomaa 1984a], [Gomaa 1989b]. The DARTS and

ADARTS methods originated to tackle a common problem in industrial real-time

systems development, namely that the majority of design methods do not take into

account the important characteristic that real-time systems usually consist of a

group of concurrent tasks. ADARTS combines NRL and Object Oriented Design

(OOD) to design a system by applying the module criteria from NRL to identify

IHM structures. Moreover, ADARTS then uses the object structuring criteria from

OOD to identity concurrent tasks and defining their interfaces, which then define

the communication and also the synchronisation interfaces between tasks.

Therefore, the basic components in ADARTS are the IHMs, which are defined

through information hiding module structure criteria, and the concurrent tasks

which are defined through the task structure criteria. Both criteria are applied to

functions (transformations) on the data/control flow diagrams. Each transformation

is perceived as a dynamic structure if the function is executed under the control of a

 61

task. The transformation is perceived as a static structure if the function is related to

operations into a module based on hiding structure criteria. The steps that define the

development process in ADARTS are the following:

� Firstly, the behaviour of the system being designed is described through

what is referred as structure analysis specification for real time systems

(RTSA). The RTSA notation (please refer to Appendix A) is used for

modelling the problem domain. At the end of this step hierarchical

control/data flow decomposition is performed using state transitions, data

flow and system context diagrams.

� The second step consists in identifying concurrent tasks by applying task

structure criteria. Inter-task communications and synchronisation interfaces

between tasks are also identified. Tasks interfaces represent loosely/tightly

coupled message communication, events synchronisation or IHMs.

� Once the concurrent tasks are defined the next step is to identify the

modules by applying the hiding module structure criteria.

� At this stage the Ada support tasks and the Ada task interfaces are added.

� The last step consists in defining the interfaces specifications for the tasks

and the modules. These specifications are the external view of the task or the

module which they represent.

3.4 Survey of some important OO design methods

From the beginning of the nineties, most of the new design methods have followed

an object oriented approach. Since 1988, more than twenty different object oriented

methods have been developed [Graham 1994]. OO approaches can be differentiated

between those which are based on Analysis (OOA) and those which are based on

Design (OOD). This work focuses on the underlying structural principles (i.e.

conceptual structure) of the model. The conceptual structure of OO models is

usually based on the concept of “class” (abstract type) and the use of component

called “objects” which are instances of class types. In addition to the concepts of

class and object, there is a property called inheritance, universally important in OO

methods, which may be applied to classes or objects. This will be discussed in later

 62

sections. The application domain plays an important role in the decomposition

principles expressed in OO methods (e.g. “use case” diagrams).

The majority of OO approaches tend to have been published in conferences or

workshops papers, and relatively few are comprehensively documented in books or

manuals. The following subsections present some of these design methods like

ROOM, BOOCH, HOOD, OMT and finally UML, which although is not a design

method per se, is likely to become a standard modelling language based on an OO

approach (for further details of these OO methods, please refer to the References

and to Appendix A). The survey here presents BOOCH and OMT because they are

considered to be the main methods from which UML has originated. The HOOD

and ROOM methods are summarised because they are examples of OO based

methods used specifically to create real-time, distributed systems. Moreover, the

ROOM design method is presented to show an example of an OO method which

has the semantics to express and execute its models through a virtual machine.

3.4.1 ROOM

Real-time Object-Oriented Modelling (ROOM) is a modelling language which was

developed to design real-time systems. Abstraction is the driving mechanism in

ROOM, which is handled by recursion or functional decomposition, incremental

modelling and reuse. ROOM notation is consistent through the three main phases of

the design process: specification, design modelling and implementation. The

ROOM method supports hierarchical structure modelling. The object paradigm in

ROOM is based on defining the object as an encapsulated entity that communicates

to other objects through its interface. Thus, ROOM represents models by classes

which are incarnated by objects. Even though ROOM supports inheritance

relationships between classes, it does not support multiple inheritance, using

aggregation instead, which is a “part-of” relationship. Object communication is

based on a message passing port-to-port connection. Its metamodel consists of six

basic elements (to see the graphical notation, please refer to Appendix A):

 63

• Actor: it represents an active object which may have its own thread of

execution (similar to an agent object) and is used to define high-level

structures of the system. Actors are created by actor class definitions.

• Passive Data Object: it is an element complementary to an actor as its

functionality has to be activated through actors. For this reason, it is defined

as passive. Passive Data Objects are also defined as data objects and

represent an abstract data type. They are created from a data class definition.

They are not part of the high-level structure of a system and only exist in the

context of execution: only the active object (actor) that encapsulates this data

can access it.

• Message Object: it is used by Actors to send information via a

communication service. A message is a data type containing a signal and a

priority attribute and an optional message data object.

• Protocol: messages are grouped and structured by a protocol class definition.

A protocol element is defined by a signal that identifies each message in

addition to possible Passive Data Objects that are sent or received by the

message. It is also defined by characterising a given direction for each

message sent (in or out). There are also two optional specifications: the

validity and the quality of service of the message. The Protocol is defined by

one of the Actors in the communication. In the ROOM model the concept of

data sharing between concurrent threads (Actors) does not exist. The Passive

Data Objects are copied and sent by messages through the interface of an

Actor.

• Interface element: it allows the communication between Actors. There are

three types of interface elements: Port, Service Access Point (SAP) and

Service Provision Point (SPP). The interface of an Actor is defined by ports

which are used for communication. Ports define the set of messages, which

are part of a protocol and are constituent of the Actor’s interface.

• Behaviour element: this defines the behaviour of an Actor, which is part of

its specification, through a ROOMChart. A ROOMChart is basically a finite

state machine and a variant of an extended state machine. It supports nested

hierarchical states.

 64

The structure concept described in the metamodel of ROOM is simple and easy to

understand. It consists of active software entities called Actors and passive software

entities called Passive Data Objects. Actors communicate using port-to-port

connection. These entities are modelling in a hierarchical manner, thus some

elements are grouped in one layer and communicate with other higher or lower

level layers. Because ROOM is a design method based on an object paradigm

approach, the software entities are represented as objects. It is claimed in [Erik

Wyke 2000] that in ROOM there is consistency in the development process. At the

design phase, the objects are encapsulated in a shell that defines an interface to

communicate with the rest of the elements and at the operational phase all the

elements are treated as executable parts of the whole model.

Therefore, objects are considered as programs written in a high-level language that

can be executed. The run-time support is provided by a ROOM virtual machine that

provides the services that the system needs and where it is possible to execute the

design model. The operating system kernel does not necessarily support thread

synchronisation. ROOM is a non-shared memory model, only the object that

encapsulates the data can access it. Because data is not shared, only copies of this

data are shared. The scheduling policy is based on assigning priorities to events

rather than tasks using a pre-emptive approach. Therefore, ROOM is appropriate for

modelling and implementing real-time event-driven systems (in these systems

priorities are assigned to events instead of tasks). However, many of the scheduling

policies used in real time systems are based on task (threads) rather than event-

priorities. One of the drawbacks as highlighted in [Erik Wyke 2000] is that

implementation decisions of structural parts have to be taken before the design

starts. Moreover, even though some behaviours are well captured through

ROOMCharts, how to express explicit timing requirements is not straightforward.

3.4.2 BOOCH

The Booch design method [Booch1991], [Booch1994] represents a software system

by means of class diagrams and the behaviour between objects by state transition

diagrams. The metamodel is based on four static or structural diagrams (class

diagram, object diagram, module diagram and process diagram) and two additional

 65

diagrams: state transition and sequence diagrams, which represent the dynamics or

behaviour of the designed system. These diagrams may represent parts of the

architecture design of the system and furthermore, the architecture design of the

whole system. Each of these diagrams has a template component associated with it,

where the important aspects of the components in the diagram are captured. For

example, the class diagram has an associated class template. The graphical notation

of all these diagrams is presented in Appendix A. The following list summarises the

purpose of each diagram:

� Class diagram: it represents the classes and their relationships. Classes can

be parameterised and there is a distinction between class, superclass and

metaclass which is expressed in the class template.

� Object diagram: it represents the objects that compose the system and their

relationships. A single object diagram is like a snapshot in time of a

transitory event because objects can be created and discarded at run-time.

� Module diagram: this is used to illustrate the number of classes and objects

in the module. There is a special module diagram called subsystem which is

almost like a class diagram (please refer to Appendix A). The difference lies

in a conceptual distinction: a class diagram is classified as a (“kind of”)

hierarchy; all of the classes which appear in the same class diagram have an

inheritance (“type of”) relationship with one another. By contrast, a

subsystem is categorised as (“part of a”) hierarchy, because the classes

appearing in the diagram have an aggregation (“part of”) relationship with

one another.

� Process diagram: it shows how the processes (not objects) are going to be

mapped to processors. This diagram represents a part of or the whole of the

physical architecture of the system.

� State transition diagram: this uses a state chart-like notation and represents

the events that cause a transition of a state and the actions that result from

that state change.

� Sequence diagram: this illustrates the interactions between objects occurring

at run-time, e.g. if one object asks for data from another object in order to

continue working, then, this cooperation is illustrated by the sequence

diagram.

 66

As discussed, in the Booch method the software entities are conceptually

decomposed into objects represented by class diagrams. The behaviour of these

entities is shown in object diagrams and the communication is represented by

sequence diagrams. Even though the Booch method is expressed using six separate

diagrams, the full notation includes a large number of icons and symbols which may

produce an unclear graphical design.

A systematic way to go from the specification to the design and finally to the

implementation and construction of the system does not seem to exist yet. A class

diagram may be seen as a representation of the abstract entities that will compose

the system, which have been captured from the specification. At the same time the

class diagram is seen as a design part of the system. The process diagram may give

an approximate idea of the physical architecture of the system but in an informal

way. Furthermore, run-time facilities are not carefully explored although

[Booch1991] mentions that the scheduling policies can be designed using the timing

diagrams.

3.4.3 Rumbaugh (OMT)

This subsection summarises a design method which was quite popular some years

ago, created by Loomis in 1987, and popularised by James Rumbaugh in 1991

[Rumbaugh et al. 1991]: the Object Modelling Technique (OMT) (please refer to

the References and to Appendix A for more information). OMT has some influence

from structure methods and has a detailed notation. OMT basically consists of three

phases:

� Analysis: produces three models: the object, the dynamic and the functional

model. These models progress from the initial requirements specifications.

The object model is similar to an UML object diagram, as described in the

following subsection, and is a diagram illustrating the relationships among

objects and classes constituting the system: please refer to Appendix A to

see the OMT object diagram and its notation. The dynamic model presents

the state transition diagram for each object. Subclasses inherit the state

 67

transition diagram of their superclasses adding states and transitions. The

functional model is a dataflow diagram used at a high abstraction level with

passive objects as data stores.

� System design: subsystems, tasks and processes composing the system are

described and the concurrency between each other is identified using the

dynamic model.

� Object design: the object model is completed using the information

extracted in the functional and in the dynamic model. Some implementation

aspects such as the design of the algorithms, packaging and documentation

are included in this phase.

3.4.4 HOOD

The Hierarchical Object Oriented Design (HOOD) method was developed in 1987

by CISI, CRI A/S and Matra Marconi Space under a European Space Agency

project to build large real time systems [HOOD 1986a]. HOOD was developed as

an integral part of a full development process for a software system. Therefore, it

aimed to support all of development from requirements analysis through to

integration. It claims to bring the possibility of parallel development of different

parts as well as automated code generation and testing, and also a post-partitioning

support. It is stated in [HOOD 2004b] that HOOD is a design method which helps

the designer to partition the software into different modules with well defined

interfaces by decomposing the software units hierarchically. These units are based

upon identification of objects, classes and operations. HOOD [HOOD 1989a]

integrates principles from other approaches such as Abstract Machines [Diehl et al.

2000], and also assimilates some OOD concepts from the Booch method and some

hierarchy principles found in General Object Oriented Design (GOOD) [Seidewitz

and Stark 1986] to enforce its hierarchical structure design such as the use of senior

hierarchy concepts, which deal with the organisation of several objects into “layers”

which define (each of them) a virtual machine. It incorporates functional

approaches by supporting modular programming, object based approaches by

supporting encapsulation and object identity, and object oriented approaches by

supporting inheritance properties. The HOOD method comprises textual and

 68

graphical notation and its main concepts can be summarised as follows (for the

graphical notation of the components please refer to Appendix A):

� Object: this component is equivalent to a module of software. The

formalism of its graphical and textual notation is supported by what is called

Object Description Skeleton. The static HOOD Object properties are the

object interface, which is the visible part of the object, and the internals of

the object, which are the hidden part of the object. The interface defines the

operations provided by the object with the associated parameters and

resources. In addition, it provides types and the operations required from

other objects. The object internals define the implementation of the provided

interface.

The communication between objects is made through service requests, by executing

operations (similar to procedure calls). A client object requests an execution of an

operation and the object that performs the execution is called a server object.

Threads, which have a control flow, activate operations on objects. There may be

several threads executing simultaneously in the same object. One key feature in

HOOD is that these threads of execution can be specified one by one using the

concept of constrained operation, which can be defined through state constraints,

concurrency constraints, protocol constraints or time constraints. Moreover, HOOD

defines the dynamic properties of an object by describing the effects on a client

object:

o Sequential execution: control flow, which is executed within the internals

defined in OPeration Control Structure (OPCS), is transferred from the

client to the server directly. Once the server is finished control is transferred

back to the client.

o Concurrent execution: control flow is not transferred directly to the server.

On the server side, the OBject Control Structure (OBCS) protocol deals with

the incoming requests from the clients and the execution of these requests

depends on its internal state as well as on the control protocol.

o Class: is defined as an abstract data type of an object. The difference in

HOOD between type and a class lies in the fact that a class may inherit other

 69

properties and operations from other classes, whereas type cannot inherit

properties or operation from other types. Classes are object oriented

elements that define the shared-code for all the instances of the class.

HOOD defines the concept of a virtual node to deal with distributed systems. The

virtual node symbol represents a cluster of HOOD objects for a given HOOD

design tree which can be allocated into software blocks and executed in a given

physical local or remote memory. HOOD defines a symbol to represent the use

relationship which indicates required services from one object to the other, thus the

use relationship defines client-server associations. To represent the top-down design

that is defined in HOOD as the decomposition of the parent object into child

objects, providing the same functionality to its child objects, HOOD defines an

“include” relationship symbol which represents these hierarchies broken down into

relationships between objects.

In summary, the concept of structure in HOOD approach is basically guided by a

separation of concerns. Each software partition entity that is represented by an

object has well defined interfaces and data modelling and its own description of

functional and behavioural aspects, promoting the reuse of software modules and

the support to repartition the software. To express these concepts HOOD has a set

of formal textual and graphical notations. One of the differences between HOOD

and other OO design approaches resides on the reduction of number of symbols

used to express the design, making HOOD designs clearer at first sight and easier to

use from the designer point of view. The approach of hierarchical decomposition of

the modules, where high level structures are refined into more detail by other

structures, makes this a feasible approach to deal with the complexity that a large

real-time system has by nature, because the designer does not have to deal with all

the details of the system at once.

A number of rules can be applied to HOOD design which can be reviewed by

automated tools to check consistency and completeness. These rules can be

categorised into “definition” rules, “methodological” rules, “usage” rules and “code

generator” rules. For example, the “definition” rules (i.e. include relationship rules,

use relationship rules, break-down rules, operation rules or consistency rules) are

 70

statements to check the basic definitions and properties of the elements of the

method. The methodical rules check for the completeness in the design phase (i.e.,

to check and ensure consistency between representations). Therefore, HOOD

supports a development process that encompasses the different design phases and

helps ensuring consistency and traceability in the design.

Run-time support in HOOD is approached by applying the constrained operation

concept which, as it has been outlined before, allows the independent specification

of the functional and temporal behaviour of each thread of execution allowing

therefore the possibility of scheduling analysis. However, in [Burns and Wellings

1994], the authors state that HOOD has a lack of explicit support for common hard

time abstractions.

There are several tools available from different vendors for designing systems using

HOOD approach. As explained in [HOOD 1986a] “HOOD was designed right from

the start with consideration for tools support”, therefore the notation and rules have

been designed for being produced and reviewed by tools. As discussed, HOOD is a

design method derived from industrial experience and it has been considered for

serious real-time software development even though it applies the concept of

inheritance to design, which will be discussed later on, and this may contribute to

difficulties in the traceability, performance and testing of the designs.

3.4.5 UML (Unified Modelling Language)

UML is a modelling language rather than a method, which is the OMG’s most-used

specification for modelling application structures, architectures, data structures and

business processes. Even though UML is a modelling language and not a design

method it tends to be considered as the successor of OO design and analysis and it

can be seen as being the result of the combination of the Booch, OMT and Jacobson

OOSE (Object Oriented Software Engineering) approaches. It is expected to be the

standard modelling language in the future and also provides the key foundation for

OMG’s Model-Driven Architecture, a technology which has been introduced in

section 3.2.3. At the time of writing, its current developed version was UML 2.0.

For a more detailed description of this modelling language please refer to [Booch et

 71

al. 2000]. UML defines a notation and a metamodel. The metamodel is one of the

layers of a four-layer metamodel architecture which are the following [UML 2

Metamodel 2005]:

� Meta-metamodel

� Metamodel

� Model

� User objects

The UML metamodel is defined as an instance of a meta-metamodel which defines

the language for specifying a model (i.e. class, attributes, operations and

components). The complexity of the UML meta-model is managed by organising it

into logical packages.

The notation is the syntax of the modelling language and is represented by the

graphical components in the models (to see the graphical notation for these

components please refer to Appendix A). The principal elements that compose the

modelling language can be classified into two groups based on whether they model

the structure or the behaviour of a system. They are introduced in the following list:

Structural modelling

� Actor: it represents a set of roles that a user plays with respect to the system.

In the metamodel, an actor is a subclass of Classifier; it has a name and may

communicate with a set of Use Cases.

� Class or static structure diagram: presents the UML metamodel and

illustrates the static structure of the model such as classes and types and

their internal structure and also their relationships, but not the temporal

information.

� Object diagram: is a schema of specifications of instances, including objects

and data values. It presents an instance of a class diagram at a point in time.

� A state chart diagram: shows the behaviour of an interaction or instances

such as an object. It illustrates possible sequences of states and actions from

which these instances react to discrete events such as signals. In other

words, it represents a state machine diagram.

 72

� Component diagram: illustrates the dependencies among software

components and also describes the classifiers that specify them and the

artifacts that implement them, e.g. implementation classes, source code files,

executable files or scripts.

� Package diagram: illustrates the packages classes and the dependencies

among them.

� Composite structure diagram: shows the composition of different elements,

which are going to be run-time instances that are interconnected through

communication links.

� Deployment diagram: a graph of nodes connected by communication

associations. It describes the configuration of run-time processing elements

and the software components, processes and objects that execute on them.

Components that do not exist at run-time do not appear on this diagram.

Behavioural modelling

� Use Case diagram: a schema of actors, a set of use cases, perhaps some

interfaces, and the representation of relationships between these elements

i.e. associations and generalisations between actors and the use cases, and

generalisations, includes, aggregations and extensions (variations of the

main success scenario) between the use cases. In essence, a use case may be

considered a technique for capturing the functional requirements of a

system.

� Activity diagram: is a special case of a state chart diagram where states

represent the performance of actions or “subactivities” and the transitions

are triggered by the completion of the actions.

� State Machine package: may be used to model discrete behaviour through a

finite state transition system. There are two types of state machine packages:

the behavioural state machine and the protocol state machine.

� Timing diagrams: represents changes of the states or other conditions of a

structural element over time.

� Interaction diagrams (sequence or collaboration diagrams): describe how

groups of objects collaborate and interact. There are two kinds of interaction

diagrams: the sequence diagram and the collaboration diagram. The

sequence diagram presents the explicit sequence of communication between

 73

objects making it more suitable for the design of real-time systems and

complex scenarios [UML 2 Metamodel 2005]. The collaboration diagram

represents an interaction established around the roles and also represents

their relationship.

It is important emphasise that for the design of Real-Time systems, UML provides

other components that are not mentioned on the previous list. These components are

called Ports (capsule) and Connectors and are used in composite structure diagrams.

Ports components are linked by Connectors and isolate the component which makes

it independent of its environment. The Connectors are not necessarily a bundle of

software on its own but are protocols to which Ports conform. In [UML 2

Metamodel 2005] it is pointed out that a good design decision is to design these

ports as objects on their own to guarantee the decoupling between Ports and

Connectors.

3.4.5.1 Discussion
With regards to the structure concept and the UML designs formalism, the four-

layer architecture which defines UML language architecture is claimed in [UML 2

Metamodel 2005] to be an architecture for defining the semantics required by

complex models. The UML graphical notation shows a wide range of different

definition components and relationships, giving freedom for modelling a system.

On the other hand, even though the graphical notation is presented in a clear way, to

have such a wide choice of diagrams can make the design decisions difficult. There

is no mapping of different diagrams in a model which induce inconsistency in the

modelling design. At the same time, some of the semantics are hard to understand at

first sight and can lead to different interpretations of the same model.

Hierarchy in the composition of models is not fully explored; therefore it is difficult

to represent the design of a large system. In [Christensen and Alblas 2000] they

used UML to represent the design of small distributed surveillance system (with

three cameras). Even though the internal structure of different system components is

well-defined through UML diagrams, there are no diagrams that illustrate the

integration of these components to build the whole system. Therefore, it is not

possible to see the design of the whole system at once. In [Hull et al. 2004] even

 74

though the authors presented a mapping in UML of the internal structure of

different components of Real Time Networks, presented in next section, they do not

illustrate any mapping in UML of a whole Real Time Network system design.

Therefore, there is no diagram that presents the whole system at once.

At the time of writing, there is a large amount of research conducted to polish and

extend UML because it is supposed to be the standard modelling language of OMG.

Furthermore, it is also considered one of the kernels of OMG’s Model Driven

Architecture. Thus, there is a large range of tools to support the use of UML to

design although there is not an official list, e.g. ARTiSAN’s Real-time studio or

Metamatrix Metabase Modeler (for more information please refer to [UML 2006]).

There are also some UML tools like Rational Rose that systematically creates UML

models from OO languages like C++ and UML CASE tools like Visio Studio or

Artiso Visual Case.

A compromise exists between clarity of the models and formal specification

languages. The current UML description is not a completely formal specification

language but it is easier to understand. The UML specification is based on a

combination of languages: a subset of UML components, and OCL and natural

language to describe the abstract syntax and semantics of the full UML. The syntax

is described in UML in Abstract Syntax [UML 2 Metamodel 2005]. The static

semantics of a language are defined in Well-Formedness Rules [UML 2 Metamodel

2005] and the dynamic semantics in the Semantics section of UML specification

[UML 2006]. The static semantics are defined as a set of invariants of an instance of

the metaclass, and each of them is defined by an OCL expression with an informal

explanation of the expression.

UML has been considered to be an appropriate modelling technique for business

applications. It is claimed in [UML 2 Metamodel 2005] that this technique is

suitable for real-time applications because behaviours of different components can

be defined through state, activity, collaboration and sequence diagrams and further

real-time extensions like defining queuing orders or priority mechanisms based on

different approaches like ARTiSAN’s or through the definition of Ports and

Connectors. However, these behaviours and actions represent behaviours between

 75

objects or activities and not between different parts, components or modules that

compose the system. Thus, there is not a clear overall picture of the behaviour of

the system. Even though there is a useful diagram called the deployment diagram,

that shows all the components that will exist at run-time, there is a lack of support

for scheduling techniques.

The deployment diagrams just show “what” and “who” will exist at run-time but

they do not show “how” these components will interact at run-time, a property that

is important in a real-time system. Furthermore, as it is discussed also in [Erik

Wyke 2000], even though UML is a good technique to represent the structure of the

data of the system, it has a lack of representation of the flow or the quantity of data

information, which are directly linked to the performance of the system. Besides,

even though UML tries to represent time using different type of diagrams e.g.

timing diagrams or sequence diagrams, these representations are based on

expressing the internal time of the element on its own or time as a sequence

interaction between elements, but there is no explicit time interaction between the

element and its environment.

3.5 Real Time Networks (RTN)

RTN is strongly based on a shared data model. This approach consists of conceiving

a system as a network of active5 (internally sequential) processing components

(called activities) interconnected through dedicated passive elements (called IDAs).

Activities cannot distinguish one network context from another. Therefore, this

provides reusable software components and allows the inclusion of these activities,

without change, in special test systems for prototyping or integration testing

proposes, if necessary in execution environments, which differ from the final target

configuration. The network is per se a spatial form of representation (i.e. the

activities may be mapped in several processors) and so it may be suitable for use in

a wide range of distributed application areas [Simpson 1992d]. However, it is

possibly best suitable for real-time embedded systems where the software has a

degree of complexity and is highly interactive.

5 Each active process has its own thread of control

 76

3.5.1 MASCOT- RTN principles

MASCOT (Modular Approach to Software Construction Operation and Test) is an

extension of Real Time Networks [Phillips 1967]. MASCOT is a software design

method for the design and implementation of large real-time concurrent systems.

Ken Jackson and Hugo Simpson originated its essential concepts at the UK Royal

Signals and Radar Establishment (RSRE) during the period 1971-5 [Bate 1986].

The first technical notes (MASCOT 1) were published in 1978 [IECCA and MUF

1978a]. The first official handbook was issued in 1983 (MASCOT-2) [IECCA and

MUF 1983b]. Further refinements and extensions were continued until the official

standard for MASCOT-3 [IECCA and MUF 1987c] was published in 1987. The

RTN approach in MASCOT/ DORIS differs from most other design methods,

because design solutions are expressed in terms of a set of concurrent components,

which work independently and interact through explicitly identified data areas. This

structures the logical design and provides an early natural temporal partitioning of

the different components that compose the whole system. It provides the means for

temporal and physical (spatial) decoupling, aiming at maintaining at the same time

predictable temporal properties. The proponents of the MASCOT approach for

software development believe that it [IECCA and MUF 1983b]:

� Defines a formal method (i.e. every step in the process to obtain the final

software structure is clearly defined) of expressing the software structure.

� Imposes a disciplined approach to design by ensuring a close

correspondence between functional elements in design and constructional

elements for system integration.

� Provides a highly modular structure supporting a program acceptance

strategy based on the test and verification of single modules and group

closely related modules.

� Provides for a small easily implemented executive for execution of the

program at run time.

� Provides for a straightforward and flexible method for system building.

� Can be applied through all stages of the software life of the project.

The dominant RTN principle embodied in MASCOT is that the flow of data

through the system is controlled solely by a set of concurrent software process

 77

[IECCA and MUF 1978a], which means that MASCOT uses the concept of data

flow network between concurrent processes that constitute the network, as the

means for expressing software structure. It emphasises the importance of structure,

data, communication and the production of systems as a real-time networks, as

opposed to programs. Moreover, it is also stated by its proponents that MASCOT

addresses the important issues of dependability, flexibility (by allowing the designer

to easily accommodate the continuous changes that may occur during the design

process, into the system design) and re-use (by using template facilities which are

discussed in other sections here). The MASCOT method provides a design language

(textual form) and a graphical notation (MASCOT network diagram), which are two

complementary forms for representing the network architecture and controlling an

evolving design structure. The method provides the visibility necessary to support

management and control of the design during development and subsequent

maintenance. This visibility can be achieved by the use of CASE tools to process

the design, supported by a database to hold the design details providing the status

progression feature of MASCOT.

MASCOT aims to support strong design features; safety critical functions are

protected from interference and corruption by enforcing strong partitioning of the

overall design task. MASCOT allows distribution of system functionality to be

represented, by explicitly providing small independent units of execution which can

be identified early on (through the need to define activities). These units are suitable

for distribution in a multiprocessor environment, which can be analysed for their

temporal properties in terms of information propagation.

3.5.2 The MASCOT network design

The Real-Time Network approach of MASCOT applies concurrency as a direct

solution of the problem. The main distinguishing feature, based on the RTN

principles, is the explicit recognition of Intercommunication Data Area (IDA)

components located between concurrent processes, which are known as ACTIVITY

components. An activity is an active element, which is the fundamental processing

element in a MASCOT network. It is a single sequential processing thread that can

be scheduled independently so that, conceptually, all activities may be executed in

 78

parallel and concurrently [Simpson 1986a]. An IDA is a passive element, which is

used either for independent information storage or for information transmission. An

IDA is effectively an encapsulated data type whose detailed physical representation

is hidden from its users. An IDA component allows several independently

scheduled single sequential program threads (activities) to be simultaneously active

or temporarily suspended. The IDA safeguards the integrity of data by using the

minimum amount of mutual exclusion needed to avoid critical data clashes. The

IDA maintains the propagation of data in the network by providing cross-

stimulation between activities.

MASCOT takes requirement specifications obtained by other means as its starting

point [Simpson 1986a]. MASCOT data flow networks should be static. Activities

should not be created dynamically and the system network should remain invariant

at run time to avoid hazards in terms of unconstrained resource demands and non-

deterministic timing. However, it seems that special measures can be used for those

applications that cannot be implemented without dynamic network creation

[Mustafa 2000]. Even though these measures are not published, one of them (taken

from a private conversation [H. Simpson2005]) may consist in creating and building

a new component, and then it is inserted into the network. Once it is established, the

old component is removed from the network. Another measure may be the use of a

protocol that is discussed in section 3.6.4.1, called Remote Thread Invocation

(RTI), which activates a thread at run-time. MASCOT assumes that the software

system is being designed for a particular virtual machine called the MASCOT

kernel, and the implementation of this virtual machine on a specific computer or a

set of computers (depending on the configuration) is a separate problem. The kernel

is a set of procedures, constants and data-types, which provides the run-time

executive level facilities for purposes such as process scheduling, synchronisation,

interrupt handling, execution control and monitoring. These facilities are defined in

a context interface specification.

During development, the structure of the application software evolves as a set of

interconnected but independent components that make no direct reference to each

other. The components in MASCOT such as IDAs or activities are defined as

templates during the design process. The idea of a template idea in RTN could be

 79

associated to the idea of a class in OO. A component is an instantiation of a

template. Specifications define an interface (a type of connection) so that

connections between components are established from the corresponding interface

specification. Components contain definitions which describe a set of data-types

and named constants. MASCOT templates are reusable so they can enable the

creation of multiple components derived from the same template or the creation of

the same component in different execution environments (different system designs).

The definitions of the textual forms of the design structure (modules) are inserted

into a MASCOT database, which supports the development process. The textual

forms of modules (template) are subdivided into three parts:

� Name: defines its class (note that it does not have the same meaning as

“class” in OO) and it gives the template a unique identification.

� Specification: consists of the information required for components of that

type to be included in inter-module dependencies.

� Implementation: defines the internal details of the template. For simple

active templates (such as those for activities) this defines the executable

program, and for IDAs it defines the data attributes and access mechanisms.

Designs in MASCOT are expressed in a hierarchical manner rather than in terms of

a flat network. At the lowest level, MASCOT entities are software objects capable

of either performing data processing functions (activities or active entities) or data

communication functions (IDAs or passive entities). A system defines a self-

contained set of interconnected components. Some of these components can be

grouped together to form a composite form of a processing function and are thus

known as subsystem. Other components can be grouped together to form a

composite form of a communication function and are thus called composite IDA. A

system differs from a subsystem only in having, by definition, no external

dependencies other than those, which may be satisfied during system building

[IECCA and MUF 1987c]. The system is the outermost level of the network design,

which encompasses the whole of the application. Explicitly or implicitly, it

constitutes a complete description of the software.

 80

In MASCOT (as indeed in any branch of engineering or the management of

complex systems), it is good practice to apply the principle of “containment of

complexity” during the elaboration of the design structure. The final hierarchical

design structure should contain the minimum number of levels consistent with the

ability to easily see how each component, at any level, plays its role to satisfy the

requirements generated by the next level up. The final hierarchical design structure

should be composed as a network of subsystems that communicate through

different forms of IDAs: channels, pools or generalised IDAs. However, what is

executed is a flat network of primitive elements (activities).

3.5.3 MASCOT communication model

As has been mentioned in the previous subsection, a MASCOT network design is

represented as a set of concurrent operations such as subsystems, activities, IDAs or

servers, which are the components that allow all the interactions of the system with

the environment, e.g. the action of capturing images coming from the cameras in

any surveillance system is performed by server components in this work. Notice

that the server component in MASCOT differs significantly from a server object in

OO, because in OO, the server object is commonly an active element that processes

requests coming from clients. Therefore, it does not necessarily interact with the

environment but with the elements that constitute the system. All these operations

are interconnected to form a data flow network. The combination of different

individual operations produces the overall system processing function and the data

flow between these operations through the network takes place in accordance with

the MASCOT communication model [Mustafa 2000], which is discussed in the

following paragraphs.

The communication (between activities through IDAs as adjacent activities never

occur), takes place along the paths of a MASCOT network. A path or connector

between a pair of entities such as activities is a specification (Access-Interface)

defining a set of operations (mainly reading and writing operations) implemented

by the IDA. Every path in a MASCOT network is connected at one end to a port

(provided action) of a component. Ports are belong to active entities such as

activities and are represented by a solid circle. At the other end of each path a

 81

window (required action) is connected, which is represented by a solid rectangle

(see Figure 3-1). Windows exist only within passive entities such as communication

components (IDAs). However, sometimes it is necessary for data to be passed

directly from one IDA (passive entity) to another. Therefore, an RTN extension

such as DORIS, allows IDAs to possess ports as well as windows. Ports and

windows refer to the access interfaces that are connected, to obtain a full

characterisation of how the components are connected to one another in a unique

manner, which is decided by the designer.

Figure 3-1 shows a basic MASCOT communication model which is a

representation of a network design of two activities connected by a “channel” IDA

(different types of IDAs are discussed later). The graphical representation of an

activity is a rounded shape whereas that of the IDA is a rectangular shape (see

Figure 3-1). The names inside these shapes are template names and the ones outside

are component names. As mentioned, a component is an instantiation of a

template. In the example, activity prod has a port P1 that is connected by the path

Put to a window W1 in the IDA idacom. In path Put, data flows from port P1 (data

source) to window W1 (data sink). However, a port can act as a sink and a window

can act as a source as shown in the path Get. This figure tries to illustrate that there

is not dependency between the processing functions (defined in the activities which

can be seen as a thread of executions) and data flow execution (realised in the IDA

component).

Figure 3-1. Simple communication model between two activities (producer, consumer) through

an IDA component.

The interaction and communication within systems modelled on RTN principles are

achieved by the reading and writing operations that are applied to the data in IDAs.

When an active partner (such as activity) invokes these operations, data is

 82

transmitted in one or both directions. The path or connector is not a resource that is

dynamically created or allocated. If it were, then this would mean that not enough

attention to the required nature of the communications would be given at design

time and therefore full characterisation of the system architecture cannot be

achieved. MASCOT defines a basic classification form of IDAs or interaction

protocol based on how these operations act upon the shared data: destructive writing

or reading operation and non-destructive writing or reading operation. Notice that

the term protocol used here “is not a type of colloquy defining a message dialogue

between two processes” [Simpson 2003f, pp.158] (protocols, in RTN, have no

relation to the concept of a layered protocol hierarchy as in Open Systems

Interconnection). Another important remark is that in RTN, the functional and

design models emphasise the difference between protocol and connector. A

protocol is a set of rules whereas a connector implements and enforces the rules.

Consequently, operations of opening/closing access or connectors are not included

in the protocol [Simpson 2003f]. This implies an easy association of the two models

without compromising the distinction between functionality and design.

Furthermore, a connector is at the same level as the entities (such as activities or

IDAs) that use it (the connector is not seen as a property or “method” in OO argot

inside the entity) and the components that use it remain attached to the connector

following the construction of the RTN network at build time.

3.5.3.1 Communication mechanisms
In RTN the protocols define the dynamic effects arising from the interaction

operations themselves. Destructive writing means that new data can freely

overwrite existing data by destroying it (writer cannot be held up), while non-

destructive writing means that new data can only be placed in a vacant space (writer

can be held up). Whereas destructive reading will destroy current data and hence it

will make a vacant space and non-destructive reading leaves the current data in

place. These operations reflect four basic forms of interaction between

communicating processes that are expressed in three basic types of protocols: Pool,

Signal, Channel and in one special form of interaction called Constant. These

protocols provide a sufficient set of characteristics for implementing a range of

applications, by identifying all possible dynamic interactions between a reader and a

writer. The basic parts of the protocol taxonomy are shown in Figure 3-2.

 83

Interaction of basic operations

 Temporal interaction effects

Destructive reading

Reader can be held

up

Non-destructive reading

Reader cannot be held

up

Destructive writing

Writer cannot be held up

Signal

(Event data)

Pool

(Reference data)

Non-destructive writing

Writer can be held up

Channel

(Message data)

Constant

(Configuration data)

Figure 3-2. Basic protocol taxonomy refers to effects on data from read and write operations.

Earlier versions of MASCOT supported just two different forms of IDA: pool and

channel. Later versions of MASCOT incorporate another form of IDA called a

signal. Figure 3-2 summarises the temporal interaction and which can be described

as follows:

� Pool (non-destructive read and destructive write): It allows reference data (a

single coherent record) to be consulted at any time by the reader or updated

at any time by the writer like a table or a dictionary [Simpson 1990c].

Neither the reader nor writer process can be held up; therefore it is possible

to lose the oldest data if the writer process is faster than the reader process.

This protocol provides the opportunity to implement an explicit fully

asynchronous communication between the entities that communicate with

one another. Although this asynchronous communication is necessary in the

real word, it has not been fully explored in the design methods discussed

earlier. However, some of these methods claim to present mechanisms

where the communication between elements is asynchronous, although this

communication mechanism is not explicit in the form of a defined protocol

 84

as the “pool” in RTN. Moreover, as discussed, this protocol may be used in

a range of applications, e.g. in surveillance systems this protocol can be used

to send background images data to the rest of activities that need this kind of

data or raw images from sensor devices.

� Signal (destructive read and destructive write): It allows event or control

data (a single coherent record) to be overwritten at any time by the writer,

but only consulted once by the reader. Some data may not be consulted at

all if the reader is too slow and the writer overwrites the event data before it

has been read. The writer cannot be held up, but the reader can be held up.

In surveillance systems this protocol can be used to send control data like

variable operational parameters (i.e. thresholds, ROI or lighting changes) or

event data like changing orientation of the cameras, where it is important for

the reader process to act upon the last available (most current) data and not

waste time with what has become obsolete (perhaps due to the slowness of

the reader which could otherwise bring the system to a halt by delaying the

producer of such data).

� Channel (destructive read and non-destructive write): It allows one message

data item to be passed between producers and consumers. The read

operation is destructive, since it removes an item from the channel in a FIFO

manner. Either the reader or writer processes can be held up corresponding

to a case where reader and writer need to synchronise on the presence of

data. This protocol may be used in surveillance systems to send data that

cannot be lost like the resulting tracking positions of the objects on the scene

that are being followed.

� Constant (non-destructive read and non-destructive write): It is regarded as

configuration data. The value of a constant is established at build time and

may not be re-written. In surveillance systems there are some initial

parameters like camera calibration parameters, thresholds for background

detection or motion capture that need to be set up at the configuration step.

3.6 DORIS- further extension of RTN principles

Further successful developments of MASCOT continued until DORIS, which is the

acronym of Data Oriented Requirements Implementation Scheme. DORIS is an

 85

integrated set of methods and associated tools for development of hard real-time,

embedded multiprocessor systems. It consists in a design notation based on Real

Time Networks and various implementation techniques for system construction,

implementation and analysis [Simpson 1992d]. Features of the DORIS design

notation, as in MASCOT, include [Simpson 1990b]: support for a wide range of

synchronous and asynchronous communication protocols (which are appropriate for

both shared-memory and distributed implementations), features that support the

partitioning of the design amongst large design teams, and support for the re-

mapping of a design to the hardware platform, as it evolves during the life of the

project. DORIS extends MASCOT-3 with an augmented set of pre-defined

protocols, which are aimed for distributed real-time systems.

Figure 3-3 shows the DORIS coverage for the three stages of the development life

cycle. They are Definition, Design, and Implementation (in software and

hardware) [Simpson 1992d]. Different methods are used for each of these stages

and each can be used in isolation, but the strength in DORIS comes from their

integration. For the definition and design stages, DORIS uses extended versions of

two existing well-established methods based on the concept of data flow. Controlled

Requirements Expression (CORE) [Mullery 1979] is used for the capture, analysis

and specification requirements and MASCOT is used for designing. For the

implementation stage, DORIS it uses a new architectural approach known as DIA

(Data Interaction Architecture) [Simpson 1990b]. DORIS data flow networks

should be static but flexible. The network should be static because, as in MASCOT,

dynamic creations should not be allowed, but flexible to allow for many changes in

a design, which occur during development and subsequent maintenance. Dynamic

process creation should not be allowed so as to guarantee the performance of the

system, due to its consequent hazards in terms of unconstrained resource demands

and non-deterministic timing.

 86

Definition
CORE

Design
MASCOT

Implementation
DIA

Modelling
Simulation
Animation
Analysis

Prototyping
Validation

Verification
Testing

System

Requirements

Figure 3-3. DORIS development process from [Simpson 1994e].

As discussed, Real-time Networks are characterised by the explicit recognition of

shared data areas for communication and interaction between processes. DORIS

uses the concept of Shared Data Area to provide a unifying theme through the three

stages of Definition, Design, and Implementation. This ensures traceability

during the development process, where the general concept of shared data area

describes “shared information” at the Functional level, “shared data” at the Design

level and “shared memory” at the Implementation level.

3.6.1 Definition: COntrolled Requirements Expression (CORE)

The definition stage of design is requirement analysis, where the examination of

requirements produces a top-level system description. This provides the basis for

formal or informal reasoning about the behaviour of the system and it is called the

Functional Definition of the system. The Functional Definition is a representation

of the system expressed in terms of component functions (transformers of

information) and their interactions (information transfers), such as would be

 87

generated by the application of CORE. The level of definitions should be sufficient

to analyse the behaviour and performance of the system to the extent necessary to

ensure that the given requirements can be met.

The aim of CORE is to establish a full understanding of the problem and associated

requirements for a system solution, reducing ambiguities and inconsistencies. It

consists of a set of defined steps helping to ensure a correct transition from the

problem through to a system design definition. The Functional Definition in

DORIS draws on the CORE method, but the CORE notation is not used. Instead

design notational forms similar to MASCOT-3 are used, consisting of round corner

shapes used for active processing functions and rectangular shapes used for

information storage functions.

The definition phase begins with gathering information and analysing it, which

leads to the definition of the problem domain and to the identification of a set of

viewpoints from which the operating environment of the system is characterised.

These viewpoints form the definition elements of the system design. The next stage

is defining the function of each viewpoint and the information passed between

viewpoints (data flow based analysis). Analysis of viewpoints is the basis for the

formation of a Functional Definition of the system. The Functional Definition is a

graphical description of a system design as a network of functional elements

(viewpoints) linked by the information flows, and it is annotated with any identified

route protocols. The role of the Functional Definition Diagram (FDD) is to act as a

bridge that helps achieve a smooth flow from the definition phase into the design

phase in DORIS. Its network format is consistent with the notation used for the

DORIS design phase, and hence encourages propagation of requirements and

ensures traceability of requirements and design information between these two

phases.

3.6.2 Design: MASCOT

During Functional Definition, a network of interacting component functions is

identified in detail for two reasons [Simpson 1992d]. First, the aim is to ensure that

such a network of functions will indeed meet the system requirements. Second, to

 88

allow some of the functions to be partitioned according to the most appropriate

implementation technology, which are among others the Software System, the

Processing Infrastructure, and the Hardware Instances. The design of the Software

System is expressed in terms of the MASCOT Network application as a hierarchical

set of MASCOT-3 components. The notations and conventions of MASCOT-3 are

restricted and expanded. The design follows the same “principle of the

containment” applied in MASCOT, with continuing emphasis on parallelism,

communication and hierarchical breakdown.

The Functional Definition of the DORIS definition phase becomes the top-level

system of the MASCOT design and its elements become MASCOT subsystems.

Each successive level of decomposition is an implementation to some degree of the

functionality and communication defined in the level above. Consistency and

traceability are ensured by the continued satisfaction of Access Interfaces defined at

higher levels of the design structure. Design visibility is enhanced by a graphical

representation and the ability to display multiple levels of the design hierarchy on a

single diagram. The MASCOT textual representation is the formal description of

the system. Graphical and textual forms are equivalent and may be derived from

each other. For the design phase of DORIS, the following three languages have

been provided to aid the user in the design procedure of a system:

� DORIS Design Language (DDL): a subset of MASCOT-3 with additional

syntax to allow the parameterisation of subsystems, activities, IDAs and

access interfaces, and the definition of route IDAs (see section 3.6.4).

� Hardware Description Language (HDL): used to represent the hardware

components and the interconnection between these components, which

make up the hardware system. Typical components for the HDL are

processors, private memory and shared memory in Asynchronous Dual Port

Memory (ADPM).

� Mapping Description Language (MDL): used to map the abstract software

design (software components) onto the system hardware. The activity

instances and private IDA instances are mapped onto processor private

memory and the shared-IDA instances are mapped onto ADPM. MDL

contains also all priority rules and information for activities.

 89

3.6.3 Implementation: DIA

RTN can be set in an operating environment which offers supporting services to

concurrent processing, such as interrupts, pre-emptive scheduling, co-operative

scheduling and multiple processors [IECCA and MUF 1987c]. The principles of

RTN of shared memory, shared data, and shared information provide essential

visibility of independent threads of execution, whose interaction between them is

decoupled. In addition, the RTN approach encourages additional design

partitioning by expressing a design solution in terms of a set of concurrent

asynchronous processing threads that are suitable for flexible distribution in a

multiprocessor hardware configurations. This addresses concurrency and

parallelism at the highest and earliest level of definition and design, and it regards

concurrency and parallelism as part of the solution rather than as part of the

problem. Therefore, appropriate execution environments for supporting real-time

networks based designs are those that reflect the network principles of independent

processors communicating through shared memory. The Data Interaction

Architecture (DIA) [Simpson 1990b] is based on the explicit recognition of shared

memory as a means of communication between concurrent processes, thus its

implementation form gives direct support for network design concepts.

3.6.4 Communication mechanisms

The concept of Route has been conceived to express communication designs and its

symbols provide notational conventions to express basic and extended

communication protocol designs. A route can be mapped into the hardware in a

variety of forms to meet the communication requirement regardless of the relative

location of the activities connected by the route. The dynamics of the route can be

preserved over any degree of distribution, regardless of the communication medium

(private memory, shared memory, serial link, multiplexed bus, etc.). Therefore,

route interconnections between application functions can be established once the

location of each end of the route is fixed and the dynamic properties of the route

remain unchanged. Based on the DIA implementation of shared memory between

adjacent processors, DORIS provides three forms of route distributions as follows:

 90

� Private distribution, when the two activities that use the route are both in

the same processor. See Figure 3-5.

� Shared distribution, when the two activities that use the route are in

different processors, connected by shared memory.

� Remote distribution, when the two activities that use the route are in

different processors, not directly connected by shared memory.

Therefore, the explicit definition of route protocols gives the following two crucial

advantages:

� It provides a complete set of communication protocols, which describes a

variety of dynamic interactions between writer and reader.

� The ability to “stretch” the route over any distance in a distributed execution

environment to allow communication to take place wherever the processes

connected by the route may be located, including a Private distribution

where connection is made between processes located in the same processor

configuration. See Figure 3-5.

3.6.4.1 Route extensions
The extension of the first protocol classification [Simpson 2003f] is based on two

main concepts: the number of intermediate items and void data. The former relaxes

the capacity constraint established in the basic protocol where the intermediate item

is limited to one. Then, it is possible in these extended protocols to vary the amount

of intermediate data buffering, including no buffering at all, but “whatever the

degree of buffering, items are always read in the order that they are written”

[Simpson 2003f, pp. 161]. When there is no buffering, the interactions are

interlocked with a mandatory overlap of read and write operations if the data is to

be transferred. The void data concept allows the item to carry no information, so

that the protocol describes a pure stimulus function (note the terminology borrowed

from engineering applications). This provided new notations that are added to a

route symbol to indicate special meaning. A small hollow circle at the centre of a

route symbol indicates that no data is transferred. An integer next to a route symbol

indicates the amount of buffering within the route. The absence of an integer

implicitly means unity and a zero means no buffering. The principle of concurrency

 91

is applied to route access operations [Simpson 2003f]. Such operations can be as

concurrent as possible preserving always the capacity constraint of the protocol

(please refer to Figure 3-2 to see these constraints).

Figure 3-4. The Extended communications of Route protocols [Simpson 2003f].

Figure 3-4 summarises the extension communication protocols of the two basic

protocols mentioned in section 3.5.3 and illustrated in Figure 3-2: the signal and

channel protocols. The extension introduced additional routes, which allowed the

explicit representation of these commonly occurring communication protocols and

which are explained below. Note that in the previous basic protocols list (i.e.

channel, signal, pool and constant protocols) and in the following list, RTN presents

an extensive range of explicit communication mechanisms, defining all the possible

interactions between communication elements. None of the reviewed methods

present such a wide range of communication mechanisms.

� Flash data: Flash data is a signal route with zero buffer capacity. It is used

to denote that the item will be passed only if the reader is waiting for it

while the writer is inserting it, otherwise the item will be lost because there

is no place to retain it.

� Overwriting buffer: An overwriting buffer is a signal route with a buffer

capacity of more than zero. When the writer attempts to insert data in an

 92

already full buffer, instead of waiting for a vacant space to be released by

the reader, the oldest data is overwritten and the writer is able to continue.

The integer “n” indicates the size of the buffer. The purpose of the

overwriting buffer is to smooth the flow of message data at a variable rate

without the (non-deterministic) hazard of a possible hold up to the writer.

� Rendezvous: A rendezvous is a bounded buffer with a capacity of zero. It

uses the channel notation with an added integer “0”. The rendezvous is used

to denote the meeting of two processes for the sole purpose of

communicating information. Its dynamics of destructive reading and non-

destructive writing are simultaneous. The temporal implication is that both

processes must request to communicate before data can be transferred. This

is the implicit communication mechanism that is commonly supported by

most of the design methods.

� Bounded buffer: A bounded buffer is a channel route with a buffer capacity

of more than zero. It uses the notation of the channel with an added integer

“n”. The integer “n” is more than zero and indicates the size of the buffer.

Data is not lost in a bounded buffer. The writing process is held up when

the bounded buffer is full, and the reading process is held up when the

bounded buffer is empty. The bounded buffer provides a smooth flow of

message data when it is generated or processed at variable rates.

� Prod: Prod is equivalent to the flash data route, but with no data. Therefore

is an event with no data. By using prod the reader is held up until the writer

finishes “writing” the next void data. The prod uses the notation of a signal

with a small hollow circle at the centre to indicate the absence of data.

� Stimulus/Interrupt: A stimulus or interrupt is equivalent to the signal route,

but with no data. Like Prod, it is an event without data. The process raising

a stimulus, or interrupt can never be held up. The stimulus/interrupt uses the

notation of a signal with a small hollow circle at the centre to indicate the

absence of data.

� Overwriting stim buffer: An overwriting stim buffer is equivalent to the

overwriting buffer, but with no data. It uses the overwriting buffer notation

with a small filled circle at the centre to indicate the absence of data. This

route has the effect of storing remaining stimulus to a maximum “n”, and

overwriting thenceforth.

 93

� Directional handshake: A directional handshake is equivalent to the

rendezvous, but with no data. It uses the rendezvous notation with a small

hollow circle at the centre to indicate the absence of data. The handshake is

used to denote a synchronisation point between two processes. No data is

passed, but neither process can proceed until both have arrived.

� Dataless channel: A dataless channel is equivalent to channel route but with

no data. It uses the channel annotation with small hollow circle at the centre

to indicate the absence data. This protocol gives the effect equivalent to the

raising of a single request or response with no value.

� Bounded stim buffer: A bounded stim buffer is equivalent to bounded

buffer but with no data. It uses the bounded buffer notation with a small

hollow circle at the centre to indicate the absence of data. This protocol has

the effect of storing remaining stimulis up to an “n”, and thenceforward not

allowing further insertion.

The following list presents four “response” protocols which are illustrated in the last

row of Figure 3-4. These protocols are called “response” because they are modelled

as a result of different pair-combination of data and dataless channels, and

correspond to closed bidirectional protocols which model the client-server

relationship. The bi-directional nature of these protocols, represents an interaction,

where each process writes on the protocol symbol nearest to it and reads on the

protocol symbol furthest away. The small narrow indicates the direction from client

to server. These are asymmetric and the client uses a single operation to send and

receive the results while the server uses two different operations to receive the

parameters and to send the results [Simpson 2003f].

� Remote function call: The dynamics effects of a remote function call are

achieved by a bi-directional channel through which parameters are passed in

one direction with the results being returned in the other direction, allowing

them to pass two different types of message data (parameters and results).

The effects of this protocol are equivalent to a client process transmitting

parameters through one of the channels and waiting for the server to take the

parameters to carry out an action and return the result through the other

channel. Data cannot be lost in this form of protocol [Simpson 2003f]. The

 94

notational symbol of the remote function call contains a data flow line with

an arrowhead at each end.

� Remote data send: This protocol is the combination of a channel and a

dataless channel. No results are expected and the effects that this protocol

raises are equivalent to an explicit acknowledgement that the data item has

arrived. The client is held until the acknowledgement is received. The

notational symbol of the remote data send contains a data flow line with an

arrowhead at each end, together with small filled circle at one end to

indicate the absence of data.

� Remote data fetch: This protocol is the combination of a dataless channel

and a channel. The effects that the protocol raises are equivalent to request

data from another process. In this protocol the client is held until the data is

received. The notational symbol of this protocol contains a data flow line

with an arrowhead at each end, together with small filled circle at one end to

indicate the absence of data.

� Remote thread invocation: This protocol is the combination of two dataless

channel. No parameters, no results are expected. The effects that the

protocol raises are equivalent to invoking a thread of execution. The

notational symbol of this protocol contains a data flow line with an

arrowhead at each end, together with small filled circle at one end to

indicate the absence of data on both sides.

3.6.4.2 Communication model
The protocols presented in Figure 3-2 and in Figure 3-4 represent the different types

of communications between two processes. These figures illustrate that each

element of the protocol taxonomy presents a different temporal interaction within

the communication of the active parts (processes), giving coverage of the dynamic

constraints (i.e. destructive and non-destructive data capacity) that may occur

between the processes in the network. These protocols are used in a distributed

environment where processes are allocated in the same physical node sharing

memory. These protocols have a stretched form (routes) to allow communication

between nodes that are physically allocated in different places and therefore do not

have a common visibility of shared memory. These remote routes project the data

shared from one place to the other place by introducing an active element (activity)

 95

between them. Figure 3-5 shows how the data that is placed in a visible shared

memory (b) is projected by the active element (a) which invokes the same operation

applied to (b). In DORIS the concept of a link element is introduced in order to

stretch the “response” protocols illustrated in Figure 3-2 and Figure 3-4. The link

element basically projects the response protocol used to the other side, i.e. the

interface becomes a remote one. The symbol annotation of the link element is

presented in Figure 3-6.

Figure 3-5. Example of the stretched form of the channel protocol [Simpson 1994e], [Simpson

2003f].

Figure 3-6.Distributed model of remote function call [Simpson 2003f].

3.7 Comparison between the OO and the MASCOT/DORIS
approaches

OO and MASCOT/DORIS approaches can be suitable for a range of distributed

applications, and they can provide a degree of reusability and extensibility because

of the modularity of their designs. Both approaches have different key aspects,

which are described in the subsequent subsections, see Table 3-2. These differences

 96

are based on the essential concepts and the structural design model, and

consequently, based on how each approach develops its concepts in order to design

distributed concurrent real-time systems.

OO Real Time Networks

Abstract model Classes/Objects Templates/components

Communication
model

message passing Shared data (protocols taxonomy)

Concurrency Not inherent in the
design.

Inherent in the design

Information Hiding Encapsulation Access procedures, access
mechanisms

Modularisation Objects, classes Activities, IDAs, subsystems,
servers

Inheritance Yes No

Dynamism Through late
bindings,
inheritance and
polymorphism.

MASCOT 2-Yes (although it is not
advisable)
MASCOT 3/DORIS- No

E
ss

en
tia

l c
on

ce
pt

s

Timing behaviour Non-explicit Partially explicit through the
temporal interaction effects on the
operations (reading and writing)

Table 3-2. Summary of the aspects to compare at the conceptual model.

3.7.1 The difference of abstract model between the two
approaches

Conceptually one of the main differences between OO and RTN is how both

approaches tackle the problem of modelling real-world entities. The OO approach

abstracts the problem by modelling the real-world entities as objects. An OO design

tries to reincarnate objects from the problem domain into the computer models,

giving the objects in an OO program (OOP) equivalent characteristics and

capabilities as the real-world entities that they are modelling. These objects are

commonly grouped to simplify design and reduce code, by defining a relationship

between these objects such as inheritance. For example a car object, a lorry object

and a motorcycle object can be inherited from an abstract class called vehicle,

because these three objects have some common attributes that can be grouped in an

 97

abstract class called vehicle. Therefore, by creating this inheritance relationship

between these objects dependency behaviour between these objects is created, while

real-world entities may not express this dependency relation between them. Besides

in [Boasson 2002] it is pointed out that the real-world entities usually have their

own autonomous behaviour.

Moreover, OO methodologies focus on system components rather than the actions

that the system has to perform. Therefore, OO designers make decisions on

subdividing rather early, whilst RTN designers focus on the tasks that the system

should perform and the interaction between these tasks. On the other hand, the

shared data model in RTN represents the concept of the entities in the real world as

independent active activities which communicate through independent passive

components. These activities, that have their own autonomous behaviour, can be

grouped forming a subsystem which along with other subsystem constitutes the

system. This is a hierarchical design which describes decomposition within

functional components rather than a hierarchical relationship between components

as it is described in OO design. Moreover, the boundaries of the system designed

are exposed more explicitly in RTN than in OO designs.

Modularity is reached in each approach in different ways. In OO, modularity is

achieved through the concept of object, which encapsulates certain attributes and

operations or methods in an entity (called class in OO nomenclature). In RTN, the

system is partitioned into smaller independently operating subsystems, which only

interact through explicitly defined intercommunication areas.

3.7.2 Communications

The term encapsulation, used to describe information hiding in an object, plays an

important role in the OO communication pattern. Encapsulation can be considered

as the process of hiding all the details of an object that need not to be visible to the

other objects. In OO, an object is characterised by a condensed list of abstract

attributes and a list of encapsulated procedures, which are defined as methods,

operations and services. Data from an object, in OO systems, is obtained by sending

a message to the object. A message consists of the address (reference) of the object

 98

which it will send to and an instruction which consists of a method name and the

required parameters.

By using information hiding, the implementation detail of a method is private to the

object and hidden from the rest of the objects, only its behaviour is visible to other

objects. Thus, objects have internal state but it is not directly accessible.

Consequently, clients of the object are not exposed to danger when its

implementation is changed as long as the interface is not also changed. Note that in

OO the hiding information is necessary only if the designer wants to incorporate it

in the design. It is therefore possible for the designer to make everything visible,

despite this being accepted bad practice. Methods are defined as a procedure or

function that alters the state of an object or causes the object to send a message, i.e.

return values. Moreover, the syntax of methods defines which messages an object is

able to process successfully. A message, which is often implemented as a function

call, may be interpreted in different ways by different receivers which decide what

will happen. The set of messages that the object can respond to is sometimes called

its protocol. For each message there is an operation. The name of the message is the

name of the operation and the parameters on the message are the parameters of the

operation.

The communication pattern in OO is based on a client-server model where in some

Object-Oriented Programming (OOP) such as C++ or Java, the client and server

objects communicate by message passing. In a well designed OO, its items should

be strongly coupled. The object as a whole should possess high cohesion or high

modularity. It is stated by the OO community, that a message passing

communication model creates weak coupling between objects and uses information

hiding to ensure the access validity (interfaces) to data structures that are

encapsulated in an object. Nevertheless, if there is still coupling between parts that

communicate using message passing, then synchronism between communicating

parts (objects) is required and to decouple the objects that communicate with one

another, external mechanisms (or services) such as “time out” need to be added to

the communication model. Moreover, the interaction effects between

communicating objects through the use of the message passing model are not

explicitly captured like it is done in the RTN taxonomy protocols. In other words,

 99

the important nature of the required communications between different parts of the

system is difficult to capture with OO approaches (where this aspect tends to be

implicit rather than explicit) whereas it lies at the core of the RTN approach.

3.7.2.1 Differences between MASCOT3/DORIS and OO
communication model

The communication process in both approaches promotes modularity and re-usable

software by promoting weak coupling between modules or software entities as

mentioned before. Nevertheless, it is addressed in a different manner. In

MASCOT3/DORIS the communication model is based on shared data between

active processing data entity (activities) through the passive communication entity

(IDAs). Therefore, the basic functionality of IDAs is to allow communication, then

in RTN the communication tends to place emphasis on a visible shared component

between entities, while in OO approaches, it may be said that the communication

tend to look "inwards" (the "state" of an object). As illustrated in Figure 3-2 and

Figure 3-4, MASCOT/DORIS provides a rich set of explicit data communications

primitives (protocols taxonomy) that really reflects what one is likely to encounter

in real-time systems typified by distributed visual surveillance systems, e.g.

depending on the data type used in the system or on the dynamic interactions

required between the processes to communicate, a different functional behaviour is

needed, which is possible to obtain from this set of communications primitives. The

temporal behaviour inherent in the protocols is regarding the effects arising from

resource scheduling as an implementation concern [Simpson 2003f].

Therefore, the taxonomy protocols presented in MASCOT3/DORIS reflects the

functional behaviour and temporal properties of the communication between the

processes in the system design. For example, in Figure 3-1 the communication

between two activities (producer and consumer) is a rendezvous communication

(rendezvous protocol, see Figure 3-4). The producer can only send the data if the

consumer is waiting for it. Instead of using a rendezvous protocol to connect

producer and consumer it could be designed to use a signal protocol (see Figure

3-2). Therefore, the producer can send the data whenever is ready without waiting

for the consumer to read it. It is possible to see that the essential interaction between

the producer and consumer activities has changed since the communication protocol

 100

has changed but without changing the implementation of the access interface and

activities themselves. Moreover, in RTN the access interfaces are completely

independent from their attached components. In RTN two components (e.g. two

activities) can communicate with each other without opening/closing access, with

complete independence of the “method” itself. Moreover, the type of interactions

e.g. synchronism or asynchronism is determined by the communication protocol

used.

RTN shifts the emphasis from the "state" view (internal and publicly available) as it

is done usually in OO approaches to the “communications” view. Thus, in RTN the

internal may be considered a simple sequential activity or data processing function

(the smaller the better, generally speaking to "contain complexity", that does not

require all the sophistication and complication of OO). Therefore, the behaviour of

a system depends on the temporal performance of these processes (data processing

functions) plus the communications between processes.

In OO it is possible to represent a communication entity by creating an object with a

given set of methods allowing the communication between two objects to be

separated but without being able to represent explicitly the temporal properties of

this communication. Therefore, it is possible to speculate that in OO the

communication scheme core is not capable of reproducing the temporal essence of

the real world requirements. On the other hand, if the implementation of this

communication object is changed as far as the interfaces (methods) are not changed,

it is not necessary to change the implementation of the two objects which are

communicating through this object. This is achieved by encapsulating and hiding

the methods which are part of the implementation information of the

communication object. Nevertheless, in OO access interfaces are separated but not

independent because they lie in the object that implements them, see Figure 3-7.

 101

Figure 3-7. Example of different approaches to the communication model; in OO objects

communicate to objects. In RTN communication is from/to activity to/from IDA.

The example shown in Figure 3-7 illustrates another difference between the two

communication models. In RTN the communication components (e.g. channel) and

the two processing activities are thread independent, while in the OO

communication model the active objects and the communication object are not by

nature thread independent, i.e. in order to design these objects to be thread

independent each of the objects must be specifically designed as separate threads in

a multithread programming environment. Moreover, even though in OO it is

possible to represent a communication entity by creating an object having the

functionality to communicate between two objects, there is no established distinct

communication component, as is the case in MASCOT3/DORIS with IDAs, let

alone a defined taxonomy of protocols. As discussed, the taxonomy of protocols in

MASCOT3/DORIS defines a different functional behaviour in the communication

depending on the type of interaction required. The design decision of the type of

interaction should be determined by the subsystem in which is embedded. For

example, the pool protocol defined in MASCOT3/DORIS allows a completely

asynchronous communication between two active components, which means that

the writer and reader work concurrently and they are never held up. The data to

transfer in this protocol is a reference data type (“dictionary” data). This data may

be lost because the writer can be faster than the reader. Therefore, this protocol can

be used as an explicit design decision that it is better to lose data than degrading

(possibly in a non-deterministic manner) the performance of the system.

 102

These design discussions on the type of interactions between active processes that

are done in MASCOT3/DORIS are not possible in OO. Furthermore, in

MASCOT3/DORIS by separating the processing components from the

communication components it is possible to describe in a natural way and explicitly

the dynamic interactions the processes should have to communicate and also it

allows to explicitly identify the data processing function primitives (processes),

which is important from a system functional view point. This information, which is

extracted at the design level, is important at the implementation stage but also has a

major significance at run-time when scheduling policies have to be applied in order

to build the real-time system.

In MASCOT3/DORIS the activities as active processes are assigned with different

priorities and the communication IDAs (the protocols) usually are mapped as a

shared resource between the active processes if they are allocated at the same

physical node. In other words, RTN provides a strong form of design partitioning

which gives a sound basis for working allocation and allows good visibility of

progress during development. Activities, subsystems, IDAs can be embodied in

special test systems for prototyping or integration testing purposes, if necessary in

execution environments which differ from the final target configuration. Further

development aspects of MASCOT3/DORIS are discussed in the next chapter. On

the other hand, in OO the visibility of the communication between objects

components and the explicit definition of their dynamics interactions and the data

exchanged is not regarded as a crucial design decision and it is usually left to an

implementation stage. Therefore, specific temporal properties and also functional

behaviours, which real-world requirements have, are not reflected in the design.

From a systems engineering view point, it is important to force the specification of

these properties and the reflectivity of these behaviours at the design stage for

example to avoid un-deterministic hazards.

3.7.3 Concurrency and Information hiding

Defining the temporal and functional behaviour of the different parts that form the

whole system, is essential in order to design and build the desired system. Although

most of the temporal and functional properties are defined at the stage of

 103

specification of the system like requirements and constraints, to infer and verify

these properties at the design stage is not a trivial task. In MASCOT, functional

properties are made clearly visible in the design process due to the close

correspondence between the functional specification of the components and the

designed components at the design stage. The temporal behaviour of the activities

in RTNs is mostly established by their own processing time and the nature of the

interactions between them through the intercommunication data area (IDA). So, as

it is explained in [Simpson 2003f, pp.157], “the overall timing properties of a

system are therefore determined by a complex combination of the timing of

processing operations within individual processes, taken together with the timing

effects of process interaction”.

In the OO approach, although the functional behaviour can be illustrated at an initial

stage of design by means of classes and objects and their relations between other

classes or objects, derived designs can include more objects or relations whose

functionality is not shown or is not clear. The temporal properties in the OO

approach, as is mentioned in the previous subsection, are generally quite difficult to

define (in fact, they are effectively ignored because time properties cannot be fully

determined until the temporal interactions nature between processes is defined).

Consequently OO usually does not support the verification of timing deadlines

effectively, which is an important requirement in real-time systems.

The approach to concurrency, which in real time systems and especially in real time

embedded systems is usually an essential property, differs in the two methods. In

the OO approach concurrency is applied by implementing objects using for

example. multi-threaded OO programming (effectively using a class library that

includes thread classes). RTN assumes that the concurrency comes from the

problem, from the solution in hardware (i.e. multi-processing) and from the design

approach. The network of activities communicating through defined communication

components IDAs are presupposed to be independent and concurrent. In

MASCOT/DORIS it is assumed that if concurrency can be exploited, then

concurrency is part of your design.

 104

Information hiding was introduced by Parnas [Parnas 1972] as a procedure for

decomposing a system into modules. According to Parnas, information hiding is a

design decision, which consists of the following idea “any design decision that is

susceptible to change should be hidden”. Therefore, each key design decision

should be known to only one module and then information shared between modules

is kept to minimum [Gomaa 1984a]. OO and RTN both hide information although

they use different approaches. In OO the object can be considered as an information

hiding module if the designer does not decide to make the module visible, which is

considered bad programming practice. Therefore, attributes, operations and

methods, (especially the attributes) are often designed in a way that only the object

which defines them, can access them. In MASCOT/DORIS information hiding is

provided by means of “access procedures”. Therefore, the details of the data

structure and the synchronisation of the access to this data are hidden from the

active processes.

3.7.4 Inheritance

As mentioned, OO has an essential component called an object which is defined by

its state, identity and behaviour. The state of an object comprises all the static

properties of the object and the current dynamic values of each of these properties.

The identity is the property of an object which distinguishes it from all other

objects. The behaviour is how an object acts and reacts, in terms of its state changes

and message passing, i.e. the operations that its clients may perform upon it, also

the operations that it may perform upon other objects. The relationship between

objects can determine which operations can be performed and what behaviour

results from the relation. There are two main kinds of relationships between objects:

� Using relationships the object involved in this type of relationship may only

operate upon other objects, it may only operate by other objects or it may

operate by and upon other objects.

� Containing relationships (inheritance) the object has a “is-a” relationship

with other objects. This containing relationship can be called inheritance.

 105

Another main relationship in OO languages is called instantiation, which defines the

relation e.g. between objects and their classes. As discussed, there are also other

relationships among classes based on a “kind of” or “part of” class relationship, i.e.

respectively generalisation and aggregation. Lastly, association is the relationship

which denotes some semantic connection among unrelated classes. Currently,

several approaches have evolved in programming languages to express these kinds

of relationships among classes.

Inheritance is a relationship that may affect the determinism and performance of the

system. As mentioned in previous section 3.7.1, inheritance at the implementation

level, is a mechanism for sharing and reusing code between classes. The notion of

an inheritance or classification hierarchy is that it deals with the structural and

semantic relationships between objects and between classes (i.e. subclass inherits

from one or more super-classes) and eliminates the redundancy of storing the same

data or procedure more often than necessary. A subclass typically redefines the

existing structure and behaviour of its super-classes. Normally, in OOP, objects

inherit methods and attributes from their superior classes, but they do not inherit the

values of attributes, merely the ability to have a certain type of value. Therefore, at

the design level, inheritance allows concise definitions of subclasses which are

described only in terms of how they are different from their super-classes.

It is possible to have classes with a single or multiple inheritance relationships. The

difficulty with multiple inheritance is that sometimes the properties inherited from

two (or more) parents may be directly or partially contradictory, which may create

conflicts. Therefore, there exists a compromise between complexity and reusability;

the more complex a system is, the more difficult it is to maintain, and the more

semantically rich it is, the more specific and therefore less reusable its components

will be.

Inheritance is supported in OO systems but it is not supported in RTN approach.

The problem that arises is that the increase of coupling between modules due to

inheritance creates an additional type of coupling between a class and its super-

class. It is also necessary to be extremely cautious about this reusability; by

exposing implementation details to an object’s clients it may be difficult to reuse

 106

the code after applying some changes. Moreover, the hierarchy itself may be

exposed, so changes cannot be safely made and it is not possible to guarantee that

the interface of an object has not been changed.

However, at this point it is possible to ask if RTN does not include inheritance, how

does RTN provide reusability and extensibility, features that OO systems claim to

have through inheritance? MASCOT uses the concept of templates and instances.

For example, in Figure 3-1 “producer” is the template of the activity on the left of

the Figure 3-1 and “prod” is the name of the instance of the template called

producer. In RTN, instances are executed at run-time. It is possible in RTN to have

more than one instance of the same template in the same design, providing then, the

reusability of modules. However, in RTN, the relationship between templates and

instances is unique. If the template is changed the instance is also changed.

In the OO approach, extensibility is not only an extension of the system by

upgrading with new modules or new instances but refers as well to the property of

extending a module or creating a different module from a primitive one, using the

inheritance property. In RTN extensibility it is seen only as an upgrade or extension

of the network design by adding new modules.

3.7.5 Polymorphism and dynamic binding

Another mechanism in the OO approach, that is linked to the concept of inheritance

and is used to share and reuse code, is called polymorphism. Polymorphism,

(literally “having many forms”), means the ability of a variable or method to have

different behaviours at run-time, or more specifically the ability to refer to instances

of various classes. For example, the same named method can behave differently

depending on the parameters that it receives or can behave in the same way even

though it has received different type of parameters. This form is normally called

“overloading”. A form of polymorphism also may be used when the features of

inheritance and dynamic binding interact. Dynamic or late binding means that the

types of all variables and expressions are not known until run-time. In this case,

polymorphic methods can be thought of as late-bound procedure calls, where the

actual method or procedure to be invoked is not determined until the method is

 107

actually applied to a specific object. As pointed out in [Graham 1994]

polymorphism considerably enhances the information hiding feature of OOP. So the

linking to the method can only be done at very last moment. Further, it promotes

encapsulation by allowing general-purpose classes to be written that will work

successfully with different types of objects.

In RTN approach, one of the forms of polymorphism mentioned can be found when

some predefined access interfaces (e.g. put or get) are used in different subsystems,

and therefore these access interfaces deal with different type of data but behave in

the same way: put write the data no matter which type it is. The other form of

polymorphism related to inheritance and dynamic binding is not explored in RTN,

because it increases the non-determinism of the behaviour of the components. The

behaviour of the method is not known till the last moment at run-time, because the

class of the object being operated upon may not be known until run-time. Therefore,

it is not possible to predict its behaviour in some critical situations and the

scheduling policies are not easy to apply due to this uncertainty. In safety-critical

applications the ability to predict system behaviour (or at least bound it) is

obviously crucial.

3.7.6 Performance

The advantages most often put forward in favour of the OO systems are the inherent

reusability of the objects and the extensibility of OO systems. It is asserted that

[Graham 1994], [Booch 1991] the features of inheritance, polymorphism and

dynamic biding can contribute to simplify and to reduce development time and the

size of the resulting source code, which are important features in real-time

embedded systems. Nevertheless, other features in OO like dynamic linking and

garbage collection imply extra run-time support, introducing run-time performance

overhead on the speed of OO programs. Garbage collection is a mechanism that

allows the freeing of heap space for dynamically-created objects that are no longer

needed so that the space in the heap is made available for subsequent new objects.

The garbage collector somehow determines which objects are not referenced by the

program anymore and releases the heap from such objects. Moreover, the design of

a system using these mechanisms implies difficulty in testing due to the lack of

 108

determinism for example in the schedule predictability or determinism in the

behaviours of the components of the system. Moreover, when there is more than

one thread of control it is more difficult to control predicted behaviours and

sometimes unpredicted behaviours are arisen which may trigger deadlock situations.

Dynamic invocations in OO may imply time performance cost on the

communication between objects. For example, an implementation of an invocation

method, that cannot be resolved statically, must do a dynamic lookup in order to

find the method, which has been defined, for the class of the receiving object.

[Booch 1991] indicates that dynamic invocations clearly take much more time than

simple subprogram calls that are made when the invocation of a method is done

statically. Moreover, the OO approach allows the design of system components

using more than one layer of abstraction. Hence, invoking a method at the high-

level of abstraction may result in a cascade of invoking methods (high-level

methods usually invoke lower-level methods, and so on), reducing the overall

system performance. Therefore, for applications in which time is a limited resource

such as in real-time systems, so many invocations may be unacceptable.

Another performance risk in OO is derived from deep class hierarchies. Many

inheritance relationships provoke many super-classes, whose code must be included

when they are linked into the most specific class. Thus, an excessive amount of

object code is produced. The last remaining performance risk with OO systems

comes from the dynamic allocation and deallocation of objects. Allocating an object

on a heap is a dynamic action as opposed to statically allocating an object either

globally or on a stack frame and heap allocation usually costs more computing

resources. Again, for time-critical applications, the cycles needed to complete a

heap allocation are not affordable.

As mentioned in previous sections, the features of inheritance, polymorphism and

dynamic linking do not exist in MASCOT-3/DORIS and for reasons of good

engineering practice. The main reason for this is because in RTN all the

components, which constitute the network system, must be defined before starting

up the system avoiding dynamic creations (as mentioned, in RTN the design

network should be static) . In other words, at the design level the network is

 109

completely described and defined. Then, at the physical mapping stage the network

is created by physically allocating the activities and routes. Therefore, at run-time

the network is as fully determined as possible, not allowing the possibility of late-

dynamic creation of activities or routes. However, as mentioned in section 3.5.2, for

a system with “imperative” dynamic requirements RTN proponents provide

solutions to establish this dynamism in the RTN network.

Defining and describing, at the design level, all the communications and

relationships between all the components which constitute the whole system, can be

seen as a time consuming task. However, this is consistent with good engineering

practice and it provides understanding of the whole system, giving the designer

control over the system, as well as making the system more deterministic and

predictable. Deterministic in terms of knowing before run-time how many

components will exist, avoiding the possibility of resource exhaustion, because the

resources are fixed before the start up process of the system. Predictability, in terms

of scheduling the activities e.g. by knowing how many processes will exist it is

possible to predict processing times of tasks and apply one of the known tactics for

scheduling these tasks. Predictability, in terms of deadlines of the tasks, can be

partially determined by the use of MASCOT/DORIS protocols. These protocols

imply different temporal interaction effects on the activities that communicate, and

therefore it is possible to predict e.g. when the activity will start its own process, by

examining the type of protocol used.

3.8 Summary

One of the conclusions in chapter 2 was that to design a large distributed real-time

surveillance system, it is necessary to establish a framework from a point of view of

solid system engineering principles, which allows the creation of a system, instead

of building such system as integration of different algorithms placed in different

computers. Therefore, in this chapter an introduction to software design methods to

create such systems has been presented. Furthermore, a comparison between the

OO approach and the proposed approach RTN in this work has been presented.

Even though OO design methods are wide-spread and are the technology commonly

used to design systems, in this work we present RTN as a design approach for

 110

surveillance systems because it is a mature technology inspired by hard engineering

applications and that partitions the software giving complete visibility of the

different components that constitute the system. Besides the similarities and

differences between OO and RTN approaches, which have been highlighted in

section 3.7, there are two main differences that we present in this work, RTN as a

design approach for surveillance systems. The first difference lies in the fact that the

OO’s philosophy is to consider software as multiple-purpose flexible artefacts.

However, RTN’s philosophy is to consider software as an engineering fit-for

purpose product (an engineering system does what it is supposed to do and nothing

more). A clear example that illustrates this statement is taken from a private

conversation [S. A. Velastin 2006] “[]…A civil engineer would not construct a

bridge thinking that eventually it could also be used as a ferry! At the same time, a

user of the bridge crosses it with confidence that it has been built using solid

engineering principles and that it is not a multiple-purpose appliance…[]”.

The second main difference, which has been stressed through this chapter, lies in

the communication model of OO and RTN. RTN explicitly expresses, through a

rich set of protocols (taxonomy), the functional behaviour and the timing properties

of the communication between elements in the system, because the communication

is considered a crucial part in the specification of the system. In OO the

communication between elements is considered an additional part of what it is

important (the elements that communicate with one to another). Therefore, in OO,

there does not exist any taxonomy or explicitly characterisation of the functional

behaviour and the timing properties of the communication between elements in the

system.

Moreover, RTN imposes a disciplined approach to design, which yields a highly

modular structure, ensuring close correspondence between functional elements in

design and constructional elements for system integration. DORIS also allows

different interactions between the components through its protocols extensions,

providing the possibility of creating an asynchronous communication between

different processes. The following chapter will now present a comparison between

two different specific design solutions using CORBA (OO) and DORIS (RTN) for

an existing real time surveillance system.

 111

 112

4 Case study: ADVISOR

4.1 Introduction

This chapter describes a comparative study between two key technologies: CORBA

and DORIS. Each of these two technologies embodies the principal concepts of OO

and RTN, respectively. CORBA and DORIS technologies are used for designing

and implementing solutions mainly in distributed environments. Moreover,

CORBA, at the time of writing, has been presented in OMG (Object Management

Group) documents as the multi-platform and multi-language solution for

distribution and system integration. The OMG has also stated that CORBA will

continue to expand as the particular platform for real-time, embedded, large,

mission-critical enterprise computing systems using OO technology. Therefore, this

chapter is centred on a comparison of the distributional properties and the

architectural design that the third generation of surveillance systems require. This

comparative study is done through a case-study of an existing research solution for

a real-time distributed surveillance system called Annotated Digital Video for

Intelligent Surveillance and Optimised Retrieval (ADVISOR). This choice has been

made because a prototype of this system (called in this chapter ADVISOR

Prototype) used CORBA as a system integration and distribution solution and it

represented a major effort in investigating distributed surveillance systems.

Therefore, this chapter firstly presents a brief introduction to CORBA in section 4.2

(note that this section does not intend to give a comprehensive description of

CORBA, but just to give a brief introduction to it by highlighting some of the

features and components that make up CORBA and that are used in the ADVISOR

Prototype). Section 4.3 presents a generic solution of a distributed surveillance

described in terms of its aims, requirements and specifications, which is called

ADVISOR system. Section 4.3 also highlights the differences between the

ADVISOR system and a particular implementation of ADVISOR system that is

called ADVISOR Prototype. This Prototype is the specific system used in this case-

study.

 113

Following a brief introduction to CORBA and the description of the ADVISOR

system and the prototype, section 4.4 discusses and illustrates graphically the

CORBA architecture design used in the ADVISOR Prototype. It is important to

mention that in this chapter, in order to illustrate the different designed

architectures, the DORIS graphical notation is used. The reason for this is the need

to illustrate, in a graphical manner, the CORBA and DORIS solutions for

subsequent comparisons, but CORBA does not have any specific graphical notation.

Although it may be argued that it is possible to specify a CORBA solution using

UML notation, it is easier to depict the differences in both technologies using the

same graphical tool (i.e. DORIS graphical notation). The next section 4.5 presents

the architectural design of the ADVISOR Prototype using CORBA. Therefore, it is

important to stress that the fact that the DORIS graphical notation has been used to

represent a CORBA architecture solution does not necessarily mean that such a

solution uses underlying RTN concepts.

Section 4.6 presents a new architecture design solution of ADVISOR using RTN

concepts (i.e. from the same requirements presented in section 4.3, a new solution is

presented using only the fundamental RTN concepts). Having then presented and

discussed the two architecture designs that use CORBA and DORIS approaches,

section 4.7 compares the two approaches by first highlighting their differences and

then by focusing on three aspects: communication, distribution and development

process.

For example, we highlight that the main difference in communication between

distributed processes is that while CORBA is based on a client-server relationship,

MASCOT/DORIS uses a passive element. We then show that this and other

differences in communication have a direct and significant effect on the architecture

designs. Distribution in CORBA is based on the design and posterior distribution of

CORBA objects over a distributed processing environment. These objects represent

the servers that, through static/dynamic invocations, handle the requests from the

client. By contrast, in MASCOT/DORIS the distribution is centred on a template

substitution, which allows distribution of the elements that constitute the application

network while maintaining the defined communication protocols. To end this

comparison, there is a discussion of integration policy and development aspects,

 114

such as how CORBA manages all the interactions between objects created statically

or dynamically at run-time. A brief summary of these differences is depicted in

Table 4-1.

This case study then leads to, as presented in Chapter 5, a general proposal for a

large scale real-time distributed intelligent surveillance system architecture, using

DORIS as the chosen design method. This proposed design addresses some aspects

of this complex domain, highlighting one of the aims of this work: to demonstrate

the importance of creating a framework to design these complex systems. A global

picture of a general distributed surveillance system is given. The system is

constituted by a diversity of components whose integration requires a complex

analysis of the different requirements and functionalities.

Table 4-1. The concepts that will be compared between CORBA and MASCOT3/DORIS.

4.2 CORBA (Common Object Request Broker
Architecture)

As mentioned in the Introduction, this chapter is concerned with a comparative

study between CORBA and DORIS. The latter has being extensively introduced in

chapter 3, therefore in this chapter only CORBA will be introduced.

 CORBA MASCOT3/DORIS

Communication
techniques

− Client/Server − Paths and IDAs;
Protocol taxonomy

Distribution of
components

− Static/dynamic
invocations

− CORBA objects

− Template substitution
− Distributed protocol

taxonomy
− Subsystem/Activities

Partitioning
Run-time and
scheduling
policies

Yes (a variant of
CORBA called TAO
ORB Core uses pre-
emptive strategy
with priority based-
connection)

Yes, the choice of
scheduling algorithm is
left to the designer

St
ru

ct
ur

al
 d

es
ig

n
m

od
el

Development
aspects

No Status progression and
system building
including mapping to
distributed hardware.

 115

The Object Management Group is an international organisation founded in 1989,

whose purpose is to define a set of interfaces for interoperable software. The OMG

promotes the theory and practice of OO technology in software development

[CORBA 2005]. The aims of OMG are the reusability, portability, and

interoperability of object-based software in distributed, heterogeneous

environments.

The first specification produced by OMG was CORBA [Henning and Vinoski

1999], which is an industry consensus standard and it can be considered as a

possible solution for interoperability between applications. CORBA, at the time of

writing, represents the next generation of client-server relationship that provides

highly distributed systems and applications. CORBA assists in the creation of

software architectures, but it does not design the software architecture itself

[Mowbray and Zahavi 1995]. The distribution solution is defined using the OO

paradigm, hiding different implementation languages, operating systems differences

and object locations.

4.2.1 CORBA components

The main components that participate in the communication mechanism in

CORBA, are listed next:

� CORBA object: is a “virtual” entity, which is located by the ORB, and it is

able to deal with the requests coming from the client.

� Target object: is a CORBA object, which represents the object that has to

deal with requests coming from the client side. This object exists in the

context of CORBA invocations.

� Client object: represents the object that calls the CORBA object. There is a

spatial decoupling between the client object and the CORBA object.

� Server object: is an application where one or more CORBA objects exist

(see Figure 4-1).Like the target object, the server object only exists on the

context of CORBA invocations.

 116

� Object Reference: is a handle used to identify a CORBA object. For the

client the object reference is an opaque entity (i.e. “black box” entity).

� Servant object: is a programming language entity (i.e. an instance) that

incarnates a CORBA object. See Figure 4-1.

Figure 4-1 presents the different states that a CORBA object, in a server

application, goes through to establish the communication between the server object

and the client object. When the CORBA object is created an object reference is also

created. Once the object is created, its state may alternate between an active status

or a deactivated status, as is shown in Figure 4-1. While the object is in its active

state and the servant is incarnated, it is able to receive and process requests coming

from the client object. A CORBA object is incarnated only by a single servant at

any point in time, although several instances of a servant can be created to represent

the same CORBA object.

Note that the life cycle of the CORBA object and the servant are different; the

CORBA object only exists in the context of creation and destruction whereas the

servant object only exists when it is incarnated and it is destroyed when it is

etherealised6.

6 Terminology used by [Henning and Vinoski 1999] to describe the servant state when is destroyed.

 117

Figure 4-1.The states of a CORBA object and servant object life cycle [Henning and Vinoski

1999].

4.2.2 CORBA features

CORBA includes features aimed at accomplishing reusability, portability and

interoperability between distributed integrated applications. The main features can

be summarised in the following list and Figure 4-2 illustrates the relation between

these features:

- OMG IDL (Interface Definition Language)

- Language mapping facilities and Application Program Interface (API)

- Static and dynamic method invocation

- Object Adapters

- Inter-ORB protocol

Figure 4-2.Common Object Request Broker Architecture (CORBA)[Henning and Vinoski

1999].

The OMG IDL is a strongly typed declarative language and an important notational

tool for the software architecture in CORBA [Mowbray and Zahavi 1995]. OMG

IDL specifies a coherent definition of interfaces. IDL provides a separation between

 118

design and implementation because it has no implementation information, providing

encapsulation of the different components and isolation between subsystems. Then,

the question where to place OMG IDL interfaces becomes a design decision. The

OMG IDL can be layered on top of any communication layer making then the

application software independent from these underlying layers. The language

mappings or bindings specify how IDL is translated into different programming

languages, by defining which facilities of the programming language are used

[Mowbray and Zahavi 1995].

The static and dynamic invocation facilities in CORBA allow the creation of

method invocations at compile time or at run-time. In both types of invocation the

client needs the object reference (e.g. ID object) of the remote object (server object)

to create a request and to call the method that performs the service. The

mechanisms to discover remote objects in CORBA can be achieved in three

different ways (at the time of writing). First, it is possible to give the client directly

a string with the CORBA object reference. The second way is done by obtaining the

reference from the name of the object (through an intermediary provided by

CORBA called a Naming Service). The third way is done by obtaining the reference

from the type of service that the server provides (through an intermediary also

provided by CORBA called the Trader Service). Object services like the Naming

Services are a collection of system-level service interfaces that are included into the

functionality of the ORB; these services are used to create a component, to name it,

and introduce it to the system. CORBA provides run-time metadata for describing

the server interfaces known by the system, which the client uses to invoke services

at run-time. The IDL pre-compilers create this metadata automatically. The static

method invocation can be defined like a conventional RPC but with polymorphism

and inheritance properties included; e.g. the same method invocation can have

different results depending on which server object deals with the call. The static

interface in the client side is directly created through the client stubs by the IDL

pre-compiler. Equally, at the server side, the static interface is created through the

skeletons.

An Object Adapter is an object that allows the client to invoke requests on an object

whose interface is unknown to the client (CORBA provides in its latest

 119

specification [CORBA 2005] the Portable Object Adapter (POA)), see Figure 4-3.

In a server application, the Object Adapter creates object references and ensures

that each target object is incarnated by a servant object (see Figure 4-1).

Finally, an Object Adapter captures dispatched requests from the server side and

redirects them to the corresponding servant, which incarnates the target object. The

POA is illustrated in Figure 4-3, in which another component appears, apart from

the ORB, called the POA manager that controls the requests that are sent to the

POA.

Figure 4-3. The flow of requests to the server side and how POA dispatches them.

The ORB can be defined as the object bus of CORBA. It lets the objects invoke and

receive requests transparently; the client is not aware of the mechanisms used to

communicate with the server objects. When a client invokes an operation, the ORB

locates the target object, activates the server application and a servant if they are not

activated. Furthermore, it transmits the arguments of the requests, waits for the

results and returns the values of the call to the client, raising an exception when

appropriate. Moreover, the ORB provides a variety of distributed middleware

services as presented in the previous section and in [CORBA 2005]. The ORB

allows objects to discover each other at run-time and to invoke services.

Furthermore, each ORB must support an Interface Repository (see Figure 4-2),

 120

which is a run-time repository of interfaces specifications of all the objects that the

ORB7 recognises. On the other hand, the Implementation Interface (Figure 4-2) is a

run-time database, which contains the actual implementation of the objects.

4.3 ADVISOR

ADVISOR represents, at the time of writing, one of the most advanced examples of

a large distributed real-time surveillance system using OO technology. This section

presents a description, i.e. requirements and system architecture, of this existing

distributed real-time system. The first two sections explain the main features of the

system as well as the overall goals of the system and present the requirements of the

system based on the official specifications [ADVISOR 2003]. The following

sections present the overall design of the system modules within ADVISOR.

Finally, the last two sections explain the communication between the different

modules that constitute ADVISOR, as well as explaining the type of data that the

system has to deal with and the communication structure between the modules.

ADVISOR was developed as part of an EU-funded project on innovative

architectures for public transport systems, focused mainly in metro stations.

ADVISOR was created to provide assistance to the operators by increasing their

efficiency to survey with many cameras available at the same time, but with a

limited number of monitors (though the ADVISOR Prototype only worked with

four cameras simultaneously). Therefore, ADVISOR was created to generate better

use of transport infrastructure by improving safety and security environment e.g. in

metro stations.

4.3.1 Specifications of the ADVISOR system

The ADVISOR system is intended to fulfil a set of requirements. The following list

represents some of the initial requirements:

7 To create interoperability between CORBA software architectures, the CORBA specification
includes Inter-ORB protocols like General Inter-ORB Protocol (GIOP) or Internet Inter-ORB
Protocol (IIOP), which specify a set of message formats and common data representations for
communications between ORBs [Henning and Vinoski 1999].

 121

• ADVISOR is a machine vision system, capable of monitoring all CCTV

cameras in an installation. The computer vision techniques operate on

compressed digital video inputs.

• The goal of ADVISOR consists in assisting human operators by automatic

selection, recording and annotation of “interesting” images as far as

“abnormal” crowd and individual behaviours are concerned. The system is

intended to enhance the effectiveness of the surveillance operation of any

installation.

• The ADVISOR system uses an open and scalable architecture approach so

that it is possible to develop algorithms, which can be “plugged into” the

system, taking appropriate inputs and generating appropriate outputs.

• ADVISOR runs on standard commercial hardware with an interface to a

wide bandwidth video distribution network. The software is implemented on

a local network of processors communicating via an open software standard

for distributed processing. An Object Request Broker (ORB) for the

software environment is used to develop a scalable system suitable for

installation in a wide range of locations using a distributed computing

environment.

• ADVISOR interprets shapes and movements in scenes being viewed by the

CCTV in order to build up a picture of the behaviour of people in the scene.

• That means the system is capable of interpreting the behaviour and deciding

whether such behaviour represents a significant event.

• ADVISOR detects the anomalous events with high probability with low

false alarm rate. The system alerts operators in real time.

• ADVISOR stores all video output from cameras. Storage capability allows

continuous recording. In parallel with recording multiple video inputs, the

archive function stores commentary of associated sequences (known as

annotations). Therefore, the archive can search for video sequences, which

match keywords in the notation data or according to specific times. Retrieval

of video sequences takes place alongside continuous recording.

 122

4.3.2 Specifications that ADVISOR Prototype did not accomplish

As mentioned, ADVISOR was developed as a part of an EU-funded project,

therefore at the end of the project; a prototype had to be built. Some of the initial

requirements of ADVISOR system that are not accomplished by the prototype, are

presented in the following list:

• ADVISOR system is able to improve the performance in detection and

recognition of anomalous events by learning via operator’s feedback. This

requirement is not carried out by the ADVISOR prototype; because in the

prototype, the user (i.e. operator) is not able to change any parameter of the

system.

• The requirement states that ADVISOR is immune to long periods of loss of

video inputs. It is also immune from step changes in scene so that, a number

of short video sequences can be assembled and replayed into the algorithms

to demonstrate certain kind of behaviours.

Therefore, ADVISOR was the paper design in the EU-funded project of the same

name, while the ADVISOR Prototype was its practical realisation that involved

some limitations to the original paper design. Sections 4.3.3 and 4.3.4 present the

design of ADVISOR specifications, because the ADVISOR Prototype does not

accomplish all mentioned specifications, any modification to the final ADVISOR

Prototype design is reported in the presented ADVISOR design sections. Note that

in sections 4.5 and 4.6, the final designs correspond to the design of ADVISOR

Prototype rather than the ADVISOR system, which are slightly different.

4.3.3 ADVISOR system architecture design

ADVISOR is a semi-automatic surveillance system that can be made up of one or

more Human Computer Interfaces (HCI) and one or more Advisor System Units

(ASU) as illustrated in Figure 4-4. Each HCI can be connected with up to four

ASUs and each ASU can be connected up to two HCIs. The ADVISOR prototype

(a demonstrator tested at Barcelona’s Sagrada Familia metro station) consists of two

HCIs and one ASU unit. One HCI is installed at a remote control centre and the

other HCI, which is used mainly for debugging purposes, is installed at the same

 123

place of the ASU module, see Figure 4-5. The hardware platform of the ADVISOR

prototype consists of six PCs. In the prototype, the HCIs were designed to run on a

PC as a standalone process. The ASU software module consists of two software

modules: the Image Processing Unit (IPU) and the Symbol Processing Unit (SPU),

see Figure 4-6. The IPU consists of four software modules and the SPU consists of

two software modules, as shown in Figure 4-7 and Figure 4-8. Each of these

software modules inside the IPU and SPU were originally designed to run on a

standalone PC. However, the final hardware mapping in the prototype, consisted in

having three software modules in one PC and each of the three remaining software

modules on a separate PC. All the controllers in the ASU module (the ASU

controller, the SPU controller and the IPU controller) resided together in an ASU

control process in one of the PCs. The system has a “hub” topology whereby an

ASU does not have links with other ASUs, thus there is no communication between

them. In the same way, HCIs do not communicate between them either (see Figure

4-4). An ASU has both a maximum processing capability and storage capacity,

therefore there is an upper limit to the number of cameras that one ASU can handle

(in [ADVISOR 2003] is stated that the limit is around 10). The ADVISOR

prototype system is capable of operating with up to four camera inputs

simultaneously at 5 frames per second.

 124

Figure 4-4. Logical view of ADVISOR system.

 125

Figure 4-5. The logical view of the ADVISOR Prototype (tested at Barcelona).

To an operator, the ADVISOR system presents itself as a single application that

resides on their computer, i.e. the HCI. Therefore, only an HCI is configured to

control and start the system up. Moreover, an HCI may dynamically configure

selected ASU parameters. The HCI in the ADVISOR Prototype only starts-up the

system and requests archived or live images from the system to visualise. Therefore,

the HCI of the ADVISOR Prototype is unable to change any configurable parameter

of the system but can only change the parameters related to the visualisation of live

or archived images.

Each ASU could contain one ASU controller, one SPU module and one or more

IPU modules. However, the ASU of the Prototype only contains one IPU module,

as can be seen in Figure 4-6. In the ASU module, the SPU and IPU are slaves (i.e.

clients) and they are not aware of each other’s presence in the ASU. The IPU

module contains one IPU controller, one Image Capture module, one Motion

Detector module, one People Tracker module and one Crowd Monitor module, see

 126

Figure 4-6. The SPU module contains one SPU controller, one Behaviour

Recognition module and one Archive module, see Figure 4-8.

In terms of the communication between the HCI and modules that reside inside the

ASU, the HCI communicates directly with all the modules that are inside an SPU

module (i.e. the Archive module and the Behaviour module). On the other hand, an

HCI can only communicate directly with one of the IPU module’s (i.e. Image

Capture module). Therefore, an HCI may take live camera feeds, which are in

compressed form, from the Image Capture module, it may also take live annotations

such as alarm messages raised by the recognition of a given situation, from the

Behaviour module. Moreover, HCI may also take recording sequences and

annotations from the Archive module. An HCI may search in an Archive module

using different criteria: by time, by camera, by type of event, station or date.

4.3.3.1 ASU module
As mentioned before, each ASU operates independently of any other ASU. The

ASU can only communicate with the HCI through one bidirectional control

channel8 and several data channels. The ASU Controller has a management role and

its job is to control its SPU and its IPUs. The ASU Controller:

• Supervises the start-up and close-down of the SPU and the IPUs through the

SPU/IPU controllers.

• Establishes the appropriate connectivity (channels) between the SPU and the

IPUs.

• Provides the primary point of contact with the HCI through a single

bidirectional control channel.

8 Bear in mind that in ADVISOR, the communication links are called “channels” even though they
do not have any connection with the channel protocols of MASCOT/DORIS discussed in chapter 3.

 127

Figure 4-6.Top level design of ADVISOR System Unit (ASU). Note that, the ADVISOR

Prototype consists of one HCI that is connected to one ASU.

4.3.3.2 IPU module
Figure 4-7 illustrates an Image Processing Unit or IPU module, whose functionality

is based on capturing the output from a number of cameras as sequences of JPEG

(Joint Photographic Experts Group) images, and then on running various ‘machine

vision algorithms’ on these sequences generating low-level observations. The low-

level observations are expressed in XML (Extensible Markup Language) format,

and sent through a data channel to the SPU. The IPU module (in ADVISOR

system) consists of five distinct components: The IPU Controller, Image Capture

module (Image Capture CORBA Object), Motion Detector module (Motion

Detector CORBA Object), People Tracker module (People Tracker CORBA

Object) and Crowd Monitor module (Crowd Monitor CORBA Object). Although in

ADVISOR Prototype, the People Tracker and the Motion Detector module are

implemented in the same module. As mentioned before, the IPU Controller is a

slave to the ASU Controller, as shown in Figure 4-6 and Figure 4-7. At the start up

of the system, the IPU Controller dynamically configures selected IPU parameters,

such as camera state, that relates to a single component such as Capture module.

Therefore, to configure a parameter of the Capture module (for example), the

controller simply calls the appropriate method. This is shown by the dashed lines in

 128

Figure 4-7. Note that as mentioned, the specification of changing parameters

dynamically is not implemented in the ADVISOR Prototype, only the dynamic

configuration of parameters (at the start up of the system) is implemented.

Figure 4-7. Top level design of Image Processing Unit (IPU).

4.3.3.2.1 Description of different parts in the IPU module
Different parts that constitute the IPU module are described by diagrams in

Appendix B (pp. 280-293), to give an appreciation of the amount of processing

capacity and data requirements that a small distributed surveillance system like the

one presented in this case study can require. Bear in mind that this case study is a

 129

surveillance system with a maximum of four cameras. The description of each part

is followed by design diagrams representing the implementation of the vision

algorithms that appear in each submodule inside an IPU module. Therefore, the

diagrams presented in Appendix B (from Appendix B-1 to Appendix B-10) show

each of these sub modules as a white box. These diagrams have been made from the

information extracted from the specification documents of ADVISOR [ADVISOR

2003]. Therefore, they outline the information that has been extracted from the

specification documents. Note that the Tracker module is not represented because it

did not appear in these specification documents of ADVISOR.

4.3.3.3 SPU module
Figure 4-8 illustrates the three components inside the Symbol Processing Unit

(SPU): a master SPU Controller that manages the rest of components (i.e. The

Behaviour Recognition CORBA object and the Archive CORBA object). The SPU

stores JPEG image sequences on disk that are sent by the IPU to the Archive

module. In the Behaviour Recognition module, machine vision algorithms are run

to generate high-level observations from the low-level observations that are sent to

the SPU by the IPU. The obtained higher-level observations are also stored in the

Archive module, which sends them to the HCI on demand, in XML format, through

a single data channel. The last functionality of an SPU module consists in allowing

the HCI to do search and retrieval operations with stored image sequences and

observations. Various control and data channels are used to support this facility.

As mentioned before, the SPU Controller is slave of the ASU Controller. In the

same way as the IPU Controller, the SPU could configure dynamically selected

SPU parameters. See discontinuous arrows in Figure 4-8. As mentioned in the

previous section, the specification of changing parameters dynamically is not

implemented in the ADVISOR Prototype.

 130

Figure 4-8.Top-level design Symbol Processing Unit (SPU).

4.3.4 Data types in the system and communication between
modules

All the communications occurring between an HCI and an ASU could be

categorised as either control communication or data communication.

• Control communications, also called transactions, have the following

constraints:

- Only an HCI initiates transactions. All messages are in XML based

format.

- When the HCI requests an ASU to do something, the ASU attempts

to do it and responds appropriately. Only an HCI initiates

transactions (at the operator’s request, even though as mentioned in

the specifications, the HCI in ADVISOR Prototype only initiates

transactions related to data visualisation, to retrieve archived or live

images from the system).

- No more than one transaction can be in progress.

 131

- As mentioned before, an HCI might dynamically configure selected

ASU parameters.

- A control communication has priority above data communication.

• Data communication consists in large amount of information sent from the

modules, usually over a long period of time. The information takes the form

of compressed images and annotations. It only goes from ASU to HCI.

Control channels have been designed to transmit control data, sent in XML format,

from/to the ASU to/from the HCI. The traffic relating to the control channel

consists in command traffic (from the HCI to the ASU), responses traffic (from the

ASU to the HCI) and events traffic (from the ASU to the HCI). Events might be

configured to trigger alarms. Once an alarm is triggered, the HCI screen is

automatically switched to the scene view, where the event is recognised.

Data channels have been designed to transmit data from/to the ASU to/from the

HCI/ASU. The following list describes the number of data channels that each

module has and also the type and format of this data and from/to which modules the

data are sent:

- From the Archive to the HCI: Up to four pairs of channels (one pair per

HCI client). Each channel pair had one playback image channel and one

playback annotation channel in XML format. The transmission of

Playback image channels are realised at five frames per second (fps) in

JPEG format.

- From the Image Capture module (IPU) to the HCI: Up to four data

channels (one per camera). The transmission of data channels in JPEG

format at five fps using YUV colour format, is done through Internet

Protocol (IP) multicast communication.

- From the IPU to the SPU: Up to nine data channels of low-level

annotation in XML data format. Each output stream has its own data

channel going to the SPU; e.g. the output stream resulting from the

 132

detection of people in the scene, is sent to the SPU through data channel

(see Figure 4-7). The objects detected and marked as so-called ‘blobs’

are sent through other data channels. The outputs resulting from the

detection of crowd situations in the scene are also sent through data

channels. Each data channel is linked to specific image input channel

(i.e. one channel per camera). Only the data channel that sends the

detection of people in the scene, sends the information of all image input

channels through only one channel.

Several instances of each type of channel may be active simultaneously. However,

at any point in time any given HCI may listen to a maximum of eight data channels.

Therefore, as mentioned before, any HCI can only be connected to up to four ASUs

(this is shown in Figure 4-4). Consistent with the overall ADVISOR architecture,

CORBA has been used in the ADVISOR Prototype as an integration platform of

each module. Events, alarms and control data are also sent to the corresponding

module through the distributed object computing ability of CORBA. Therefore, the

next section presents and discusses the CORBA architecture design used in the

ADVISOR Prototype.

4.4 The CORBA architecture design implemented in
ADVISOR Prototype using DORIS graphical notation

Following the brief introduction of the main features and components of CORBA,

Figure 4-9 illustrates the CORBA elements described in Figure 4-2 that have been

used in the design of ADVISOR. Bear in mind that, as mentioned in the

Introduction, the DORIS graphical notation is used because CORBA does not have

any graphical notation associated to express its architecture designs. The DORIS

graphical notation also has been used allowing to compare, using the same

graphical tools, the different architecture designs of ADVISOR system using both

technologies (CORBA and DORIS). One design decision in ADVISOR is that only

static invocations are implemented. Therefore, there is no need to use an interface

repository (see Figure 4-2) on the client side. However, the main design decision is

to consider the ASU, IPU and SPU controllers as servant objects (i.e. CORBA

objects). The other modules, i.e. the IPU and the SPU modules are considered as

‘clients’. In this way, the IPU consists of three client objects (camera object, crowd

 133

monitor object and motion object) and the SPU consists of two more client objects

(i.e. archive and behaviour object). The HCIs (i.e. the local and central HCI) are

designed as objects that communicate between them or with the archive and

behaviour client objects; they do not have any direct relationship with servant

objects. This decision is derived from the fact that client objects in the IPU and the

SPU modules need information that is needed by the appropriate CORBA objects

(i.e. camera CORBA object, crowd monitor CORBA object, motion CORBA

object, archive CORBA object and behaviour CORBA object).

Figure 4-9. Links between the CORBA features illustrated in Figure 4-2 with the CORBA

design of ADVISOR.

Figure 4-10 illustrates the representation of ADVISOR CORBA design using the

DORIS graphical notation. The client objects are represented as subsystem

components grouped in a subsystem called ASUSUBSYSTEM (see top of Figure

4-10). The HCIs objects are represented as activities inside other subsystems called

HCICENTRAL and LOCALHCISTATION, which are presented in further

sections. Notice that the subsystems inside ASUSUBSYSTEM communicate via

IDAs as seen in Figure 4-10 (see the rectangle components that appear inside

ASUSUBSYSTEM figure). These components are added because it is not possible

to connect directly two active components (i.e. each of the subsystems that appear

 134

inside ASUSUBSYSTEM) directly using MAscot Design Generator (MADGE)

tools which follows the RTN principles. One of the principles established in RTN

states that the communication between two active components is always established

through a passive element called IDA. Therefore, MADGE does not allow

designing architectures connecting two active elements directly.

On the other hand, the servants are represented as activities inside the subsystem

called CORBA_SUBSYSTEM (see bottom of Figure 4-10). The Object Adapter

(i.e. POA) is represented by two other activities inside the CORBA_SUBSYSTEM

called OA_IN and OA_OUT. These two activities receive and send the requests

from the client objects in ASUSUBSYSTEM. The implementation repository,

whose function is to store information about the locating servants, is used by the

OA_IN activity and is represented by a “datarepository” component called

IMPLREPOSITORYSUBS subsystem (see Appendix C-22, pp. 306, Figure C-22).

Finally, the ORB interface and the ORB core (see Figure 4-10), which as mentioned

represent the object “bus” of CORBA, whose functionality and implementation is

transparent to the CORBA designer, is represented by components inside the

subsystem called COM (see section 4.4.1). This subsystem consists of a group of

distributed protocols introduced in chapter 3. Some of these protocols represent the

client-server relationship used in CORBA.

 135

Figure 4-10. The CORBA design of ADVISOR using DORIS graphical notation. ASU_

SUBSYSTEM (Appendix C-14, pp. 298), COM (Appendix C-13, pp. 297),

CORBA_SUBSYSTEM (Appendix C-15, pp. 299), IMPLREPOSITORYSUBS (Appendix C-

22, pp. 306), CONFI_PARAMETERS (Appendix C-21, pp. 305), CROWD_MONITOR

(Appendix C-20, pp.304).

 136

4.4.1 ORB and COM subsystem

As mentioned in the previous section, the COM subsystem (see Figure 4-10)

represents the ORB CORBA bus. Figure 4-11 presents the configuration of the

COM subsystem using a DORIS notation. One of the main differences between

both technologies (CORBA and DORIS) is based on the communication

mechanisms. On one hand, DORIS provides, as discussed in chapter 3, an extensive

taxonomy of protocols that allows the designer to choose the communication

mechanisms that are best suited for that application. The CORBA’s architecture is

based on different layers [Mowbray and Zahavi 1995]; one of these layers is called

the communication layer that is handled by the ORB. The communication layer

deals with the communication in distributed environments between the components

in the application layers. Thus, the ORB technology deals with the communication

between objects in any CORBA application. Therefore, the designer is unaware of

the type of communication mechanisms used. From a commercial point of view,

this fact may be taken as an advantage, but from a system engineering point of

view, it is always important to know what and how the system is designed to have a

great understanding of the system (not everything may be suitable for each

application). Therefore, we tried to illustrate the ORB architecture design by using

only the DORIS graphical notation. In other words, how the ORB communication

mechanism should be established (its architecture) for ADVISOR application (the

Prototype) to be able to compare in section 4.7 both technologies. Once again, some

elements presented in this section and in section 4.5 have been added for tool

constraints. The COM subsystem consists of three other subsystems called

COMSUBSYSTEM, MULTIDISTRIBUTION and DISTRIBUTSIGNAL. The

composition of these subsystems is included in Figure 4-11, although to see the

details of each subsubsystem it is best to refer to Appendix C-13, C-19, C-17 and C-

18 respectively. The functionality of the COM subsystem is to transmit signals

coming to and/or from CORBA_SUBSYSTEM and HCIs to and/or from the

ASUSUBSYSTEM. Moreover, the COM subsystem de-multiplexes/multiplexes the

signals coming to and/or from the CORBA_ SUBSYSTEM to and/or from the

ASUSUBSYSTEM.

 137

Figure 4-11. The configuration of COM subsystem (Appendix C-13, pp. 297). See Appendix C

for more detailed view of each of the components that appear in this figure:

COMSUBSYSTEM (Appendix C-19, pp. 303), MULTIDISTRIBUTION (Appendix C-17, pp.

301), DISTRIBUTSIGNAL (Appendix C-18, pp.302).

COM deals with two types of signal coming from the CORBA_SUBSYSTEM: the

signals coming from the OA_IN activity and the signals coming from OA_OUT.

OA_IN activates the corresponding servant whose function is to send the

information that is in CONFIG_PARAMETERS subsystem (see Figure 4-10) to the

corresponding client. Therefore, OA_IN activates an activity and OA_OUT sends

the required data to the client. These two interactions are represented by two

different protocols. The first interaction is represented by a RTI protocol and the

second interaction is represented by a RDF protocol (please see Protocol Taxonomy

in chapter 3). The use of RTI implies a “thread activation” on the server side i.e. the

 138

client does not send data but a request of a thread activation. Therefore, when

OA_IN receives a request from the client side, it activates the corresponding

servant. Once the servant is activated and does the work, the client can receive the

data that it needs through the RDF protocol. The use of this protocol implies that the

client sends a request of data and waits until it receives the data from OA_OUT

activity.

Figure 4-12 presents the components used in COM to transmit the signal coming

from OA_OUT activity. The bottom of the Figure 4-12 illustrates the idea that the

functionality of all these components is reduced to the use of one RDF protocol.

Nevertheless, the graphical design presents all these components for many reasons:

firstly, because it is a distributed solution (i.e. CORBA_SUBSYSTEM resides in

one computer and ASUSUBSYSTEM resides in other computer) and therefore the

protocol needs to be stretched (see DISTRIBUTRDF). Secondly, because the signal

is demultiplexed (there are more than one client and server). Finally, because of the

tool constraints (e.g. it is necessary to use four subsystems instead of grouping all

these components in one subsystem like in Figure 4-12).

 139

Figure 4-12. The whole path of one of the signals coming from CORBA_SUBSYSTEM to

ASUSUBSYSTEM. This signal comes from OA_OUT inside CORBA_SUBSYSTEM (see

interface called Sync_put) to one of the objects inside the ASUSUBSYSTEM (see interface

called Sync_get).

4.5 The ADVISOR Prototype architecture using CORBA
platform technology in DORIS notation

The ADVISOR Prototype discussed in this chapter was demonstrated in the

Barcelona Underground in March 2002. As mentioned before, it consisted of two

physical nodes: one node was placed in the Central Transport Control Room and it

 140

consisted of one HCI unit. The other node was located in one of the underground

stations (Sagrada Familia) and it consisted of one ASU unit and another HCI that

was installed on a standalone PC, as shown in Figure 4-5. The ASU unit was made

up of four CPUs: one CPU hosted Capture module, another CPU hosted Crowd

Monitor module, another hosted Archive module and the last CPU hosted the

Motion and Tracker modules altogether.

In section 4.3.1, the overall requirements of the ADVISOR system have been

presented. In section 4.4 and 4.4.1, the CORBA architecture design used in

ADVISOR system has been presented using the graphical DORIS notation (as

mentioned, used just as a graphical tool). As mentioned in the Introduction, in

sections 4.5 and 4.6, two different ADVISOR system architecture designs are

presented, which have been created in this thesis. In section 4.5, the ADVISOR

system architecture design using CORBA is discussed and illustrated using the

DORIS graphical notation. In section 4.6, a new ADVISOR system architecture

design is presented using this time RTN concepts and also the DORIS graphical

notation. Both architectures are created from the same requirements taken from the

ADVISOR Prototype presented early in this work. The reason behind this is to

depict, in section 4.7 using the same graphical notation, the differences between the

two architectures, which use different conceptual principles.

A variation in both architecture designs of the presented ADVISOR Prototype has

been introduced to discuss properties such as distribution; it would have been rather

difficult to discuss with only two nodes (one data processing node and one HCI) as

it is on ADVISOR Prototype. The variation consists of using four nodes distributed

in different physical places instead of two nodes (see the blue line on the left of

Figure 4-13).

4.5.1 The decomposition of ADVISOR architecture design

ADVISOR has been created in a way that reflects the human hierarchical structure

of transport surveillance systems, which have a central control node, situated

usually in the central control room of the transport system, and local control units

located across the area covered by the transport network. Figure 4-13 illustrates the

 141

ADVISOR system and ADVISOR Prototype and also the decisions that have been

taken to present the designs of ADVISOR Prototype using MADGE tools (i.e.

ADVISORSYSTEM in section 4.5 and in section 4.6). Note that, as mentioned in

section 4.3.2, in section 4.5 and 4.6 the ADVISOR Prototype system (with some

added variations) is used instead of ADVISOR system. Moreover, in Figure 4-13, a

blue line represents one of the variations added into the illustrated design (as

mentioned at the end of the previous section). One variation consists in representing

four nodes in ADVISORSYSTEM instead of the two nodes that the ADVISOR

Prototype has. The other variation is to consider an HCI central like in ADVISOR

system but also, to consider a local HCI in each ASU node, representing the HCI

that ADVISOR Prototype has for debugging purposes.

Therefore, the modules used to represent the design of ADVISORSYSTEM are the

following:

• The HCICENTRAL module, which represents the HCI central in ADVISOR

system (see left of Figure 4-13).

• The ASUSUBSYSTEM module, which represents the IPU and SPU

modules of ADVISOR system.

• The LOCALHCISTATION that represents the ASU, IPU and SPU

controllers and the local HCI that the ADVISOR Prototype uses for

debugging.

• The LOCALHCISTATION and ASUSUBSYSTEM that are grouped to

constitute the LOCALDATAPROCESSING module, which represents the

ASU module in the ADVISOR system.

 142

Figure 4-13. The links between the modules used below to express the architecture design of

ADVISOR Prototype using MAGDE tool. Moreover, this figure illustrates the differences

between the ADVISOR system and the ADVISOR Prototype (see also Figure 4-4 and Figure

4-5).

Figure 4-14 illustrates the whole system architecture design using MADGE and also

shows the modules that are discussed in this section. Some of these modules

illustrate how CORBA creates elements and manages them to establish transparent

communications between client and server objects within the application. The arc

arrows illustrated in Figure 4-14 indicate the communication between modules

which belong to different levels of the architecture.

The COM and COMUHCISUBSYSTEM subsystems (see Figure 4-12 and

Appendix C-13, pp. 297 and Appendix C-4, pp. 288) are designed inside

 143

LOCALASU and LOCALDATAPROCESSING respectively.

COMUHCISUBSYSTEM (see Appendix C-4, pp. 288) is a communication

subsystem that appears in the design because of the mentioned tool restrictions.

Therefore, the appearance of COMUHCISUBSYSTEM is unreadable in Figure

4-14. As mentioned, COM (see Figure 4-12) is a communication template

subsystem, which groups all the protocols used to model the communication

between the submodules that represent the client objects and the server CORBA

objects.

 144

Figure 4-14. Most of the levels of decomposition of the ADVISOR Prototype system. The figure

also illustrate the modules that represent the CORBA solution for ADVISOR Prototype. All

the subsystems that are represented in this figure are described in more detail in the main text.

All the subsystems can also be found, in clearer separate diagrams, in Appendix C. The

bidirectional arrows illustrate the data communication flow between modules of different

levels. Bear in mind, that some modules have been introduced due to tool restrictions even

though they are not needed to model CORBA (e.g. COMUHCISUBSYSTEM in Appendix C-4,

pp. 288).

 145

The following figures illustrate the designs in a hierarchical functional manner

because DORIS notation imposes a scale up/down design structure. Table 4-2

shows this structure by grouping the components in hierarchical order and also

indexes each component with a level number to help the reader in the perception of

this structure. The figures have been generated using MADGE that is the CASE tool

that allows diagrammatic capture of RTN designs.

ADVISOR using DORIS notation

Architetural level structure Name of the component Figure Number
Number level

First level ADVISORSYSTEM Figure 4-15 (Appendix C-1, pp.285) 1

Second level HCICENTRAL Figure 4-16 (Appendix C-2, pp.286) 1,1
LOCALDATAPROCESSING Figure 4-17(Appendix C-3, pp.287) 1,2

Third level COMUHCISUBSYSTEM Refer Appendix C-4, pp.288 1.2.1
DATAPROCESSINGNODE Figure 4-17 (Appendix C-5, pp.286) 1.2.2

PLAYBACKCHANNEL Refer Appendix C-6, pp.290 1.2.1.1
IMAGECHANNEL Refer Appendix C-7, pp.291 1.2.1.2
XMLCHANNEL Refer Appendix C-8, pp.292 1.2.1.3
DISTRIBUTRDS Refer Appendix C-9, pp.293 1.2.1.4
LOCALASU Figure 4-17 (Appendix C-10, pp.294) 1.2.2.1
LOCALHCISTATION Figure 4-17 (Appendix C-11, pp.295) 1.2.2.2

RDSLINK Refer Appendix C-12, pp.296 1.2.1.4.1
COM Figure 4-12 (Appendx C-13, pp.297) 1.2.2.1.1
ASUSUBSYSTEM Figure 4-22 (Appendix C-14, pp.298) 1.2.2.1.2
CORBA_SUBSYSTEM Figure 4-19 (Appendix C-15, pp.299) 1.2.2.2.1
HUMANINTERFACE Figure 4-21 (Appendix C-16, pp. 300) 1.2.2.2.2

Fourth level MULTIDISTRIBUTION Refer Appendix C-17, pp. 301 1.2.2.1.1.1
DISTRIBUTSIGNAL Refer Appendix C-18, pp. 302 1.2.2.1.1.2
COMSUBSYSTEM Refer Appendix C-19, pp. 303 1.2.2.1.1.3
CROWD_MONITOR Figure 4-23 (Appendix C-20, pp.304) 1.2.2.1.2.1
CONFI_PARAMETERS Figure 4-20 (Appendix C-21, pp. 305) 1.2.2.2.1.1
IMPLREPOSITORYSUBS Refer Appendix C-22, pp.306 1.2.2.2.1.2

Fifth level DISTRIBUTRDF Refer Appendix C-23, pp. 307 1.2.2.1.1.3.1
DISTRIBUTRTI Refer Appendix C-24, pp. 308 1.2.2.1.1.3.2
MONITOR Figure 4-24 (Appendix C-25, pp.309) 1.2.2.1.2.1.1
DEVICE Figure 4-25 (Appendix C-26, pp. 310) 1.2.2.1.2.1.2
CORBA_SUB Figure 4-26 (Appendix C-27, pp.311) 1.2.2.1.2.1.3
INTERFACEREPOSITORY Refer Appendix C-28, pp. 312 1.2.2.1.2.1.4
RPCLINK Refer Appendix C-29, pp. 313 1.2.2.2.1.2.1

RDFLINK Refer Appendix C-30, pp. 314 1.2.2.1.1.3.1.1
RTILINK Refer Appendix C-31, pp. 315 1.2.2.1.1.3.2.1
IMAGEPROCESSING Figure 4-27 (Appendix C-32, pp. 316) 1.2.2.1.2.1.2.1

Table 4-2. The following figures in their respective level are indexed, assigning a level number

to each figure to assist in following the hierarchical designs. For a clearer representation of the

figures see Appendix C.

 146

4.5.2 First level of the Architecture design: ADVISORSYSTEM

Figure 4-15 presents ADVISORSYSTEM, which is a template of the ADVISOR

Prototype system. This template is composed of four instances of templates that are

called HCICENTRAL and LOCALDATAPROCESSING respectively. The

template is depicted by having the name in the middle of the graphical component

and the instance is represented by a name written in the bottom-right corner outside

the corresponding template. Accordingly, ADVISORSYSTEM consists of one

instance called HCICC from a HCICENTRAL template subsystem, and three

instances of the LOCALDATAPROCESSING subsystem template called L_DP1,

L_DP2 and L_DP3.

Figure 4-15. ADVISOR Prototype system using DORIS notation. This figure represents the

first level of ADVISORSYSTEM. This ADVISORSYSTEM consists of three human interface

subsystems and one central human interface subsystem.

In this section, MADGE has been used only as a CASE tool. MADGE imposes

RTN principles in the diagram designs. Therefore, some of the components that

appear in Figure 4-15 have been created to satisfy the constraints that MADGE tool

Figure 4-17

Figure 4-16

 147

imposes. One constraint that MADGE imposes, following RTN rules, consists in

not allowing connection of two active components directly. Bear in mind that active

components in RTN have ports as terminators, and that passive components are

characterised by having windows as terminators. Therefore, in Figure 4-15

although all the instances represented in ADVISORSYSTEM diagram are active

components (nodes). The HCICENTRAL has been featured with ports. The rest of

the nodes (i.e. LOCALDATAPROCESSING instances), even though are active

components, have been featured with windows because as mentioned, MADGE

does not allow to connect directly two active components. HCICENTRAL has been

featured with ports to illustrate that HCICENTRAL has the functionality of a server

when it deals with control signals (see PUT_SYNC interface in Figure 4-15). At the

same time, the LOCALDATAPROCESSING has been featured with windows

because acts as a client. Therefore, the HCICENTRAL provides (puts) control data

to the client (i.e. LOCALDATAPROCESSING). However, HCICENTRAL may act

as a client when requires (gets) non-control data from

LOCALDATAPROCESSING, which then acts as a server. Following subsections

discuss the functionality of these components and also present further levels of

decomposition of the ADVISOR Prototype architecture design presented in section

4.5.

4.5.3 Second level of the Architecture design: HCICENTRAL

Figure 4-16 presents the HCICENTRAL subsystem. HCICENTRAL represents the

central control unit in the system. It enables interactions with the user through a

server component called USER_INTERFACE (see Figure 4-16). It captures control

signals coming from the user and it distributes these signals to the local control

units such as L_DP1 (see Figure 4-17), if required. HCICENTRAL also deals with

the user interface, displaying the live images from the installations where the

cameras are located or displaying recorded events.

 148

Figure 4-16. The second level of decomposition of the ADVISOR Prototype system. It

represents the internal composition of the HCICENTRAL subsystem. HCICENTRAL deals

with the control signals coming from the central control user.

4.5.4 Second level of the Architecture design:
LOCALDATAPROCESSING

Figure 4-17 presents the decomposition of LOCALDATAPROCESSING, which as

illustrated in the figure, consists of primarily one subsystem called

DATAPROCESSINGNODE. The other subsystem (COMUHCISUBSYSTEM) is

unreadable and smaller than DATAPROCESSINGNODE because, as mentioned, it

has been added due to tool constraints (it is not possible to connect directly two

active components). At the same time, COMUHCISUBSYSTEM is represented as

small as it illustrates Figure 4-17, because it represents the following idea in OO

and CORBA; the communication between objects (active components) is

represented by a simple link (line that connects both objects). The definition of the

link is not important (usually become transparently for the designer) in OO and

CORBA. Therefore, COMUHCISUBSYSTEM that represents “the link” between

the two active components (DATAPROCES-SINGNODE and HCICENTRAL) is

 149

shown very small. Nevertheless, by representing with DORIS notation the

ADVISOR Prototype using CORBA, it is possible to discuss how this “link” may

be defined. COMUHCISUBSYSTEM consists of three channel protocols:

IMAGECHANNEL (see Appendix C-7, pp. 291), PLAYBACKCHANEL

(Appendix C-6, pp. 290) and XMLCHANNEL (Appendix C-8, pp. 292) that

communicate HCICENTRAL with the HUMANINTERFACE subsystems.

In this case study, the designs have been created after the implementation.

Therefore, it is known that the nodes communicate remotely, therefore the template

substitution has been used and IMAGECHANNEL, PLAYBACKCHANEL and

XMLCHANNEL are three distributed channel protocols that stretch out the channel

protocols. COMUHCISUBSYSTEM also consists of a DISTRIBUTRDS (see

Appendix C-9, pp. 293) communication subsystem that stretches out the RDS

protocol used to transmit control data between HCICENTRAL and

HUMANINTERFACE (see RDSLINK element also in Appendix C-12, pp. 296).

 150

Figure 4-17. Three levels of decomposition of the ADVISOR Prototype system (following the

hierarchical DORIS notation). It starts with the internal composition of

LOCALDATAPROCESSING (Appendix C-3, pp. 287) subsystem, which is presented in the

second level of this hierarchical structure. This is followed by the decomposition of

DATAPROCESSINGNODE (Appendix C-5, pp. 289), which corresponds to the third level and

it finishes with the decomposition of LOCALASU (Appendix C-10, pp.294) and LOCALHCI-

STATION (Appendix C-11, pp. 295) that are the third level of the hierarchical structure.

 151

4.5.5 Third level of the Architecture design:
CORBA_SUBSYSTEM, HUMANINTERFACE and
ASUSUBSYSTEM

The DATAPROCESSINGNODE subsystem consists of two subsystems:

LOCALASU and LOCALHCISTATION, see Figure 4-18. LOCALASU consists of

two subsystems: COM (see Figure 4-11) and ASUSUBSYSTEM (see

Figure 4-22) which represents a group of processes inside

LOCALDATAPROCESSING, whose functionality is to carry out the image

processing tasks. As mentioned in section 4.5.4, the communication between these

image processing tasks is represented by channel protocols (e.g.

IMAGECHANNEL). The multicast9 communication is represented by connecting

more than one interface to the same window). On the other hand,

LOCALHCISTATION subsystem in Figure 4-18 (see also Appendix C-11, pp. 295)

represents a local control unit and consists of two subsystems

CORBA_SUBSYSTEM (see Figure 4-19) and HUMANINTERFACE (see Figure

4-21).

9 “[…]is the delivery of information to a group of destinations simultaneously using the most
efficient strategy to deliver the messages over each link of the network only once and only create
copies when the links to the destinations split…[]”[Wikipedia 2001].

 152

Figure 4-18. The three subsystems (CORBA_SUBSYSTEM, HUMANINTER-FACE and

ASUSUBSYSTEM), which belong to the third level of the ADVISOR Prototype system design

decomposition.

4.5.5.1 Third level of the Architecture design:
CORBA_SUBSYSTEM

CORBA_SUBSYSTEM represents part of the CORBA ORB design of ADVISOR

Prototype. As mentioned, in this work the internal CORBA bus structure (i.e.

ORB) is illustrated by COM subsystem and the POA component in ORB by OA_IN

and OA_OUT activities (see Figure 4-19). Therefore, each client object defined in

ASUSUBSYSTEM (see

Figure 4-22) communicates with the servant objects in Figure 4-19 through the same

middle component, i.e. the OA_IN and OA_OUT activities. There are several

strategies to implement CORBA ORB [Marsden and Fabre 2001] such as kernel-

based, where the ORB is implemented as part of the operating system, making the

 153

location of the objects known. Another strategy is called daemon10 strategy, where

the ORB is implemented on a dedicated daemon process that mediates between

clients and servants. The other strategy called application-resident, provides ORB as

a shared library that is linked with CORBA applications. In this strategy, the ORB

functionality runs in the same context as the client and the servant. In ADVISOR

Prototype, the application-resident strategy has been used for implementing

CORBA ORB. Therefore, the computing node called LOCALHCISTATION is

represented by a group of several CORBA objects (sharing the same executing

context). The designed CORBA objects are called: Capture, Motion, Crowd,

Archive and Behaviour CORBA objects.

In the ADVISOR Prototype, these client objects (i.e. the software modules defined

in ADVISOR system (see Appendix B, pp.280), which implement the image

processing algorithms required) are located in different CPUs. These software

modules are represented in

Figure 4-22 as the subsystems called CAMERA, CROWD_MONITOR, ARCHIVE,

MOTION, and BEHAVIOUR respectively. The clients need to know the necessary

information (in the ADVISOR Prototype this information is defined as the Internet

Protocol (IP) address of each software module that is hosted in a separated PC). The

reason of this needed information is because the software modules, which represent

each of them an “image processing” algorithm, in ADVISOR prototype are

implemented to communicate with the rest of the modules directly via sockets and

therefore, the IP address is needed. The way the clients obtain this information is

through the Naming Service and it is explained in next paragraph.

The clients request to CORBA objects their IP addresses through CORBA methods.

The CORBA objects are presented in Figure 4-19. To initiate the request to the

correct CORBA object incarnated as servant object, any of these clients needs to

know the reference of the specific servant object. This reference is provided by

Naming Service in the ADVISOR Prototype CORBA implementation. As

mentioned in section 4.2, the functionality of the ORB is defined through its

10 A daemon is a standalone operating system process that runs in the background and provides some
services

 154

services. Therefore, we represent the service used in ADVISOR Prototype to

illustrate the functionality of the ORB. The implementation of this service is shown

in Figure 4-19 and it works in the following way. The OA_IN template activity

receives a request, i.e. the reference of a servant, from one of the clients. The

OA_IN searches this reference in IMPLREPOSITORYSUBS (see Appendix C-22,

pp. 306). Once OA_IN obtains the reference, it sends the reference through the

NAMESERVICE instance channel to OA_OUT. The OA_OUT sends back the

reference to the client that previously asked for the reference in ASUSUBSYSTEM.

Once the client has the reference, it is able to call the CORBA method to the

specific servant. OA_IN also routes the petitions to the servants. Then, when the

client requests an IP address from a servant, the servant obtains the requested IP

address from CONFIG_FILE instance (inside the CONFI_ PARAMETERS

subsystem, see Figure 4-20). The servant sends the obtained IP address back to the

OA_OUT. Then, the OA_OUT activity sends this information to the corresponding

client in the ASUSUBSYSTEM through the COM subsystem.

 155

Figure 4-19. Following the hierarchical MASCOT/DORIS notation, CORBA_SUBSYSTEM

represents the fifth level of the ADVISOR Prototype system. CORBA_SUBSYSTEM

subsystem illustrates the communication functionality of an ORB in CORBA technology.

4.5.5.1.1 Fourth level of the Architecture design: CONFI_PARAMETERS
The CONFI_PARAMETERS subsystem represents a datarepository, which servants

from CORBA_SUBSYSTEM access to get the information that the clients require.

In CORBA_SUBSYSTEM there is another subsystem that has a similar

functionality called IMPLREPOSITORYSUBS (see Appendix C-22, pp.306).

IMPLREPOSITORYSUBS as introduced in section 4.4.1, is also a datarepository

that stores the references or IDs of the different servants that are used in this

CORBA implementation, allowing then, the client to communicate with a servant

without having prior knowledge of the ID of the servant.

Figure 4-20

 156

Figure 4-20. CONFI_PARAMETERS (the sixth level of the ADVISOR Prototype

decomposition) is introduced in the fifth level of the hierarchical structure in

CORBA_SUBSYSTEM. CONFI_PARAMETERS gives the configuration parameters required

for other components outside the subsystem.

4.5.5.2 Third level of the Architecture design:
HUMANINTERFACE

HUMANINTERFACE represents the control unit process of the HCISTATION,

which interacts with the user through the server component called SCREEN (see

Figure 4-21). HUMANINTERFACE also makes possible the communication

between ASUSUBSYSTEM and HCICENTRAL. HUMANINTERFACE deals

with the control signals that are coming from the HCICENTRAL subsystem and

with the image data and XML results that are coming from the ASUSUBSYSTEM.

Depending on the control signals coming from HCICENTRAL, the

HUMANINTERFACE subsystem sends back to HCICENTRAL live images from

the CCTV, or archive images, or events that have been archived or events that just

have occurred. HUMANINTERFACE also does the same with the control signals

coming from the user through the SCREEN server component.

 157

Figure 4-21. HUMANINTERFACE subsystem presented in the third level of the hierarchical

structure of the ADVISOR Prototype system. HUMANINTERFACE is introduced in

LOCALHCISTATION subsystem. HUMANINTERFACE deals with the control signals

coming from the HCICENTRAL and it also deals with local control signals coming from the

user in the local HCI subsystem.

4.5.5.3 Third level of the Architecture design: ASUSUBSYSTEM
The ASUSUBSYSTEM module accomplishes the required image processing tasks

as mentioned. ASUSUBSYSTEM consists of five active subsystems: CAMERA,

CROWD_MONITOR, ARCHIVE, MOTION and BEHAVIOUR. Accordingly, the

final decomposition of ASUSUBSYSTEM may be seen as a network of activities

that perform image processing algorithms, which are described in the Appendix B,

pp. 280. In this section, only the decomposition on further levels of

CROWD_MONITOR module is presented (see Figure 4-23, Figure 4-24, Figure

4-25 and Figure 4-26).

The CAMERA subsystem inside the ASUSUBSYSTEM (see

 158

Figure 4-22), carries out the capture, digitalisation and compression of CCTV

images and sends the compressed images to the rest of the modules in

ASUSUBSYSTEM. The MOTION subsystem takes the current images coming

from CAMERA, and applies motion and tracking algorithms on them. Afterwards,

the MOTION subsystem sends the results in XML format to the BEHAVIOUR

subsystem. In parallel, the MOTION subsystem extracts the background images

from the current images and sends them to the CROWD_MONITOR module. The

BEHAVIOUR subsystem takes all the results from the rest of the modules and

applies semantics to these results obtaining a description of events in English

language text. The ARCHIVE subsystem receives the results from the processed

images and archives them. Depending on the received control signals, the

ARCHIVE subsystem sends the archived images or events to the local or to the

central HCI station.

Figure 4-23

 159

Figure 4-22. ASUSUBSYSTEM is presented in the third level of the decomposition of

ADVISOR Prototype system. ASUSUBSYSTEM is composed of image processing subsystems.

4.5.5.3.1 Fourth level of the Architecture design: CROWD_MONITOR
The CROWD_MONITOR subsystem is also designed using CORBA. See Figure

4-23. CROWD_MONITOR handles two DSPs (Digital Signal Processing) that

perform a low level processing optical flow algorithms to the obtained images from

CAMERA subsystem. It applies afterwards, some algorithms to the outputs from

the DSPs and sends the results in XML format to the BEHAVIOUR subsystem.

CROWD_MONITOR is composed of five subsystems; MONITOR (see Figure

4-24), two DEVICEs (see Figure 4-25), INTERFACEREPOSITORY (see

Appendix C-28, pp.312) and CORBA_SUB (see Figure 4-26).

Figure 4-23. The CROWD_MONITOR subsystem (the fourth level of ADVISOR Prototype

system). It performs an image processing task detecting crowds.

4.5.5.3.1.1Fifth level of the Architecture design: MONITOR
The MONITOR subsystem gets the information that has requested from the

LOCALHCISTATION (from CORBA_SUBSYSTEM) and puts this obtained

Figure 4-25

Figure 4-26

Figure 4-24

 160

information to the INTERFACE-REPOSITORY in CROWD_MONITOR, see

Figure 4-24.

Figure 4-24. The MONITOR subsystem (the fifth level of ADVISOR Prototype system) deals

with control signal coming from upper levels and petitions from lower levels.

4.5.5.3.1.2Fifth level of the Architecture design: DEVICE
DEVICE, which acts as a client object, is composed of two activities and the

IMAGEPROCESSING subsystem (see Figure 4-27). The INTERFACES activity

activates the corresponding servant and the PA activity obtains the IP address from

the activate servant (see Figure 4-25).

 161

Figure 4-25. DEVICE (fifth level of the decomposition of the ADVISOR Prototype system) is a

subsystem that deals with the control signals coming from upper levels. It also deals with the

signals of a subsystem where the low-level image processing tasks are carried out.

4.5.5.3.1.3Fifth level of the Architecture design: CORBA_SUB
CORBA_SUB like CORBA_SUBSYSTEM represents the CORBA ORB design

used in the ADVISOR Prototype. It has two CORBA objects that deal with the

requests coming from the DEVICE subsystems. As mentioned, MONITOR in

CROWD_ MONITOR (see Figure 4-23) acts as a client object, requesting the IP

information from LOCALHCISTATION (see Figure 4-17). Once MONITOR

receives the information, it sends it to INTERFACEREPOSITORY, which stores

the IP address information obtained previously by MONITOR subsystem. The

SERVANT_DEV in CORBA_SUB then sends the IP address to the DEVICE client,

every time that the DEVs require it.

Figure
4-27

 162

Figure 4-26. CORBA_SUB subsystem (fifth level of decomposition of the ADVISOR Prototype

system) illustrates the communication functionality of an ORB in CORBA technology like in

CORBA_SUBSYSTEM.

4.5.5.3.1.4Fifth level of the Architecture design: IMAGEPROCESSING
IMAGEPROCESSING (see Figure 4-27) interacts with the DSPs through the server

components called DSP, providing the raw images to the DSPs and obtaining the

results. After applying defined thresholds to the obtained results from the DSP,

IMAGEPROCESSING sends the XML results to the BEHAVIOUR module.

 163

Figure 4-27. The IMAGEPROCESSING (the fifth level of decomposition the ADVISOR

Prototype system) subsystem, which performs the image processing tasks.

4.6 The ADVISOR Prototype architecture using the DORIS
method and its concepts

This section presents the ADVISOR Prototype system design, with the mentioned

variations, applying RTN concepts using MASCOT-3 and DORIS extensions, to

continue the comparison between CORBA and MASCOT-3/DORIS approaches,

established in Table 4-1. In Table 4-3, the hierarchical structures of the ADVISOR

designs are presented, indexing each design component with its corresponding

figure.

 164

ADVISOR using RTN concepts

Architectural level structure Name of the component Figure Number
Number level

First level ADVISORSYSTEM Figure 4-28 (Appendix C-33, pp. 317) 1

Second level COMMUNICATION Figure 4-29 (Appendix C-35, pp. 319) 1,1
HCICENTRAL Figure 4-30 (Appendix C-34, pp. 318) 1,2
HCINODE Figure 4-31 (Appendix C-36, pp. 320) 1,3

Third level CROWD_MONITOR Figure 4-32 (Appendix C-37, pp. 321) 1.3.1

Table 4-3. The following figures in their respective level are indexed, assigning a number level

to clarify the hierarchical designs.

4.6.1 First level of the architecture design: ADVISORSYSTEM

Figure 4-28 presents the design of the ADVISOR system, which consists of a

communication element called COMMUNICATION (see Figure 4-29) and four

computing nodes: one HCICENTRAL subsystem (see Figure 4-30) and three

HCINODE subsystems (see Figure 4-31). The HCICENTRAL subsystem

communicates with the rest of the modules through the composite IDA called

COMMUNICATION. A single communication element is used to communicate

HCICENTRAL with the rest of HCINODEs because all identical interfaces in each

HCINODE subsystem are connected to the same window; e.g. the

RAWIMAGEOUT interface in each HCINODE subsystem is connected to the same

window called CA_IN in the COMMUNICATION element. MADGE allows the

connection of a number of interfaces to the same window if the interfaces are the

same type. The IDA, then, will provide a mechanism to deal with each interface

separately (i.e. multicast).

 165

Figure 4-28. This figure represents the ADVISOR system using RTN concepts.

ADVISORSUBSYSTEM (Appendix C-33, pp. 317) represents the first level of the design

system. The system is composed of four computing nodes and one communication element.

The following subsections discuss the functionality of the components illustrated in

Figure 4-28 and also present further levels of decomposition of the ADVISOR

architecture design presented in section 4.6.

4.6.2 Second level of the architecture design: COMMUNICATION

Figure 4-29 represents the decomposition of the composite IDA element

COMMUNICATION. This element has two data inputs coming from the

HCINODE that are transmitted to HCICENTRAL using a distributed form of a

channel, which consists of a simple channel connected to an active agent (e.g. the

TRANSCHANEL activity in Figure 4-29) that stretches out the data to another

channel. In this section, the idea of template substitution has also been used because

it is known from the implementation that the communication between the

HCICENTRAL node and the HCINODEs is remote. In this case, TRANSCHANEL

also multiplexes the data coming from two different interfaces (RAWIMAGEOUT

and ARCDATAOUT) to a unique interface called DATAIN. On the other hand, the

TRANSGN and TRANSGN_IN activities only stretch out the route of control data

Figure 4-30

Figure 4-31

Figure 4-29

 166

coming from the HCICENTRAL to the HCINODE and the returned signals coming

from a HCINODE to HCICENTRAL.

Figure 4-29. COMMUNICATION (Appendix C-35, pp. 319) composite IDA (second level of

decomposition of the ADVISOR Prototype system), is shown in the first level of the

hierarchical structure of ADVISOR. This communication element links the HCICENTRAL

subsystem with each HCINODE.

4.6.3 Second level of the architecture design: HCICENTRAL

Figure 4-30 presents the internal composition of HCICENTRAL subsystem. This

subsystem consists of two activities: the TC_HCI activity and the DISPLAY

activity. TC_HCI merely deals with control signals coming from any HCINODE or

from the server element called SCREEN, which allows the subsystem

HCICENTRAL to interact with the environment (in this case, it allows the

interaction of the HCICENTRAL subsystem with a user). TC_HCI may also

interact with the DISPLAY activity through a signal protocol to manage, if needed,

what should be displayed on the screen. Therefore, the DISPLAY activity sends to

 167

the SCREEN server, if required, the received data from any HCINODE, to be

displayed in the console.

Figure 4-30. The HCICENTRAL (Appendix C-34, pp. 318) subsystem purely displays, if a

user requires, data coming from any HCINODE. It also deals with control signals coming

from any HCINODE.

4.6.4 Second level of the architecture design: HCINODE

Figure 4-31 represents the image processing node. Following the structure of

ADVISOR, HCINODE is composed merely of five image processing tasks: capture

and digitalisation, motion detection and background subtraction, crowd motion

detection, behaviour analysis and finally archiving. Capture and digitalisation of the

CCTV images operations are carried out by the CAMERA subsystem. Motion

detection and background subtraction operations are performed in the MOTION

subsystem. Another image processing task consisting in the detection of crowd

situations is carried out in the CROWD_MONITOR subsystem (see Figure 4-32).

The creation of natural language messages with the results coming from the

CROWD_MONITOR and MOTION subsystems is performed in the BEHAVIOUR

 168

subsystem. The ARCHIVE subsystem merely stores the results coming from the

CAMERA and CROWD_MONITOR subsystems. HCINODE also consists of a

control subsystem called HCILOCAL, whose internal composition is merely the

same as the HCICENTRAL subsystem. This subsystem deals with control signals;

it distributes to the different subsystems the control signals coming from the

HCICENTRAL subsystem, and it also may send control signals coming from the

local user to the HCICENTRAL subsystem. HCILOCAL also displays data coming

from the CAPTURE, BEHAVIOUR and ARCHIVE subsystems to the local

console.

Figure 4-31. The HCINODE (Appendix C-36, pp. 320) is the second level of the hierarchical

structure of the ADVISOR Prototype system. It is composed of six subsystems, which

communicate between them through IDAs: channels, pools and signals.

4.6.5 Third level of the architecture design: CROWD_MONITOR

In this section, as in the previous section 4.5, only the decomposition of CROWD_

MONITOR is presented (see Figure 4-32). Figure 4-32 presents

CROWD_MONITOR subsystem, which consists of two activities and two server

components called DSP1 and DSP0 that interact with a dedicated hardware.

Figure 4-32

 169

CONTROL_CONFIG activity receives control signals coming from HCILOCAL

subsystem such as changing thresholds parameters or changing AOIs and sends

them back to OPTIC_FLOW activity or DSP servers, depending on the type of

control signal to be sent. CONTROL_CONFIG activity also receives the digitalised

images and the background images from CAPTURE and MOTION subsystem

respectively and sends them to each Digital Signal Processing (DSP) dedicated

hardware, where specific image processing algorithms are applied to these images.

Each DSP server sends the results to the OPTIC_FLOW activity, which after

performing specific operations, sends the final results to the BEHAVIOUR

subsystem.

Figure 4-32. The CROWD_MONITOR (Appendix C-37, pp. 321) represents the third level of

the hierarchical structure of the ADVISOR Prototype system. It is composed of two activities

and two servers which communicate between them through a channel, a pool and a signal.

4.7 Comparison between the two architectures

In section 4.5 and 4.6 the designs of the ADVISOR system, expressing different

solutions have been presented. In this section, the discussion of design differences

between both approaches is focused on the functional partition of the system and on

 170

the divergence of architecture designs. Therefore, the following figures present

graphical dissimilarities at some design levels of ADVISOR architecture solution

using the two approaches.

Figure 4-33. Comparison at a first level of design of ADVISOR Prototype system using the two

approaches.

The functionality at the first level of the architecture in both approaches is the same

because they are coming from the same specifications and, in this case study, from

the same implemented system (see Figure 4-33); i.e. the ADVISOR system design

presented in this chapter, is subdivided primarily into four active nodes (see Figure

4-15 and Figure 4-28). One of these active nodes represents the primary control

node, i.e. the HCICENTRAL (see Figure 4-16 and Figure 4-30), which is the node

that interacts with the user of the system and with the rest of the data processing

nodes. The functionality of the rest of the nodes is divided into local control

functions and data (e.g. images) processing functions. In this section, nodes that

have control functionality are called central or local control nodes, and nodes that

have data processing functionality are called data processing nodes.

4.7.1 Communication techniques

Even though the functionality at the first level of the architecture design is the same

in both approaches, the architecture design in the following levels is quite different,

 171

mainly because of the communication techniques. In RTN, communication is

symmetric (both components that communicate have the same roles). It uses an

extra explicit component (IDA) to allow this independent communication. RTN

solution presents independence between pairs of communicating nodes (i.e. data

processing nodes and control node). This is represented in the design by using only

one IDA for the communication of HCICENTRAL (the control node) and the rest

of the HCINODE (data processing) nodes. In CORBA, communication is

asymmetric (the components that are communicating have different roles i.e.

usually one is a client and the other is a server). In the presented CORBA

architecture design, there is a certain dependency between the control component

and the client components, which is expressed in the design by drawing each time

the communication links between each HCICENTRAL-LOCALDATA-

PROCESSING pair of nodes (see Figure 4-33).

Therefore, in the ADVISOR Prototype architecture design using CORBA, there is

an explicit coupling of control signals between data processing nodes and control

nodes; the data processing nodes need some setup data from the local control nodes

in order to work. Therefore, the data processing nodes require these data at the start-

up time, e.g. to be able to communicate with the other modules. In contrast, in the

ADVISOR Prototype architecture design using RTN concepts, the data processing

nodes do not have this control coupling with the control nodes because the activities

in RTN work independently from each other. The activities are only aware of

sending and receiving information from their ports. Therefore, even though they can

receive control signals from their local control nodes, they do not depend on this

control information to work.

Another difference between the two approaches in the architecture design is

illustrated in Figure 4-34. Even though the functional design of data processing

nodes in both approaches is the same i.e. ASUSUBSYSTEM, the design of the local

control node and the design communications between the ASUSUBSYSTEM and

its local control node (i.e. LOCALHCISTATION) are different in each approach.

The LOCALHCISTATION in RTN (called HCILOCAL), has the same functional

decomposition as HCICENTRAL (see Figure 4-30 and Figure 4-34); i.e. two thread

activities and a server component. One of these activities deals with data control

 172

and the other activity with the visualisation of data coming from the data processing

node and also interacts with the central control node. The design of the LOCAL-

HCISTATION using CORBA is more complicated; as seen in Figure 4-34. The

control data between the local control node and the data node ASUSUBSYSTEM,

is done through the CORBA_SUBSYSTEM. The servants inside CORBA_

SUBSYSTEM represent the control functions and the CORBA clients in

ASUSUBSYSTEM represent the data functions. The other subsystem, i.e. HUMAN

INTERFACE, visualise the data coming from the CORBA clients and also interacts

with the central control node.

On the other hand, it may be stated that the last point is strongly dependant upon the

implementation of CORBA. In other words, CORBA systems may be defined as

peer-to-peer systems (i.e. all nodes have identical capabilities and responsibilities

and all the communications are symmetric) or end-systems rather than client-server

systems like ADVISOR Prototype. CORBA provides a service called Event

Service, to obtain symmetry in the communication. Event Service allows the

application to use decoupled communication between parts rather than strict client-

to-server synchronous request invocations. The basic architecture of Event Service

[Henning and Vinoski 1999] consists in Supplier and Consumer Modules, which

can play passive or active roles, and Event channel, which plays the role of

mediator. An event data can be delivered from the suppliers to the consumers with a

decoupling of physical knowledge. Note that conceptually this idea is very similar

to the simple communication model in RTN illustrated in section 3.5.3 chapter 3.

 173

Figure 4-34. Comparison of LOCALHCISTATION subsystem designs using the two

approaches.

In CORBA, as mentioned, the communication is established transparently to the

designer (through the ORB layer), but as illustrated in Figure 4-34 and Figure 4-35,

this communication requires extra components e.g. CORBA_SUBSYSTEM,

making the architecture design more complex than the illustrated architecture

design using RTN concepts (section 4.6). Moreover, the CORBA architecture

 174

design of e.g. CORBA_SUBSYSTEM also illustrates the complexity of these

interactions between different components inside the subsystems. Some of these

activities require a tight relation with other activities, producing some coupling that

it is not necessary as seen in section 4.6 using RTN. This is the result of having

these dynamic interactions between the objects that constitute the CORBA design

system, which are needed to allow the integration of objects to the system without

extra effort. However, allowing the integration of objects to the system without

adding effort to the programmer implies more dynamic interactions between objects

are created, even though they are transparent to the programmer (as illustrated in

Figure 4-19, Figure 4-20, Figure 4-23 and Figure 4-26). Some of these interactions

may be strongly coupled and in some systems, such as real-time surveillance

systems, such coupling may have costly effects such as producing deadlock

situations.

 175

Figure 4-35. Comparison of CROWD_MONITOR subsystem designed using both approaches.

4.7.2 Concurrency and distribution

The key issue for developing concurrent systems is focused on structuring the

system into the right number of concurrent tasks. It is also focused on giving the

mechanisms to support inter-communication tasks and on allowing tasks to

synchronise their operations (producer/consumer problem) and the access to shared

data (mutual exclusion). It is also important to assure support for concurrent

execution in the programming language or by the Operating System. In a single

processor environment, tasking may provide an improvement in performance by

allowing I/O operations to be executed in parallel. In a multi-processor

 176

environment, tasking may improve the performance by allowing different tasks to

execute in parallel on different processors.

A distributed application is a concurrent application. Thus, in a distributed

application there are necessarily multiple threads of control. As mentioned in the

previous chapter, any design in RTN is conceived as a network of concurrent

threads called activities. Therefore, RTN bounds the resources by knowing

beforehand the resources that are going to be required, because when the network is

finally designed, the number of threads is automatically determined by the number

of activities that appear in the design. These threads or activities communicate

through passive components called IDAs that provide the necessary mechanisms to

allow the inter-communication between activities, and the synchronisation of the

access data (see the Taxonomy of the protocols in chapter 3). To apply the basic

communication principle between different components in a distributed system,

RTN uses a template substitution. Template substitution is a technique applied once

the network is instantiated and mapped into hardware at the building process time.

If the activities that communicate through an IDA are distributed in different places;

the designed IDA is substituted by a new IDA template that allows the distribution

by stretching11 the already designed IDA.

In a conventional OO distributed application, each server object when distributed

should operate in a different thread of control, because a distributed server object

may have multiple concurrent clients, see e.g. Figure 4-19. Therefore, it is

necessary to apply synchronisation mechanisms to control concurrent access to

shared objects being distributed, which are provided by the threads themselves and

not by external components as in RTN. CORBA, which is a standard for a

distributed object systems, allows either single-thread or multi-thread ORB

architecture. Therefore, if the single-thread ORB architecture is chosen, even

though a distributed object may have more than one client, requests are forced to be

processed in a sequential mode instead of concurrent mode as they naturally should

11 As mentioned in chapter 3, the stretching technique in RTN, consists of introducing an activity in
the IDA, which moves the data from the IDA to the next one, and therefore projecting the IDA to the
other side. See extension taxonomy protocols in chapter 3 or e.g. IMAGE CHANNEL,
PLAYBACKCHANNEL or XMLCHANNEL templates (in Appendix C-7, C-6 and C-8), which are
stretched by using activities between simple IDA channels and forming by this means, the new
templates called e.g. IMAGECHANNEL, PLAYBACKCHANNEL or XMLCHANNEL.

 177

be; as mentioned before, a distributed system should be concurrent system. If the

chosen CORBA architecture is multi-thread, CORBA provides three different

design approaches: thread-per-request, thread-per-connection and pool-of-threads.

Thread-per-request, as its name specifies, creates a thread at every incoming

request; if there are many requests the server application may run out of resources

because it has to deal with many threads. In thread-per-connection approach, a

thread is created for every connection, forcing a server application to deal with

many threads if the server has many clients, and it may incur in a thread creation

overhead if the petitions are too frequent. In the last approach (pool-of-threads), at

the start-up period of a system, a pool of threads is created; any non-busy thread can

deal with a request: if all threads are busy the incoming request is queued. From the

three approaches discussed, this is the most distributed approach and it follows the

concept in RTN to bound the resources by knowing beforehand the resources that

are going to be needed.

4.7.3 Run-time

Run-time support mechanisms, which are necessary in the construction of any real-

time concurrent system, are focused on providing task scheduling policies, as well

as mechanisms to support task communications and synchronisation. Also, these

mechanisms need to provide support in the management of I/O interrupts and

memory. The run-time support for concurrent tasks may be provided by the run-

time support system provided by the concurrent language used or by the kernel of

the operating system (e.g. in RTN this is called the MASCOT machine). These

concurrent languages also handle task scheduling. On the other hand, if the run-time

support is provided by a kernel, the kernel provides the task scheduling, it also

provides the mechanisms for communication tasks and the synchronisation. In

RTN, the scheduling strategy is left to the designer to allow the optimal algorithm

for the application to be used, even though the MASCOT kernel machine usually

applies a co-operative scheduling policy.

In RTN, the MASCOT machine provides primitive operations for timing,

synchronisation and control of the execution of activities. The scheduler (in the

MASCOT machine) controls the execution of the activities and also it allocates the

 178

processing time for each activity [IECCA and MUF 1983b]. MASCOT-3 provides

two primitive operations for timing: DELAY (i.e. specifies the period of time,

which the activity may be stopped) and TIMENOW (i.e. returns the value of time).

The synchronisation only takes place at the access to IDAs and servers (i.e. in the

access procedures). This synchronisation achieved by four primitive operations that

provide the mechanisms for mutual exclusion of competing processes (JOIN and

LEAVE primitives) and cross-stimulation of co-operating processes (STIM and

WAIT).

In CORBA, the run-time mechanisms to control the execution of clients and servers

are specified in the ORB run-time properties, making these mechanisms highly

dependent on each vendor. TAO is considered [CORBA 2005], at the time of

writing, the high-performance real-time ORB for applications with deterministic

and statistical Quality of Service (QoS). The TAO ORB Core uses multi-threaded,

pre-emptive strategy with priority-based connection. The TAO’s I/O subsystem

assigns priorities to real-time threads. In [Marsden and Fabre 2001] it is illustrated

with empirical results how latency, throughput and the CPU processing overhead

behaviour drifts using the same real-time ORB middleware (TAO) architecture in

different real-time operating systems such as VxWorks, LynxOs and other

operating systems with real-time extensions like Windows NT, Solaris or Linux.

TAO uses Real-Time Event Service from CORBA to alleviate some restrictions

with CORBA standard invocations.

To apply efficient scheduling strategies, it is important to determine the boundaries

of the endsystems (in CORBA terminology) or components of the system, to avoid

non-deterministic behaviours from these components. In RTN designs, there is a

restriction to the dynamic creation of components to bound the non-determinism,

enforcing the minimisation of dynamic resources scheduling at run-time in the

designs. Moreover, RTN designs are also thought of as multi-processor

configuration to reduce process contention and with distributed shared memory to

avoid memory access contention (dynamic invocations in DORIS notation implies

‘datarepository’ elements, see Figure 4-20 and IMPLREPOSITORY in Appendix

C-21, pp.305). On the other hand, in CORBA designs, there are no restrictions to

the dynamic creation of components. In Figure 4-19, it is difficult to bound the

 179

dynamic resources consumed in the interactions between the ‘servant’ activities

inside CORBA_ SUBSYSTEM with the ‘client’ activities outside the subsystem.

Note that in Figure 4-21 or Figure 4-26, the ‘servants’ activities have been drawn to

express the existence of these servants, but they could be created dynamically.

Therefore, it is not possible to determine e.g. how many servants are going to be

created and active at certain point of time, arisen a possible non-deterministic

behaviour in the boundaries of the CORBA_ SUBSYSTEM.

4.7.4 Development aspects

In MASCOT and DORIS, the development of an application from its design to its

creation is defined in three stages [IECCA and MUF 1987c]: the status progression,

the system building and the development configurations which includes a mapping

process to distributed hardware.

In the status progression stage, there are two main features: the modules that

facilitate the elaboration of the design and the creation of an application software

and a database which has an important contribution in the creation of these

modules. In the status progression, a formal recognition of the development of the

modules is carried out. The status value associated to each module provides a

measure of this recognition. They are five different status values: registered,

partially introduced, fully introduced, partially enrolled and fully enrolled. Once all

the modules that constitute a system are fully enrolled it is possible to move to the

second stage. Therefore, system building starts from a fully enrolled system

template, and it produces a representation of this system in an executable form

[IECCA and MUF 1987c]. There are different strategies employed in this stage and

the target configuration for which the application needs to be built is considered:

e.g. the number and type of processors available, the accessibility of memory from

each processor and other requirements. In the last stage (i.e. development

configurations) different hardware configurations appropriate for the MASCOT

software might be discussed.

As mentioned in the introduction of this chapter; at the time of writing, CORBA

does not provide any appropriate development environment. Even though there are

 180

some tools provided by different companies such as Rational Rose and ArtiSAN

and recommended by the OMG, to help design CORBA applications, basically

using UML, they do not provide an environment to develop the application from the

design to the execution.

4.8 Summary

This chapter has further compared RTN and OO approaches. The comparison in

chapter 4 has been conducted by means of a case study. Therefore, a distributed

real-time surveillance system solution called ADVISOR has been presented. This

comparison focuses on the architecture design viewpoint for a distributed real-time

system; issues such as communication, distribution, concurrency and run-time have

been discussed. ADVISOR used a CORBA approach, which is an OO-based

technology, as a solution to the design of its distributed architecture. Therefore, to

continue the comparison discussed in chapter 3, this chapter has based the

comparison between DORIS (the latest extension of RTN) and CORBA. It has been

shown that even though CORBA may be a suitable solution for some real-time

distributed applications like telecom systems, allowing an integration of different

language platforms, it presents for the system requirements like ADVISOR, a more

complex architecture design than RTN, as reflected in the figures presented here.

The communication CORBA design of ADVISOR also illustrates that there is a

strong coupling between the server and the client components (objects). In contrast,

RTN avoids this coupling by using specific communication components that

provide decoupling of the connected components. RTN designs attempt to create a

network as deterministic as possible by explicitly defining the number of

components constituting the real-time network system at run-time. It has also been

shown that RTN/DORIS provides a full development environment for the creation

of software applications but not CORBA. As discussed, RTN solutions are intended

for concurrent, distributed, real-time complex applications. RTN gives the

principles and the tools to create them. For these reasons, RTN can provide the

basis for the creation of a framework to help the development of distributed real-

time surveillance systems. To explore this further, in chapter 5 a proposed generic

distributed real-time surveillance system using RTN is presented.

 181

 182

5 Design of a Real-Time Distributed Surveillance
System with multiple cameras

5.1 Introduction

As mentioned in chapter 2, one of the requirements of 3GSSs consists in the on-line

processing of data streams in real-time. Nowadays, this on-line processing may be

possible to achieve thanks to the use of low cost imaging devices and embedded

devices like Digital Signal Processors (DSPs) and to the steady increase of general-

purpose computing power. As concluded in chapter 4, to meet real-time

requirements, these systems should manipulate data streams in concurrent

environments, designed by taking into account scheduling and synchronization

issues. In the visual surveillance field, until now this has been mainly solved by

building specialised systems using ad-hoc designs and implementations which

sacrifice flexibility and performance [François and Medioni 2001]; issues which are

important in large scale systems. This chapter proposes a generic, extensible

modular software architecture design of a 3GSS using RTN/DORIS.

In this chapter, the designed system is presented graphically, following its

hierarchical structure. Thus, the system is illustrated level by level to finish with the

final network of activities and passive elements used to communicate (like IDAs) or

to storage information (called repository data elements). In section 5.2, the first

level of the design is illustrated by presenting the functional definition of the

system. Moreover, all the RTN/DORIS elements used to design the system are also

introduced in this section to give a reference to the reader. In section 5.3, the

different functional definition of the modules that compose the system are presented

and discussed. These modules are grouped in three main parts depending on their

functionality; data processing, control and feedback parts. A distinction between the

different types of data that are used in the system is also presented in this section.

In section 5.4, the design of the system architecture is presented. Note that the

proposed designed system expresses how the software structure of the system (the

system architecture) should be designed, but the physical structure of the system is

not discussed. In section 5.5, different topologies for multimedia system

 183

applications are presented, based on the networking literature. After this

introduction to network topologies, section 5.5 presents a discussion on different

network topologies that were proposed for the system design. After the discussion, a

final network topology for the software structure proposed in previous sections 5.3

and 5.4 is then presented. Following this section, section 5.5.2 discusses the

representation and design in RTN of a specific traffic behaviour (multicasting)

heavily used in surveillance systems. In section 5.6, the management of the Quality

of Service (QoS), which is an important issue for distributed multimedia systems, is

discussed. There, QoS is discussed in terms of bandwidth and the selection of

scheduling polices. Finally, section 5.7 finishes this chapter by summarising the

obtained conclusions from the creation of the design of a large-scale surveillance

system using RTN.

5.2 First level of the system design

This section describes the functionality of the proposed system architecture design

focusing on functional definition (section 5.2.1) and then on a brief discussion of

the RTN components used in this design (section 5.2.2).

5.2.1 Functional definition of the system

Figure 5-1 illustrates the functional definition of the system. It presents the system

as a network of three functionally different types of subsystems or nodes:

• The Data Processing Unit node (DPU): is the node where the sensors (e.g.

cameras) are connected. Most of the on-line and off-line data processing

coming from the sensors is done in these nodes.

• The Communication Control 0 node (CC0): this node interfaces users with a

DPU. Therefore, a user can change a configuration parameter of a DPU

through a CC0. The CC0 node also stores the information of all DPUs

connected to the same CC0 and allows the user to visualise the outputs

coming from any DPU node that is connected to the CC0.

• The Communication Control 1 (CC1): this node visualises any output

coming from any DPU. The CC1 node also provides storage for the

information of all CC0 nodes that are connected to the CC1.

 184

Similar to ADVISOR in chapter 4, in the functional design of the system there is a

local node (CC0) that visualises the data processing outputs from the nodes that are

connected to it, and there is another central node (CC1), which can visualise the

outputs coming from all data processing nodes. Therefore, even though the nodes

are functionally independent, the system has a hierarchical structure from the

visualisation and the structural organisation (system user control) points of view.

Figure 5-1 illustrates this hierarchical network structure. The system is designed as

having three different levels. The top-level is represented by CC1 nodes, the second

level by CC0 nodes and the low-level of the hierarchy is represented by DPU nodes.

DPUs only process the signals coming from the sensors. The rest of the nodes (i.e.

CC0 and CC1) analyse the alarms and visualise the data coming from the sensors.

The system follows the user hierarchical structure that wide-area surveillance

systems have (there are local control operators that survey a local area). In first

upper level (CC0), the operators control one zone, i.e. more than one local area. In

the following upper level (CC1), the operators survey all zones. Figure 5-1

describes two levels of surveillance control through CC0 and CC1. The distinction

of two main functionalities in the system i.e. data processing expressed in the

design through a DPU node and visualisation and organisational control through the

design of CCx12 nodes, is a similar idea that appears in some research work reported

in [Marcenaro et al. 2001] and in [Christensen and Alblas 2000].

In [Marcenaro et al. 2001], the functionality of the system is mainly divided by

sensor and hub nodes. All sensor nodes are connected to hubs. They present an

empirical discussion in terms of performance and bandwidth allocation, about the

distribution of the data processing tasks in the sensor or hub nodes. The authors

state that in a surveillance system that is constituted of several cameras (with

embedded DSPs) connected to a hub and which remotely sends processed data to an

operator, it is better (empirically proved) to allocate the embedded low/high-level

signal processing tasks performed in the system, on the hub node if the number of

cameras is less than two (for a high processing power of the cameras (i.e. the

12 In this chapter, because the functionality is similar in CC0 and CC1, these nodes are generalised
by the term CCx.

 185

embedded DSP of the cameras) like e.g. 450 MHz). It is also better to allocate the

tasks in the hub node if the number of cameras is less than six (for low processing

power cameras such as 200MHz). Otherwise, it is better to allocate the tasks on the

cameras rather than in the hub.

[Christensen and Alblas 2000], as mentioned in chapter 2, present the design of a

surveillance system with three cameras. The design consists of three “crunchers”

nodes that realise the low-processing of the signals coming from the three cameras.

Thus, each node is attached to a camera. In that work, the functionality of the design

system is also divided in two main parts: the “crunchers” nodes and the “hub” or

“data analyzer” node. Each cruncher is also attached to a local database. The nodes

are communicated between them in a fault tolerant way using a mesh network

structure. There is another (i.e. the “data analyzer”) node that analyses the

processed data coming from the crunchers and this node is connected to a global

database. Apart from all this nodes, there is a monitor node that is connected to one

“cruncher” and that allows to visualize the signals coming from the crunchers. In

this case, the authors follow the idea of embedding the low-level tasks including a

local archive in each camera (three in their case) and to allocate the high-level

processing tasks, including a global archive, to a “hub” node.

The network structure of the system proposed here consists in a hybrid of three

different network architectures, which is discussed in more detail in section 5.5. The

design decision of the network structure comes from a compromise between fault

tolerance and scalability. Note that, even though in Figure 5-1 only CC0 and CC1

appear, the design of this system is intended to be as scalable as possible. Therefore,

it is possible to scale the system by introducing a CC2 node, which introduces

another level in the structure of the system, allowing the integration of another

hierarchical level in the system. However, this might not be necessary nor

advisable, because the system can, in fact, grow without introducing another level

(with the consequent complexity that this implies).

The main difference between what is proposed in [Marcenaro et al. 2001] and

[Christensen and Alblas 2000] and what is proposed here, lies on the functional

definition of the “hub” node. In [Marcenaro et al. 2001] and [Christensen and

 186

Alblas 2000] the functionality of the “hub” node is to concentrate the signals

coming from “sensor” nodes, and to apply some high-level processing tasks

(depending on the number of sensors that are attached and on their power

capacities). In this proposed design, the “hub” node or CCx node does not only

concentrate the signals but visualises and controls the signals coming from the

“sensor” nodes or DPU nodes. Moreover, the CC1 nodes also control the signals

coming from the CC0s.

Furthermore, [Christensen and Alblas 2000] work relates to the design of a specific

system using three cameras with high processing capacity, while the design

proposed in this chapter is independent of the number of cameras and their power

capacity, because these matters are more appropriately dealt with in the physical

mapping phase instead of the design phase. Therefore, note that in the proposed

design, there is no discussion of the physical distribution of the tasks at this level of

the design because as, mentioned in chapter 3 and chapter 4, the design phase of a

system using Real Time Networks is transparent to the physical distribution of the

tasks. This is in fact, a strength of the method.

 187

Figure 5-1. Functional representation of the system.

 188

5.2.2 RTN components used in the design

Table 5-1 lists some of the components used in the design of the system. The

component that represents the system as a whole is called LSIVSS (an acronym for

Large Scale Intelligent Visual Surveillance System). Inside this system there are

other subsystems, which represent the previously mentioned CC0, CC1 and DPU

nodes. The design of the system is intended to be as modular as possible. The

subsystems are designed as groups of elements that have the same functionality and

that are independent of the rest of elements than do not belong to the same

subsystem. The only connexion to the outside of the subsystem it is done through

ports, windows and servers. The server components are used to represent the

interaction of the system with the outside world. The system interacts with the user

through a server called e.g. Screen, which represents a computer to visualise the

outputs, and a server called e.g. Kboard, which represents a computer to allow the

user to send commands to the system.

RTN COMPONENTS MAIN DESIGN TEMPLATES NAMES

System LSIVSS

Subsystem CC0, CC1,VISUAL

Activities OD_OR

Protocols A_E(signal), I_C(pool), S_I(channel), TRIGGER (flash)

Protocols S_DATA_IN(RPC), S_DATA_OUT(RDS)

datarepository Local_DPU_Info, LAR, DPU_info_Module.

Server Screen, Kboard, camera

Table 5-1.Summary of some of the RTN components that appear in the proposed design

system.

Therefore, one of the design decisions has been to group each node in different

subsystems representing the different functionality of each node in the initial

functional design. The CC0 node is represented by the subsystem called CC0, the

CC1 node is represented by the CC1 subsystem and the DPU node is represented by

the subsystem called DPU. Inside each of these subsystems there are more

subsystems. For example, the subsystem called VISUAL (part of CC0) represents

the visualisation part of the system. The description of the different components of

each subsystem is presented in section 5.3.

 189

Another important design decision corresponds to the final number of activities into

which each subsystem is decomposed. As mentioned in chapter 4, a network that is

designed with too many activities may carry out a penalty in the performance of the

system, because each activity that represents a thread also involves a context switch.

To design the system with too many activities implies a system with a possibly

unnecessary number of context switches which may reduce its performance. Even

though there seems to be no method that allows the calculation of the number of

activities that is required in a specific application design, as a rule of thumb

[IECCA and MUF 1983b] advice that the activities should have few ports. If an

activity has more than two input and output ports it may be necessary to decompose

the activity further. However, some of the designed activities that are presented in

this chapter have more than two inputs or ports, because in order to carry their

work, the activities need more than two inputs (which it is quite common for the

design of surveillance systems architectures) or because the output resulting from

these activities should be sent to different parts of the system.

In the design presented in this chapter, each required image processing algorithm

such as motion detection, tracking or behaviour recognition has been represented by

an activity. Therefore, some of these activities have more than two input ports or

more than two output ports, such as the activity that represents the motion detection

algorithm. This algorithm for example requires (as an input) the image from which

the algorithm has to detect the motion parts, and it also requires (as an input) the

background image to be able to extract the motion components (please see the

diagrams in Appendix B). Therefore, the activity that represents the motion

detection algorithm has at least two input ports.

The actual nature of the communication between activities or/and subsystems

determines the types of protocol should be used. It is possible to reflect such needs

clearly in the design, because RTN provides a rich family of possible protocols (e.g.

compared to CORBA). Therefore, the use of the protocols that appear in Table 5-1

(e.g. signal and flash) to communicate the subsystems and the activities, becomes

another important design decision. [Haveman 1997] illustrates through mathematic

analysis the difference in time performance between using a pool or a signal

 190

protocol to communicate two subsystems. The protocols used in the proposed

design are the signal, flash data, channel, pool, constant, RPC and RDS protocols

(please refer to Figure 3-3 and Figure 3-5 to see the taxonomy of the RTN

protocols). As presented in Figure 3-3, the writer is never blocked but the reader

may be blocked using a signal protocol. Therefore, this protocol is used when the

data to transmit between activities or subsystems is sporadic such as alarm events or

control signals. Flash protocol, as mentioned in chapter 3, is a variation of signal

protocol and represents a signal protocol with zero buffer capacity. In the pool

protocol, neither the writer nor the reader are blocked, then this protocol is used

with periodic signals such as the input signals coming from the sensors or

background actualisations. Moreover, the use of a pool protocol implies full

asynchronous communication between the activities and therefore the use of this

protocol provides temporal independence between the communicating activities.

Finally, in the channel protocol, either writer or reader can be blocked. This is used

to represent message passing communication between the activities, or used when a

synchronisation on the communication is required such as the communication of

configuration data parameters.

The last component used in this proposed design is the datarepository component

(Table 5-1). This component is used as an archive to permanently store data such as

the information of each node (location. ID) and to storage images coming from the

sensors and events detected by the system. To put and obtain data stored in this

datarepository component in a synchronous manner other types of RTN protocols

are used i.e. RDS and RPC (please see Figure 3-5).

5.3 Functional description of different parts of the design

In terms of requirements, surveillance systems should transmit video effectively,

should allow the visualisation of video scenes to aid real-time monitoring, should

facilitate the extraction, processing and access of objects and events in real-time,

and should recognise scenarios. All these requirements are grouped in different

parts in the proposed system design.

 191

The system has five different constituting parts: monitoring units, data processing

and archive units, communication units, control units and feedback units. Apart

from section 5.3.1, which describes the type of data used in this system, the

following sections describe in detail each of these parts of the system but not the

communication unit because each communication unit is defined separately as a

group of some of the protocols mentioned in the previous section.

5.3.1 Classification of data used in the system

To design a system it is important to define and to classify the type of data that the

system requires and uses. Apart from the input data coming from the outside world,

there is some data that it is used inside the system, which may suffer

transformations while is used or transmitted through the different parts that

constitute the system. These transformations may be important and therefore they

are required to be stored even when the system is not working. This type of data is

defined as persistent data. If these transformations are used as intermediate data

between modules then these data are defined as a volatile data. As mentioned in

chapter 2, there is a growing research on establishing standard formats data for

surveillance systems. For example, in ADVISOR the input images data coming

from the sensors or from the archive are JPEG images while the rest of the data

corresponding to the description of events or the system information setup are

defined as XML streams. A poor selection of the input format data of the system

may reduce the performance of the system. In [Mähönen and Saaranen 2000] the

authors classify the use of different image formats such JPEG or MPEG2, MPEG4

for different multimedia applications.

5.3.1.1 Persistent data and local storage
Different types of persistent data that exist in the system, produce the creation of

subsystems that are different depending on the use of this data and on the number

and the ways in which this persistent data needs to be accessed. There is persistent

data that it is used only by some algorithms that are implemented in the system; e.g.

a background estimation algorithm produces the background of an image, which is

required by other algorithms such as motion detection or tracking. Therefore, the

background image data should remain in the system permanently so that other

components in the system can consult and obtain the data. The background

 192

estimation algorithm not only creates the background image but it also actualises it.

Therefore, this type of data such as background image data, should not only remain

in the system but should be constantly updated. In this design, the pool protocol is

used to store this type of persistent data (because the reader cannot destroy the data

(i.e. reference data) but the writer can always update, destroying previous values).

Another type of persistent data that should remain in the system but in this case

which is not necessarily updated, is data that has been obtained from an off-line

process such as the 3D scene model of the place from where sensors are capturing

the data. In the case that the sensor is a camera, the camera calibration parameters

may be considered as persistent data, which also do not require to be updated (if the

camera is fixed). For this type of persistent data, the constant protocol is used,

because once the data is inserted in the protocol only the reader can interact with the

data without being able to destroy the data.

The persistent data that not only is used by the system but by the user too, is stored

in the archive component illustrated in Figure 5-2. This component represents the

archive of images and events recorded by the system that the user can consult and

visualise. As seen in Figure 5-2, the LAR component has one incoming signal and

two output signals. The Trigger signal is used to register error signals from the

archive component such as “the archive is full” (see Gar_Data in Appendix D). The

AsynchIn, as the name implies, is used to insert data in the datarepository

component in an asynchronous manner. The signal called AsynchOut is used to

retrieve data, also in an asynchronous manner.

 193

Figure 5-2. Local ARchive (LAR) component. Note that in Appendix D this subsystem the

signal Trigger does not appear.

Another type of persistent data is used either by the user or by the system to have

information of the organisational structure of the system includes information such

as: the number of cameras in the system, the number of DPUs, the number of CC0

and the number of CC1 nodes, or the links of coverage areas between DPUs (this is

explained below). As mentioned, several designed subsystems contain different

datarepository components that store this type of information (Figure 5-3, Figure

5-4,Figure 5-5 and Figure 5-6) as explained in some more detail now.

 194

Figure 5-3 presents the Local_DPU_info_MODULE subsystem. This subsystem has

a data repository component that contains the local information of a DPU node. As

shown in Figure 5-3, this local information consists of the ID of the DPU node, the

number of sensors (e.g. cameras) connected to the DPU node, camera parameters,

parameters needed by some algorithms like thresholds and a description of the

zones covered by the cameras. If there is a zone covered by more than one camera,

i.e. a link between cameras, the link information and the cameras ID that are linked

are stored. Finally, the link between DPUs and the ID of the DPUs linked is also

stored. All this information is used by the CC0 node to which a DPU is connected

and it is also used by different activities that a DPU contains. Therefore, there are

two different types of access to the datarepository component. One of the accesses

is done by the three activities that appear in Figure 5-3, i.e. CIUcc, CIUdpu and

L_ToDPU that deal with requests to get and put information. The requests to CIUcc

and CIUdpu come from the CC0 and the requests to L_ToDPU come from another

DPU. The CIUcc is waiting for a sporadic control signal coming from the CC0

asking for some information stored in the datarepository. Once the CIUcc receives

the signal, it gets the required information and sends it back to the CC0. At the same

time the CIUdpu inserts the information that receives from the CC0. The other type

of access to the datarepository is coming from the activities that the DPU contains

(see Asynch out and Asynch in signals in Figure 5-3). This is similar to the access

processes in the local archive illustrated in Figure 5-2.

 195

Figure 5-3. The design of LOCAL_DPU_info_MODULE.

Figure 5-4 presents the subsystem called DPU_info_MODULE. This subsystem

deals with the information needed by the CC0 node. The data information that this

subsystem retains is similar to the data information stored in

Local_DPU_info_MODULE. However, data such as the camera parameters or

constant parameters that some algorithms in a DPU require, are not stored in the

data repository component of the DPU_info_MODULE subsystem, but instead are

stored in the Local_DPU_info_ MODULE module. In the DPU_info_MODULE

subsystem, the data is inserted by the two activities that appear in Figure 5-4; i.e.

CItoDPU and addInfoDPU, and the data is retrieved by a CC1 node through the

ToCC1 activity, (see Figure 5-4). CItoDPU sends sporadic signals to each DPU that

is connected to the CC0 node. Once CItoDPU sends one signal to one DPU, it

checks periodically when the data information coming from that DPU has arrived

(through the data channel, see Figure 5-4). The data information consists in the ID

 196

of the DPU, the number of cameras attached to this DPU, the links that this DPU

has with other DPUs and the areas that this DPU shares with other DPUs.

Therefore, the functionality of the CItoDPU activity is to collect and store all the

information of the DPUs that are attached to the CC0 node. Once this information is

received, the CItoDPU stores this data in the data repository component. In parallel,

the addInfoDPU activity may receive data coming from a CC1 node, for example if

a user in the CC1 node needs to change a parameter such as a threshold or a camera

position in a specific DPU, the signal containing this change information is sent to

the addInfoDPU activity (through the ToaddInfoDPU interface, see Figure 5-4).

Afterwards, addInfoDPU stores the received information and at the same time it

transmits the information to the corresponding DPU. At the same time, CC1 may

retrieved data from the CC0 node (e.g. number of DPUs that are connected to the

CC0 node) in asynchronous manner (please see Asynch Out and Asynch In from

ToCC1 activity in Figure 5-4).

Figure 5-4. Decomposition of DPU_info_MODULE subsystem.

 197

Figure 5-5 illustrates the design of the CC0_info_MODULE subsystem. This

subsystem deals with data that is used by CC1 nodes. The data information, that the

datarepository component of this subsystem stores, consists of: number of CC0

connected to the CC1 node, the ID of each CC0 and the DPU information of the

each DPU connected to this CC0. There are two types of access. One of the

accesses is done by the activity called CIUcc. This activity sends a signal

sporadically, to each CC0 node that is connected to the CC1 node asking for the

information of the CC0 (i.e. the information stored in the DPU_info_MODULE

subsystem). Then, CIUcc checks periodically for the arrived data. Once the data is

in the buffer, CIUcc reads the data and stores it in the datarepositorty component.

The other type of access is used by another subsystem that it is contained in the

same CC1 node (i.e. VISUAL_CC subsystem), which is discussed later on. This

access is the same as the local archive shown in Figure 5-3 (see CC0_PetiVisual

activity in Figure 5-5).

 198

Figure 5-5. Design of CCo_info_MODULE.

Figure 5-6 represents the subsystem called CC1_info_MODULE. This subsystem

also deals with data that is required by CC1 nodes. The information archived in this

subsystem corresponds to information of the CC1 node itself, information about

other CC1 nodes that the CC1 has been able to retrieve and also information about

the DPUs that are connected to these neighbours CC1. This information is stored

because it may be used when the CC1 node needs to get some data from a DPU that

 199

is not connected directly to it, but connected to another CC1. All these

datarepository subsystems and their connections are needed to communicate for

example, a Station A, which is attached to a CC1_1 node (that surveys zone 1), with

a CC1_2 node (which surveys zone 2, but requires information from Station A).

Note that, one or more DPUs are located in Station A.

At the same time, this information may be used if the system is scaled and upper

level control nodes are added such as CC2. A CC2 subsystem would use afterwards

this information to get the information of the organisational structure of the system

and to know which CC1 nodes are connected and consequently which CC0s and

DPUs are connected directly to the CC2.

There are three different types of access. One of the accesses is done by the activity

called TPC. When this activity receives sporadically a signal requiring information,

TPC retrieves the information from the datarepository component and sends it back

to the CC1 node that asked for the data. In parallel (i.e. the second type of access), a

CIUdpu activity puts in asynchronous manner the data that it had previously

required from another CC1 node. This information consists of the ID and the

location of a DPU. This information is used by the CC1 node to connect to the

DPU. Therefore, when CIUdpu gets the information, it not only stores it, but it also

sends it back to another subsystem in a CC1 node (i.e. the VISUAL_CC subsystem)

through PetiVisual activity, which uses this information to connect with the specific

DPU that is attached to another CC1 node. The third type of access is the same as

the local archive access that Figure 5-3 and Figure 5-5 illustrate. See Asynch In and

Asynch out in Figure 5-6.

 200

Figure 5-6.Design decomposition of CC1_info_MODULE.

The last type of persistent data that is found in the system is, as Figure 5-7

illustrates, the data information about the profiles of any user connected to the

system. This data information is important to control access to system information

by different types of users. Moreover, this information can also be used to track the

number of mobile users that are connected to a CCx node at any time. Therefore, if

 201

any alarm happens, the CCx can warn any user connected at this time, if the user

has the right permissions. Then, when a user connects to the system, it sends a

signal with his/her profile to the DB_User activity in Figure 5-7. Then, this activity

registers this user in the CCx node by inserting the user information in the

datarepository component. Once an alarm event is raised, a signal to the

Search_User activity is sent and then this activity looks up into the datarepository

component if there is any user connected at that moment, who should be warned by

this alarm. If there is any user, then it sends the alarm through a toDA signal to the

user or users.

Figure 5-7. Composition of the subsystem called Locator_user.

 202

5.3.1.2 Volatile data
Volatile data is by definition transient and there is no need to store it, as occurs with

persistent data. In the design, data that is used between activities, is considered

volatile. For example, the data that any of the activities in the CC1_info_module

(see Figure 5-6) receives from other subsystems such as TPC through the flash

protocol, is considered volatile data, until it is stored in the datarepository

component.

5.3.2 Monitoring part of the design

The functionality of the monitoring part of the system consists in visualising: the

processed data such as alarm events, archived images or live images. There are

three subsystems in this design whose functionality is to monitor signals in the

system. This is shown in Figure 5-8, Figure 5-9 and Figure 5-10 and described in

some detail below.

As mentioned in section 5.2, besides the data processing functionality represented

by DPU nodes, there are other functionalities which are grouped and represented in

CCx nodes. One of these functionalities is to monitor the outputs from DPUs.

Therefore, each CCx contains at least one subsystem whose functionality consists in

allowing a user to visualise constantly the results produced by the system. Figure

5-8 illustrates one of these subsystems, contained in CC0, called the VISUAL

subsystem. This subsystem allows the visualisation of real time images from any

DPU connected to this CC0, if and only if the user that is connected has the

permissions to do it (see the server component called “Kboard to user permissions”

in Figure 5-8). The VISUAL subsystem also allows monitoring archive images and

the alarms that are raised by the system. There is another server called “Kboard to

choose DPU” that allows a user to change the visualisation to a specific DPU. If the

user chooses this option, this “Kboard to choose DPU” server receives a signal that

will send it to the “choosen DPU” activity. This activity will send this signal to the

right DPU so that the VISUAL subsystem can start to receive inputs from this

specific DPU.

 203

Moreover, the VISUAL subsystem may receive either real time data or alarm event

data and also playback data from other CC0s if the user sends through “Kboard to

choose DPU” server a signal (see “send a signal to CC1 to visualise a DPU from

another CC0” in Figure 5-8) to the CC1 asking for data of a DPU that is connected

to another CC0. Note that this data comes from the CC1 instead of the CC0, where

the DPU is connected, because there is no direct connection between CC0s.

Figure 5-8. The design of the subsystem called VISUAL.

 204

Figure 5-9 represents the visual subsystem called VISUAL_CC used in CC1 nodes.

The main difference with the previous VISUAL subsystem is that, in VISUAL_CC

it is possible to visualise data from other CC1s (i.e. from other DPUs that are not

connected directly to the CC1 node). The DPUs that are connected directly to a

CC1 are the ones that are connected to one of the CC0s, which is connected to the

CC1 directly. In Figure 5-9, for example, three different “real time image data”

signals are shown. One of these three signals represents the data that may come

from any of the DPUs that is connected to the CC1 directly. The other signal

represents the data that is received from a different CC1. The third signal represents

the real-time data that the CC1 sends to another CC1 node that had required it. This

real-time data comes from one of the DPUs connected directly to the CC1. This

data is sent only if the CC1 receives a request signal illustrated in Figure 5-9 as

“Gets request from another CC1 to send data”.

Therefore, in VISUAL_CC subsystem, a user can ask for data coming from a DPU

that belongs to another CC1. To do that, a signal is sent to the “Choosen DPU”

activity to look for the location and ID of the DPU, from which that user wants to

monitor, in the CC1_info_module and the CC0_info_module. If the information is

not stored into the CC1_info_module and the CC0_info_module yet, the CC1

communicates directly with each neighbour CC1, until it gets the information. Once

it receives the information, it archives the data in both subsystems i.e.

CC1_info_module and the CC0_info_module. It establishes then the connexion

with the CC1, where the DPU is connected, to get the data.

 205

Figure 5-9. The subsystem called Visual_CC. This subsystem is the visual subsystem for any

CC1 node.

Figure 5-10 illustrates the subsystem called MOBIL_USER that represents the

interaction of the system with a mobile (roaming) user. Any CCx node contains this

 206

subsystem. The subsystems presented above in Figure 5-8 and Figure 5-9, represent

the interaction of the system with fixed users e.g. through desktop computers.

Besides these subsystems, a user may be monitoring areas outside these fixed

monitoring points. Therefore, it should be necessary to allow the system to interact

with these mobile users, who may be anywhere in the coverage area of the CCx

node. A user connects to the system and then, sends his/her user ID and profile user

to Val activity, see Figure 5-10. This activity checks the received information with

the information stored in the constant protocol; i.e. the constant protocol has the

information of all possible user profiles in the system. Therefore, depending on the

type of profile, the user will have one or more access rights. After comparing the

inserted data with the persistent data, the Val activity sends a signal to the DA and

CIU activities. The DA activity will receive a signal that indicates that the user can

or cannot receive alarms of one type or another (e.g. the user may be interested to

receive alarms concerning crowd situations but not concerning security situations

such as people being in forbidden areas). In the same way, the CIU activity will

receive a signal indicating which data the user can visualise.

 207

Figure 5-10. The design of a subsystem that represents a visual subsystem for any mobile user.

5.3.3 Data processing part of the design

Although this part of the system deals with all data processing coming from the

sensors that are particularised to cameras in this chapter, it does not reduce the

generality of the system design as the sensors still can be of different types such as

audio or fire detectors. The cameras are represented by servers that the CA

subsystem contains, see Figure 5-11. Some of the image processing algorithms that

have been taken into account in the design of the system are the ones that are

represented in the image data processing flow introduced in chapter 2 (see Figure 2-

1). As presented in Figure 5-11, object detection and object recognition algorithms

are represented by the OD&OR activity. The tracking algorithm is represented by

the TR activity. The behaviour and activities analysis algorithms are represented by

the scenario recognition activity (SR). Moreover, the background actualisation

algorithm is represented by BU activity.

The rest of the activities that appear in Figure 5-11 do not correspond to image

processing algorithms but to the control and also to the analysis of the results

coming from these image processing algorithm activities; e.g. if the RA activity gets

a signal from the SR activity it means that the SR activity had recognised an alarm

event. When RA receives this signal, it checks if it has any control data coming

from the CC0 node through the PC_AL activity such as: feedback alarm data,

indicating that this kind of alarm event is not an alarm, or new configuration alarm

parameters. After checking this data, if the RA activity still considers that this is an

alarm event, it sends a control signal to the TI activity allowing it to send (to the

VISUAL subsystem in CC0 node) the images that the sensor is capturing while the

alarm is occurring. Moreover, the RA activity also sends this data alarm event to the

archive component to store it. If TI does not receive a signal from RA, it will not

send any data to CC0 node. TI receives the images coming from a SA activity,

which only gets the capturing images at the same time that OD&OR activity. The

SA activity sends the images to TR and TI; it does not do any processing action in

the received images. Therefore, this activity only maintains coherence between the

inputs (i.e. the images received from the CA subsystem), from the OD&OR, TR and

TI activities. The TR activity, for example, requires the outputs from the OD&OR

 208

activity and also requires the same input image that the OD&OR used to obtain the

outputs. On the other hand, if there is any recognised event, the TI activity should

get the same input image that the OD&OR and TR activity have used to detect the

event.

Figure 5-11. DPU subsystem. The sensors are attached to this subsystem through the CA

subsystem.

The PB, PBUI and PBC activities in Figure 5-11, manage the archive component as

explained above. The PBUI activity receives sporadic control signals coming from a

CC0 node. Once the PBUI activity receives one of these control signals, it sends a

signal to PB to send archive data to the monitoring subsystem in CC0. The PBC

activity controls if the archive component is working properly; e.g. if the archive

 209

component is full, it triggers a signal to PBC indicating that the archive cannot store

more data.

The FA, PC_AL, TPC_SR, PC_SR, PC_TR, TPC_TR, TPC_OR and PC_OR

activities communicate the image processing algorithm activities such as SR (Scene

Recognition), with the control part of the CC0 node or with other DPUs. Therefore,

from the CC0 node it is possible to change control parameters related to the

algorithms such as thresholds through the PC_OR, PC_TR, PC_SR and FA

activities. Moreover, a DPU may also send to the corresponding activity that

belongs to another DPU, data that may be important to run the corresponding

algorithm more accurately. If two DPUs overlap areas, or their cover area is defined

as dependant, i.e. one DPU covers the corridor that connects with a platform and the

other DPU covers the platform and they are tracking an object, then it is necessary

to provide communication between these two DPUs. This is a very important

feature of a distributed surveillance system. Therefore, the TPC_TR, TPC_OR,

TPC_SR and PC_AL allow sending information from one DPU to the other (see the

bidirectional arrow in these activities in Figure 5-11).

On the other hand, TPC_TR, TPC_OR and TPC_SR store the information received

from either the image processing algorithm activities or other DPUs, in the local

archive i.e. LOCAL_DPU_info_MODULE (see Figure 5-11). In the case of FA,

the information to be stored may come from either the CC0 node or other DPUs.

5.3.4 Feedback part of the design

As mentioned above, the FA activity receives a signal from a CC0 node. This signal

is sent by the Alarm Feedback Control subsystem that is inside the CC0 subsystem.

Figure 5-12 presents the Alarm Feedback Control subsystem. The signal called

“feedback alarm to DPU” indicates if the alarm, that has been detected by the

system and sent back to the user, is considered to be a real alarm or not; i.e. if a user

considers the alarm a true or false positive. Therefore, this signal is important

because it allows the system to learn through this feedback. If a user considers that

this alarm event received is a false positive it sends a feedback signal to the DPU,

so that next time when the same conditions happen, the RA activity in a DPU

 210

subsystem (see Figure 5-11) might decide not to send any alarm event. It is also

possible that this feedback signal comes from the CC1 node instead of coming from

the user in CC0 node (see “feedback alarms from CC1” from Figure 5-12).

The Alarm Feedback Control subsystem also sends a signal to the PBUI activity in

a DPU (see Figure 5-11). Therefore, if a user wants to monitor data stored in the

archive component in a DPU, it sends a signal through the “Kboard Alarms” server

component and consequently through the CUI activity to PBUI. As mentioned, if

PBUI receives a signal, it then sends another signal forcing the PB activity to start

sending the images back to VISUAL subsystem in CC0 (see Figure 5-8). The

design of this system takes into account the existence of a global archive data of

true positive alarm events per node; i.e. each CC0 subsystem has an archive

component that stores the alarms that have been checked out previously by the user

as a true positive alarm event. The reason behind this is that, with the same size as

the rest of archives, the global archive (called GAR data) is able to store more

interesting data, because it only stores the alarm events and not the constant

recording data as the local archives do. Therefore, a global archive of an alarms

event per zone is designed.

 211

Figure 5-12. The ALARM FEEDBACK CONTROL subsystem that represents a feedback

part of the system.

Figure 5-13 presents the ALARM FEEDBACK CONTROL CC1 subsystem, which

is contained by a CC1 node. As is the case for the CC0 node, the CC1 node may be

alerted by any alarm event that occurs in any of the DPUs under its control. For that

reason, a CC1 node is also able to give a feedback on these alarm events, see

“feedback alarms from CC1” signal in Figure 5-13. The ALARM FEEDBACK

CONTROL CC1 subsystem, through its “Kboard Config_parameters” server

component, may also send a configuration parameters control signal to any DPU

that is under its control. This signal, called “From CC1 to AddInfoDPU” (see

Figure 5-13), sends the information to the archive module explained before, called

DPU_info_MODULE (see Figure 5-4), which all CC0 nodes have. These new

parameters are archived in the DPU_info_MODULE, and at the same time, sent

 212

back to the corresponding DPU. So, through this subsystem the CC1 node may also

change parameters of configuration of any DPU that is under its control.

Figure 5-13. The ALARMS FEEDBACK CONTROL CC1 subsystem that represents a

feedback part of the system.

5.3.5 Control part of the design

Another important design decision is related to the design of the control parts of the

system. By this, we mean the control signals that enable the system to add or

change parameters, monitor different outputs of the system and to get information

about the whole structure of the system. The control nodes CCx raise most of these

control signals. These control signals are different from data signals, in that they are

created to activate an action (event) such as to visualise outputs from the system,

change or add parameters.

 213

Figure 5-14 presents the CONFIG_MODULE subsystem that deals with the

processing of all the signals that are coming from the outside of the system. These

signals are generally related to adding or changing parameters of any of the

components in the system. Therefore, through this subsystem a user is able to

reconfigure some parameters of different parts of the system. A user may change

the parameters of the cameras through the “Kboard to control camera” server in

Figure 5-14. Moreover, a user may also, for example, want to change the thresholds

that some algorithms use through “Kboard to Config_parameters” server. If one of

the scene recognition tasks is to detect crowded situations, the SR activity (see

Figure 5-11 or the crowd detection algorithm design diagram in Appendix B)

applies appropriate thresholds to determine if the scene (i.e. crowded situations) is

recognised. Therefore, if the user changes these parameters the SR activity has to

change the thresholds to the new ones to recognise the scene according to the new

parameters.

Another parameter that a user may want to change or add is the location of a DPU

through the “Kboard to info location” server in Figure 5-14. Note that, all these

changes alter persistent data, so that the Config_module subsystem sends these

parameters to the corresponding DPU and camera, and at the same time it stores the

data in the DPU_info _MODULE (see Figure 5-4 and Figure 5-14). The ToCC1

activity that appears in Figure 5-14, gets the data sent by the DPU_info_ MODULE

when it gets a control signal from a CC1 node asking for a DPU’s information, as

explained before.

 214

Figure 5-14. Design of the config_module used by the CCo to change configuration parameters.

Figure 5-15 presents the CC0 subsystem that consists of a global archive

component, three subsystems, a server and two activities. The activity called CAr

connects the global archive component called GAR data with a “screen” server

component, so that if the archive triggers a signal (e.g. “the archive is full”) then the

user may be warned through the server. The three subsystems as seen in Figure 5-15

are: the VISUAL subsystem and the Locator_user and MU subsystems. The MU

subsystem groups two subsystems as explained in section 5.3: the Config_module

and the ALARM FEEDBACK CONTROL. Therefore, the MU subsystem does not

have any functionality other than to group these two subsystems that have a related

control functionality. When the lookup activity, (see Figure 5-15), receives a

sporadic signal from the RA activity in a DPU (see Figure 5-11), consisting of an

alarm event data, the lookup activity sends the alarm to the Locator_user subsystem.

 215

When Locator_user receives this type of signal, it searches if there is any mobile

user connected to the system that may be interested in being warned with this alarm

event. If there is any such user, then the Locator_user sends them the alarm event

data.

Figure 5-15. The CC0 subsystem, which represents the first level of hierarchical control

structure of the system.

Figure 5-16 illustrates the design of CC1 subsystem, which corresponds to the

outmost level of the hierarchical network structure. Nevertheless, as mentioned

earlier, if the system needs to be scaled up to another level of hierarchical control,

subsequent CCx subsystems will have the same architecture design, as the CC1

subsystem. However, the subsystems will need to be called differently because they

will interact with different level of nodes (see Figure 5-17). For example, the

subsystem called “CC1_info_module” will be changed to “CC2_info_module”

subsystem. These changes occur because the CC2 node will communicate with CC2

 216

and CC1 nodes directly, instead of communicating with CC1 and CC0 directly as

CC1 does. Moreover, if another level like CC2 is introduced, then the CC1 node

will undergo some minor changes. Changes that should be introduced in CC1 in

such a case are illustrated in red in Figure 5-18.

The CC1 subsystem consists of four other subsystems and two activities. The

subsystems, which have been introduced in previous sections, are the following:

CCo_info_MODULE, VISUAL_CC, CC1_info_MODULE, Locator_User and

ALARM_FEEDBACK_CONTROL_CC1. The look up activity in Figure 5-16 has

exactly the same functionality as the look up activity in Figure 5-15, which has been

also introduced. The activity called “DATA_TO_CCo” sends (to another CC0) the

data that is required by one of these CC0s. When “DATA_TO_CCo” receives a

request from a CC0, it sends a signal to Choosen_DPU activity to look for the DPU.

Once the DPU is found and the CC1_module subsystem starts to receive the data,

the CC1_module subsystem sends the required data back to the CC0 that asked for

it.

The functionality of a CC1 subsystem is to get the information about the number of

connected CC0 subsystems, the number of DPUs connected to each CC0, and also

the number of cameras connected to each DPU. This information is used by the

system to get the whole structure of the system. Therefore, a user connected to e.g.

a CC1 subsystem may monitor data from any CC0 and consequently, from any

DPU node. The user may also change information of any DPU or give feedback

about an alarm event.

 217

Figure 5-16. The CC1 subsystem, which represents the second level of the hierarchical

structure of the system.

 218

Figure 5-17. The CC2 subsystem design if the system was scaled one more level.

 219

Figure 5-18. The changes that should be applied to CC1 (shown in red) if a CC2 subsystem is

introduced in the design of the system.

5.4 Design of the system

In section 5.3, the different functional parts of the system have been described.

Appendix D presents the design of the different components using the MADGE

graphical representation tool. Note that, although we tried to preserve in the system

 220

design the names of the components presented in previous sections, some of the

names of the components have been changed. To make the presentation clearer, the

design illustrated in Appendix D, corresponds to only one leaf of the whole network

design structure illustrated in Figure 5-1 (see Figure 5-19). Therefore, the design

presented in this section consists of: one CC1 subsystem, one CC0 subsystem, one

communication subsystem between CC1 and CC0, one communication subsystem

between CC1s, one DPUs, one communication subsystem between DPU and CC0,

and one communication subsystem between DPUs and a mobile user subsystem.

 221

Figure 5-19. Design represented using MADGE tools in Appendix D.

Note that one design decision is to communicate DPU subsystems, CC1 subsystems

but not CC0 subsystems. The network structure that is created from this design

decision is discussed in section 5.5. The reason for that design decision comes from

a compromise between scalability and performance. With this design, depending on

 222

where a user is connected, performance may slow down. If the user is connected to

a CC0 node and asks for data corresponding to a DPU that is connected directly to

this CC0, the user will get the data faster. However, if the user connects to a CC0

node and asks for data from a DPU that is not connected to the CC0 node directly,

the user will not get the data as fast; because the data is received through a CC1

node rather than through the specific CC0 node. Therefore, by introducing this

restriction on the communication between CC0 nodes, the monitoring of the zone

assigned to the user has priority over that of other zones.

On the other hand, with this design, it should be quite straightforward to scale the

system up by increasing the number of CC0 without considerably decreasing the

performance of the system from a network point of view. The bandwidth does not

decrease dramatically and the routing policies are easier, because communication

only occurs between CC1 and CC0, and not between CC0s. This does not occur

when another DPU is introduced. Bandwidth allocation decreases significantly by

overloading the network with packets through different paths. Moreover, the routing

policies may get more complex.

5.4.1 Partitioning

In sections 5.3 and 5.4, the functional definition and the system design have been

presented and discussed. Note that the system is partitioned into multiple

subsystems that consist of other subsystems, at the same time. Through each

subsection, parts of the system have been presented and decomposed into a network

of activities communicating through protocols. As mentioned, the selection of each

protocol has been done according to the needed interaction between the activities.

Once the system is decomposed as a network of activities, the design phase of the

system may be considered finished but not over, because the design in DORIS is an

iterative process.

Therefore, the design can undergo some changes at any time in the system creation

process. Note that the phases introduced in the next paragraphs do not belong to the

design part of the system, but they are introduced to give a logical continuity to the

creation of the system.

 223

Once the design phase finishes, the implementation phase of the system starts. For

example, this would include the implementation of the image algorithms into the

corresponding activities, the implementation of the control communication

algorithms, the implementation of algorithms to archive and to access to the storage

data, and the implementation of the communication mechanisms of the IDAs.

Moreover, the choice of the scheduling strategies is also included in this phase.

Once all the activities and communication areas are implemented, the mapping

phase process starts. By knowing the number of resources such as CPUs and

memory available, the physical mapping of the network of activities to the physical

resources starts and a prototype can be built. By using the DORIS methodology, the

system may be partitioned into several independent modules that communicate

between them through designated areas. Therefore, it is possible to prototype and

test each module on its own.

In the next section a discussion of the design of the system is presented, but this

time from a network topology design point of view, instead of a software network

design point of view.

5.5 Network Design of the system

This section discusses the proposed system design from the logical network design

topology point of view. At the time of writing, there are three main types of

architectural design network models: flat networks, hierarchical networks and mesh

networks. Network topologies such as bus, start, tree, start-wired ring or Fiber

Distributed Data Interface (FDDI) can be classified in one of these architectural

design models; e.g. the FDDI can be classified as a flat network.

Each of these architectural design models has its pros and cons. Flat networks are

adequate for small networks; each node has the same functionality and the network

is not divided into layers. Flat networks are easy to design, implement, and maintain

as long as they remain small. However, changes in this type of network tend to have

a high-impact in the network itself. Mesh designs are recommended to meet

 224

availability requirements. There are two types of mesh topologies: full-mesh, where

all nodes are connected to all nodes, and partial-mesh, which has fewer connections

between nodes. Full-mesh gives complete redundancy to the design and also gives

good performance, because there is only one single-link delay between nodes. The

same does not occur with partial-mesh architectures, because a node may traverse

more than one link to reach the other node. Even though mesh topologies give good

reliability, they may be expensive to design and maintain. Moreover, this type of

network may be difficult to troubleshoot, scale and optimise; it is possible to

overload the network with packets through different paths. As pointed out in

[Macmillan Technical Publishing and Cisco Systems 1998], with mesh topologies it

may be also difficult to contain network problems, because of the lack of

modularity. On the other hand, hierarchical architectures divide the network into

layers or modules. Therefore, hierarchical designs impose a modular design helping

with control management. Moreover, this type of architecture is more scalable and

flexible, because it allows the creation of design structures that can be replicated as

the networks grows; each instance of the module is consistent, and the expansion is

easy to plan and implement.

There is a rule of thumb to design network systems presented in different CISCO

books such as [Paquet and Teare 2001] and [Macmillan Technical Publishing and

Cisco Systems 1998]. The network should be designed following a hierarchical

architecture. CISCO design methodology based on simplicity, suggests that the

design does not require more than three layers that following CISCO terminology,

are called: access layer, distribution layer and core layer. Once each layer is

designed using modular and hierarchical techniques, the following step is to design

the intercommunication layers based on the analysis of traffic load, flow, and

behaviour. After completing the logical topology, the logical design phase continues

by designing network addressing and naming models, selecting routers and bridging

protocols, and developing network management and security areas.

5.5.1 Logical design topology

As mentioned in section 5.2.1, the final logical topology of the system design

presented, is a hybrid of these three architecture design models. Please see Figure

 225

5-1 and Figure 5-21. Before arriving at the final topology, others topologies were

proposed as illustrated by Figure 5-20. Once the functional definition of the system

was defined into data processing units and monitoring units, a first proposed

network topology was to connect the monitoring units using a FDDI ring topology

and then, to attach the data processing units to the monitoring units as shown in the

top design topology in Figure 5-20. The main problems with this topology is the

lack of scalability and the lack of distribution, because only one node (CC in Figure

5-20) communicates with the rest of CC0, therefore a single point-of-failure was

created. After disregarding this topology, a second topology was proposed based on

a hierarchical design model as illustrated by the bottom topology in Figure 5-20; the

reasons for the election of a hierarchical architecture model are explained in section

5.5. Nevertheless, to scale this proposed topology, new upper level nodes should be

designed and created; adding more complexity into the structure and into the

modules that constitute the system.

 226

Figure 5-20. Two previous candidate topologies of the system design, before the final topology.

The final structure of the system, following the second proposed topology, is also

based on a hierarchical structure, but divided into three layers. The upper layer

corresponds to the CC1 nodes, the second layer is represented by CC0 and the

lower layer is represented by the DPUs. In reference to the CISCO design

methodology, DPUs may correspond to the local access layer, where services like

 227

multicasting are established. A partial-mesh architecture is used in this layer,

because the traffic between nodes is higher and therefore, it is better to have a

redundant topology; DPU nodes need to communicate between them to get more

accurate results. CC0 nodes may represent the distribution layer; each CC0 groups a

number of DPUs. Therefore, a user is able to monitor, from each CC0, this group of

DPUs. The CC0 nodes use a flat network architecture i.e. star-wired ring

architecture because, as has been discussed, there is no communication between

CC0 nodes. Finally, CC1 nodes may correspond to the core layer. The architecture

used is also partial-mesh, because it needs to be redundant. These nodes allow the

communication of any CC1 with any DPU in the system.

The traffic that begins in any DPU is only allowed to be forwarded to the upper

levels (i.e. CC0) if and only if it meets the following criteria: if an alarm event

occurs in the lower level or if data is required from upper levels such CC0 or CC1.

This design decision comes from the suggestion made in [Paquet and Teare 2001]

that says that traffic that begins in a lower layer of the hierarchy should be only

allowed to be forwarded through the upper levels if it meets defined criteria.

 228

Figure 5-21. The final logical design network topology of the system.

5.5.2 Traffic behaviour- Multicasting

In terms of network design, it is important to characterise the behaviour of the

network to plan the network level and its expansion, to quantify the network

performance and to be able to verify network services. Therefore, to analyse the

behaviour of the network, the traffic flow, the traffic load and also the traffic

behaviour should be determined. To characterise the traffic flow is to specify the

 229

type of traffic flow that the system supports such as client/server traffic flow, peer-

to-peer, server/server or distributed traffic flow. To characterise the traffic load

means to study the number of stations that constitutes the network, the average time

that a station is idle between frames, and the time required to transmit a message

once the medium access is gained. Finally, to characterise the traffic behaviour

includes the analysis of broadcast traffic, i.e. a message that is sent to everybody, or

multicast traffic in the network, and the analysis of the network efficiency with the

study of frame size, protocol interactions, window and flow control and error-

recovery mechanisms.

Here, the behaviour of the network has been analysed in terms of traffic flow and

traffic behaviour. The traffic flow of the system design presented has been

characterised as distributed traffic because the communication between nodes is

modelled as a non-symmetric communication between independent nodes with the

same importance role.

From a network perspective, a multicast behaviour dramatically reduces the overall

bandwidth consumption as pointed out in [Macmillan Technical Publishing and

Cisco Systems 1998] and allows more scalable network topologies solutions,

because it allows organising the traffic per groups. In surveillance systems,

multicast traffic is constantly used. For example, inputs captured by the sensors are

sent simultaneously to many modules and then the corresponding processed data

retransmitted, also simultaneously, to other parts of the system.

In the system design presented here, multicast communication is represented by the

IDAs components that have a window input where the data is put and then the data

is distributed to different components through different windows-outputs. See

Appendix D. IDAs can have the mechanisms to be able to replicate and distribute

the data to more than one component at the same time.

5.6 Quality of Service (QoS)

As seen in this chapter, and also reported in many articles mentioned in chapter 2,

surveillance systems usually require the monitoring of data coming from remote

 230

units such as sensors. Therefore, transmission becomes an issue; e.g. transmission

media selection, security in the transmission and Quality of Service (QoS). Even

though in this chapter transmission media and security in the transmission are not

discussed, in [Mähönen and Saaranen 2000] the authors list, as possible

transmission media for surveillance systems, the following technologies:

microwave, ISDN, ATM, optical fiber, broadband networks and wireless networks.

Quality of service in surveillance systems can be defined as the ability of the

network management to distinguish various actions and to assign different levels of

quality and transmission guarantees to these actions. For example, the QoS when a

CC0 node requires to visualise data from a DPU that is connected directly to it,

should be better than the QoS when the required data comes from a DPU that is not

connected directly to the CC0. The parameters that specify the QoS are usually:

bandwidth, latency and loss rate. Latency is defined as the accumulated delay

between the start of a transmission of a message from one process and the

beginning of its reception of this message by another process [Coulouris et al.

2001]. When the network delivers with a variable latency, this is called jitter.

Surveillance systems should be designed to minimise jitter.

Quality of Service management is based on organising the allocation and

scheduling of resources to meet the requirements. Therefore, the allocation of

processing capacity, network bandwidth, and also the allocation of memory for

buffering data are important to obtain the required QoS. As mentioned, by using an

RTN methodology, the final network system design allows controlling the

allocation of the processing capacities, i.e. the activities needed, and also allows

controlling the memory space required even in the communication between the

activities, through the communication protocols. Therefore, by deploying RTN to

the system design, it is possible to provide more guaranties to obtain the QoS

required.

5.6.1 Bandwidth

As mentioned in the previous section, bandwidth is one of the critical parameters

that QoS depends on. In [Mähönen and Saaranen 2000] the authors illustrate the

 231

effects on bandwidth in a Local Area Network (LAN) and in a Wide Area Network

(WAN) depending on the multimedia application; e.g. the bandwidth required to

transmit standard TV video uncompressed is around 120Mbps. Therefore, it is

important for the network design of the system, to apply policies that take into

account bandwidth requirements such as: bandwidth reservation, quality of service

negotiation, compressed algorithms to reduce data transmission or the use of

protocols like Resource Reservation Protocol (RSVP) or Real-Time Transport

Protocol (RTP). In terms of network design topology, switch elements can be used

to guarantee high-bandwidth requirements. Hubs, which shared media access, may

be used to guarantee an inexpensive access but they do not guarantee high-

bandwidth requirements. Finally, Router elements may be used to isolate broadcast

traffic, and therefore they may be good to control bandwidth requirements.

Although the use of compressed algorithms works to reduce the bandwidth

requirements, it increases the load on the processing resources because these

algorithms usually are quite demanding on computing resources. As mentioned, the

tendency in surveillance systems is to use specialises hardware such as DSPs

embedded on or near the camera to compute these algorithms, or to use software

such as codecs/decodecs allocated on the CPU where all the processing is done. The

system design in terms of software architecture, presented in this chapter, allocates

these software algorithms in the activity attached to the server that is connected to a

camera device in the subsystem called CA. See Appendix D. As said, the actual

physical allocation of each activity, in DORIS, is left to the next phase of the design

of the system; i.e. the physical mapping of the RTN network design.

5.6.2 Resource management- Scheduling

In surveillance systems (as in any multimedia application), each process must be

allocated adequate CPU time, memory capacity and network bandwidth to perform

its designed task and must be scheduled to use the resources frequently enough to

enable it to deliver the data to the corresponding process on time. Surveillance

systems have to handle both discrete (e.g. alarm events) and continuous data (e.g.

images captured in real-time). It becomes a challenge to provide sufficient service

to time-dependent data streams without causing starvation of discrete-media.

 232

Therefore, scheduling policies need to be applied to all resources that may affect the

performance of the system.

As mentioned in chapter 4, in RTN the choice of the scheduling policies is not

imposed, even though it requires documenting the reason of the selected strategy. In

[IECCA and MUF 1987c], the selection of the scheduling strategy is based on the

idea of optimising the response to external events for a given amount of processing

power. Several real-time scheduling algorithms have been developed to meet CPU

scheduling needs for the applications. The priority-based pre-emptive algorithm is

the most common scheduler used in commercial real-time operating systems. As

mentioned in chapter 4, a MASCOT kernel machine usually uses a co-operative

scheduler. Each process has assigned a CPU time slot with a co-operative scheduler,

so as to ensure that each process will complete the task on time. However, if an

interrupt occurs, the scheduler ensures that there is no re-schedule once the interrupt

is handled; thus control returns to the process that had it before the interruption. Co-

operative scheduling may then limit the ability of the scheduler to optimise the

response. This issue is avoided with a priority-based pre-emptive policy, because if

an interrupt occurs, the scheduler has the option to be re-scheduled. The scheduler

then has the ability to optimise the response of the system to the external event. On

the other hand, with priority-based pre-emptive policy a priority inversion may

occur and provoke a failure of the system as illustrated in [Kalinsky and Barr 2002].

The priority inversion is a scenario where the high-priority task fails to run when it

should. Therefore, the choice of one of the schedule policies implies a compromise

between performance and fault tolerance properties.

In [Coulouris et al. 2001], the authors introduced several scheduling policies that

are suitable for multimedia applications, where they also state that traditional real-

time algorithms are suitable for continuous data stream multimedia applications.

The Earliest-Deadline-First (EDF) scheduler uses a deadline associated with the

task, to determine which tasks should be processed next. The same authors say that

EDF scheduling is proven to be optimal for allocating a single resource based on

timing criteria. Nevertheless, EDF requires a scheduling decision for each message;

to make the scheduling policy last longer. Alternatively, in the Rate Monotonic

 233

(RM) scheduler, which is a real-time scheduling algorithm for periodic processes,

messages are assigned priorities according to their rate.

Therefore, real-time scheduling algorithms should be adjusted to distinguish

between time-critical and non-critical tasks to cope with bursty real-time traffic,

which is characteristic in surveillance systems. By designing the system as a

network of activities, and then, analysing which type of task each one of them is

(critical or non-critical), it is possible to select the schedule strategy that suits the

best.

In terms of network design, there are some protocols such as RSVP, that prioritise

traffic by applying “fair” scheduling policies to the network such as: priority

queuing, custom queuing, weighted fair queuing, custom queuing or low-latency

queuing (LLQ). These methods may be applied in the core layer, presented in

section 5.5.1. They are used to give critical data priority over less critical data

transmission during peak traffic conditions.

5.7 Summary

In the first part of this chapter, a proposed architectural model for a large-scale

distributed real-time surveillance system has been presented. This chapter tried to

focus on the idea that the architectural model of a distributed system is concerned

with the placement of its parts and the relationships between them, which have been

discussed through sections 5.2 and 5.3. The architectural model determines not

only the appearance of the system but its structure, providing a consistent frame of

reference for the design, which has been presented in sections 5.4. Because the

proposed design solution is for a large-scale system, the solution tries to be as

modular and generic as possible to allow easy scalability and management of the

system.

Note that, this chapter tried to focus the discussion on the logical design phase,

because it is one of the most important phases to the creation of the system. A clear

definition of proposal of a system design can ease the transition into the design of

the physical implementation of the system. In section 5.4.1 descriptions of the

 234

phases that follow the design process have been mentioned. Apart from the

architecture design model of system in terms of software structure, this chapter,

through sections 5.5 and 5.6, presented and discussed a possible network topology

of the system, coherent with the software design structure proposed. The reason for

that has been, to give a hint of how the proposed RTN solution may be mapped to a

real solution.

Through the presentation of the proposed architecture design of a generic

surveillance system, this chapter tended to concentrate in one of the main ideas for

the whole work, namely that although image processing algorithms are crucial in

surveillance applications, there are other important parts of the design of these

systems that need to be also designed and discussed. Without a design methodology

that guides the designers to design each part step by step and understand the whole

system, it is not possible to build a system with such characteristics. Even more, it is

not possible to control and manage the system without having a global picture of the

system and knowing what the system actually does. Therefore, it is crucial to apply

a design methodology to the creation of a system, apart from the creation of its

vision algorithms. Moreover, by using a design methodology, it is possible to define

what specific activities may be of interest in surveillance system and therefore to

even improve the required vision algorithms.

The next chapter will now present the conclusions gained through all this work

carried out and also will identify possible future lines of research.

 235

6 Conclusions and Future work

6.1 Introduction

This chapter concludes this thesis by giving a summary and conclusions of the work

carried out through this project. The main emphasis of this work consisted in

investigating how systems engineering could be applied in the conception, design and

building of large-scale intelligent distributed real-time surveillance systems (usually

called 3GSS in the literature in the field). To summarise the results of using such

emphasis, this chapter has been divided in two main parts i.e. summaries of the

investigation of existing design methodologies (section 6.2.2) and the application of

one of them (RTN) to the design of a generic 3GSS (section 6.2.3). Section 6.3

highlights possible lines of research that may arise from the conclusions, presenting at

the same time, the drawbacks found in this work.

6.2 Conclusions

The context of this work, as explained in chapter 1, was that it formed part of an

EPSRC-funded project referred to as COHERENT (Computational Heterogeneously

Timed Networks). The aim of COHERENT was to sketch and verify an architecture

design�to construct embedded real-time systems as on-chip systems (SoCs), called real-

time networks on a chip (RTNoC), with potential applications in control and data

processing [COHERENT 2005]. To design this architecture the DORIS methodology

was proposed given its relevance in the design and construction of embedded real-time

distributed system used in control applications. Moreover, as mentioned in Chapter 1,

because the research was focused on heterogeneous systems, the inherent temporal

diversity of these systems naturally led to the study of asynchronous communication

mechanisms (ACM) to link different parts of the system, and asynchronous techniques

applied into design and verification tools. Another reason for including RTN/DORIS in

this project was, as explained in chapter 3 and 4, that RTN provides an asynchronous

communication mechanism known as the four slot mechanism [Simpson 1990c] (in a

 236

pool protocol) which allows fully asynchronous communication between the activities

that are connected to the protocol.

6.2.1 How this research linked to COHERENT

The contribution of this work to the COHERENT project was to investigate the use of

RTN and DORIS as a design methodology, to a specific important application domain

namely the design of 3GSS. These systems, as mentioned on various occasions, are

naturally heterogeneous, arising from the variety of timing requirements from diverse

response times and processing rates of different parts of the system. Moreover, 3GSS

are also inherently real-time and concurrent as discussed in chapter 2 and 4. It is also

likely that some parts of these systems will even be embedded in DSPs, such as data

processing parts, which are integrated into what are called “smart cameras”, as

discussed in chapter 5. These systems have data processing parts as well as control

parts, as demonstrated in Chapter 5. Therefore, because RTN/DORIS has been

successfully used in designing and building embedded real-time distributed systems,

the use of RTN for the design of these systems was proposed.

Moreover, as mentioned in chapter 2 and 5, the research field of surveillance systems

has tended to be centred on the study of these systems from the vision algorithm point

of view. Therefore, there is a lack of research based on the creation of these systems

from system engineering point of view. Consequently, as illustrated in Chapter 5, it has

proved difficult to successfully build robust large-scale systems without having

available a methodology (or at least the practice of using a methodology) that helps the

designers to understand and to build the system. Therefore, the main contributions of

this work to the surveillance systems research field and to similar fields are: the

identification of the need to find a system design framework appropriate to 3GSS, to

develop and check the conceptual basis for such a framework, and to assess such a

framework against the specific requirements of such systems.

 237

6.2.2 Design methodologies

The research literature in design methodologies presented in chapter 3, was focused on

discussing some of the most important object oriented (OO) methodologies. The reason

for centring the review on OO methodologies is because OO technology is nowadays

the most used technology to build most of the distributed real-time systems such as

telecommunications or financial systems. Consistent with this tendency, most

surveillance systems aimed at scalability and reported in the literature are also

implemented using OO technology. Moreover, recent vision algorithms used in

surveillance systems have tended to be implemented, using OO technology.

Nevertheless, different design methodologies for distributed real-time systems used

mainly in the 60s and 70s were mentioned briefly. These methodologies were applied

mostly for the creation of control systems [Gomaa 1993c]. RTN may be categorised

inside these group. It was created on the 70s for the design and building of distributed

real-time embedded systems for avionics control applications.

Once the review of some design methodologies is conducted, the study was centred on

the justification of the selection of RTN/DORIS in preference to OO, which was based

on a consideration of the conceptual basis of such methods. To justify the choice and to

illustrate the conceptual differences between methodologies based on OO or RTN, a

discussion on theoretical or conceptual ideas between the two technologies was

presented. Then, for example, it was seen that these two technologies have conceptual

ideas in common, such as the concept of object in OO and the concept of activity in

RTN, which is the representation of an active software entity. Nevertheless, these ideas

are expressed differently, e.g. an activity is an active task, therefore usually represents

more than one object at the same time. The comparison between RTN and OO

emphasised the differences in the basic concepts such as the one just explained, and in

the communication model, especially the protocols taxonomy and the asynchronous

communications that RTN provides. The properties that OO provides like inheritance

or polymorphism and the properties that RTN provides like concurrency were also

compared.

 238

One of the conclusions extracted from the discussion of conceptual ideas between RTN

and OO lies on the fact that, in RTN the system is conceived as a set of (relatively

simple) active tasks (activities) that interact with one another through

intercommunication data areas (IDAs), which altogether constitute the RTN network.

When considered in detail, this is quite different to the object-centric view of

synchronised message passing tied up to passive tasks (methods) when objects need to

interact with one another.

From the point of view of design methodologies, one of the conclusions extracted from

the comparison is that OO is a well known technology widely used and without any

doubt, it will carry on being used. There is so much research going on, documentation,

technical papers, books which help to improve OO day by day. Moreover, there are

many tools that help designers implement easily simple systems. Furthermore, the

design methodologies based on OO are suitable to build systems for different

application domains. On the other hand, the OO design methodologies are more

focused on the design of the system from the implementation point of view rather than

from system engineering point of view, which is explained in following paragraphs.

As mentioned, one of the conceptual ideas in OO technology is the object. Therefore, a

primary focus in these methodologies, consists in trying to find the objects (and hence

classes) required to represent the system. The typical next step, once the nature and

number of the objects have been found, is to define the internal structure of these

objects, i.e. the values that each object should have and the methods that each object

needs to access its values or to communicate with other objects. When each object is

characterised, it usually follows a step consisting in defining the relationship between

objects, if any relationship exists. Then if possible, the design consists of high cohesion

relationships inside the object and low coupling relationships between objects. At the

same time, design decisions are taken on grouping some objects depending on their

functionality. Therefore possible components are defined. This is one of the most

difficult parts of the OO design. Because OO defines several kinds of relationships

 239

between objects, as mentioned in chapter 3, a bad choice may strongly affect the

architectural design of the system. Notice that, this largely a bottom-up design process;

by the time all objects are defined and their relationships established, the system design

as a whole may be very difficult to picture. Moreover, if the language used to carry the

design is, for example, UML, it can get even more difficult to readily understand a

design, because there are too many diagrams and graphical components to depict

elements of the design.

On the other hand, in the design methodologies proposed and used as far back as the

60s and 70s including RTN and further later extensions such as DORIS, the design of a

system is focused on a system engineering point of view. Notice that, DORIS, which

extended RTN concepts as mentioned in Chapter 3, is a complete framework to design

real-time embedded systems In RTN/DORIS the design is the solution to the system.

Therefore, it is necessary to understand what the system has to do. The first step is to

define the functionality of the system, what it tries to do. Once the functional definition

has been done, the next question to answer is how to model what the system intends to

do. Then, further refinements from the functional definition of the system are done to

get the final solution, i.e. the RTN network. Therefore, in RTN the process through

which a solution is arrived, enables the designer to have a better understanding of the

whole system design compared to OO. The RTN design process starts firstly as a top-

down but after it becomes a typical bottom-up process, because from these refinements

it is possible to discover that more functionality is required, so the system functional

definition can also be refined.

We can also note that most of the OO design methodologies reviewed here do not have

a completely defined process that allows moving smoothly from the requirements and

specifications of the system to the design and implementation of the system. However,

the current research in Object Management Group (OMG) through a Model Driven

Architecture (MDA) technology, tends to the creation of a framework to accomplish

this. RTN/DORIS as mentioned in chapter 4, put special emphasis on a strong link

between the different stages of design and development so that implementation

 240

decisions can be traced back to the design. This is a very important practical

consideration as otherwise; it is difficult to ensure that a particular implementation

(perhaps when there is most pressure to deliver) is consistent with an agreed design.

This break of the link between design and implementation may be an important source

of errors and lack of project control when creating a complex system/software.

6.2.3 RTN/CORBA for designing real-time distributed surveillance
systems

In chapter 4, the discussion of DORIS as a proposed design methodology to use in a

possible framework to build 3GSS systems was extended. Chapter 4 presented further

discussions and comparisons, through a case study, between RTN and OO technologies

from an architecture design point of view. In chapter 4, an existing real-time

distributed surveillance system called ADVISOR was studied. The first prototype

version of ADVISOR used CORBA as middleware architecture solution to integrate

the different parts of the system. CORBA as mentioned in chapter 4 is middleware

based on OO concepts and it is aimed at easing the integration of heterogeneous

platforms. Even though CORBA may be considered an architecture design framework

to build distributed event real-time systems, rather than a design methodology, it was

studied because one of the aims of this work has been to provide the theoretical basis to

create a framework for building 3GSS. Therefore, CORBA could be a candidate to be

used in such a framework. In fact, in some research work as in ADVISOR [ADVISOR

2003], the authors proposed the use of CORBA as the key component to create

surveillance systems. Therefore, chapter 4 focused on comparing two different

architecture designs of ADVISOR system: a middleware architecture design solution

provided by CORBA and the architecture design solution provided by RTN, so that an

insight into their weakness and strengths could arise.

After illustrating the differences at the architectural design level between the two

solutions, the discussion continued based on three issues: concurrency and distribution,

run-time facilities and finally development aspects. Because 3GSS are strongly

concurrent and distributed, it is clear that it is mandatory to use technologies that

 241

provide architecture solutions which are concurrent and which may be distributed.

Therefore, part of the discussion in chapter 4, was centred on how both approaches deal

with distribution and concurrency. On the other hand, run-time facilities and

development aspects are important issues to consider in technologies which are

possible candidates for their use in a framework to design and to create such systems.

Moreover, if the system to be created has to be a real-time one, run-time facilities are

crucial.

One of the outcomes of this comparison, which is connected with the conclusion

explained in previous section 6.2.2, is that even though CORBA provides an easy

solution to the integration of heterogeneous parts of the system, the architectural design

solution is focused on a solution from an implementation point of view rather than from

a system engineering point of view. See Table 6-1.The last statement is based on the

fact that, in CORBA, a solution is based on defining the CORBA objects needed and

the relationship between them (this is clearly a result of its OO roots). Because

CORBA is a middleware technology the way CORBA components actually

communicate is completely transparent to the designer. Therefore, although CORBA

reduces the difficulty at the implementation level, it inevitably also reduces the full

understanding of the solution as a system, as illustrated in chapter 4. The designer does

not really know how this transparent communication is done, because it is left to the

chosen vendor. It is like the structure of a house, where it is important to know and

build each component inside the room like the sink, table so on, but it is also important

to know which and how rooms need to be connected in the house. If the architect does

not show (explicitly) what the structure of the all house is, i.e. the functional plan of the

house, and how each room should be connected, e.g. where each door should be located

to connect one room with another, then it is not possible to understand how the house is

structured. Furthermore, if there is a problem or change to do, it will be very difficult to

solve the problem or to realise the convenient change. The transparent communication

that CORBA provides (normally accepted as a good feature because it makes the

process of implementation easier and faster), might prevent the designer from

conceiving the different interactions between parts of the system in such a way that

 242

better reflects the problem (as a loose interconnection of concurrent and possibly

asynchronous communicating processes). Therefore, a CORBA architecture design

solution might work against a simpler and hence potentially more robust design

solution of a distributed real-time system, as presented in chapter 4.

The other outcome (see Table 6-1) is that, as mentioned in chapter 4, CORBA, at the

time of writing, has a lack of development facilities, to help the designer to go through

the design and construction of the system. Moreover, the run-time facilities are strongly

dependant on the ORB vendor. Therefore, although CORBA technology has been used

in many real-time applications even critical applications such as telecommunications

systems, these two conclusions are significant enough to question the inclusion of this

technology to the framework for designing large surveillance systems.

 Advantages Disadvantages

CORBA

The designer need not worry about

these details which are transparent

to the designer.

The designer does not have

to complete information to

gain system knowledge. Underlying

communication

details
RTN/DORIS

Greater understanding of the

system.

Communication design

between activities proves

difficult at the design stage

for the designer.

CORBA

It is carried out by the vendor that

implements the ORB and is

transparent to the designer. Thus,

allowing easy integration of

different platforms.

Lack of control of system

management.

Run time support

RTN/DORIS

Conducted through the MASCOT

machine. Full control of system

management.

CORBA

 It does not guide the

designer through the design

and implementation process.
Development

aspects

RTN/DORIS
Provides consistency in system

design.

Table 6-1. Summary of advantages and disadvantages using CORBA and RTN/DORIS.

 243

Once the justification of the inclusion of RTN methodology in the framework had been

argued, chapter 5 presented a generic design of a large-scale distributed semi-intelligent

real-time surveillance system to illustrate the importance of applying system

engineering to the design of such systems. The most important outcome of this chapter

5, apart from the presentation of a proposed architectural design, is that even though

these systems have data processing tasks based on computer vision algorithms, these

algorithms are just one part of the whole system. The rest of the parts that constitute the

system are equally important. Therefore, the proposed system design illustrates that

surveillance systems are not just a cluster of vision algorithms that are grouped to

create a system. The creation of the functional definition of the system, the definition of

different types of data and the distinction between the control parts of the system and

data processing parts of the system, provides enough elements to understand how a

system of such characteristics should work.

Since one of the main goals in chapter 5 was to propose a generic design for a generic

3GSS, after presenting and discussing the proposed software architecture design using

RTN, a discussion on the logical network design was conducted. As mentioned several

times, the RTN solution provides a naturally concurrent and distributed solution.

Therefore, once the network is defined, the designer can assume that the solution may

be distributed. To understand the distribution of the real-time network solution, it was

convenient to propose a logical network design for the designed system. Therefore, a

logical network design solution, that could map the software real-time network design

presented previously, was presented and discussed in Chapter 5. Notice that the

proposed logical network design was strongly influenced by the suggestions taken from

network designs books from CISCO [Paquet and Teare 2001].

Surveillance systems like any multimedia application, have an important requirement

in terms of Quality of Service (QoS) that the system should be able to provide at any

given time. Three parameters are of primary interest for QoS when it comes to

processing and transporting multimedia data: bandwidth, latency and loss rate. One

 244

way to manage the QoS and guarantee a good QoS, is to know the number of processes

and memory, which are required for the application for allocating enough resources and

for applying the right scheduling polices. Then, another conclusion extracted from

chapter 5 is that, by using RTN it is possible to directly quantify at the end of the

design phase (i.e. when the network is determined), the number of tasks and an

approximation of the memory that will be required to communicate certain tasks. Note

that, after the design of the system using MASCOT, the next process, following DORIS

methodology (as illustrated in Figure 3-3), corresponds to mapping the activities and

the IDAs to hardware. Therefore, the activities may be mapped to different processors

in a multi-processor environment. If the activities are in a co-processor environment

with shared memory, the IDA that the activities use might be mapped to the shared

memory hardware component. If the activities are located in a multi-processor

environment without shared memory, then, the IDA might be mapped, through the

template substitution, to an external shared memory with an active element, i.e. a

thread that moves the data from one side to the other.

6.3 Future work

In this section some possible lines of research obtained from the conclusions extracted

at the end of this work are presented. These are presented in two different sections.

Section 6.3.1 is related to the framework to design and build 3GSS and section 6.3.2

presents the idea of applying formal methods to the framework. Moreover, in these

sections the drawbacks found during this work are also presented.

6.3.1 Framework for designing real-time distributed surveillance
systems

The framework for designing these systems should consist in a design methodology

associated with CASE tools, which may help provide consistence to the process of

design, including a library of designed components for surveillance systems defined in

chapter 5. Also, the framework may include a semi-automatic translation to a

predefined language code of the designed components. Finally, to verify and to

formalise the consistency of the final design it may be necessary to add to the

 245

framework some mathematical techniques that allow by formalism to validate the final

design solution. Following paragraphs in section 6.3.1 and 6.3.2 expand each

mentioned idea for the framework.

Although, as concluded in chapter 3 and 4, this work proposed the use of RTN

concepts into the framework, a significant drawback to the use of RTN and DORIS

technology lies in the fact that the tools that MATRA BAe Dynamics (MBDA) use, are

not part of a standard and thus, only the company is benefiting from the use of RTN

concepts. The use of this tool outside the company is done only through a few

collaborative research projects with universities like COHERENT, and only one part of

the CASE tool (i.e. MADGE) is provided. Therefore, it is not possible to use DORIS

directly as a framework to the design of surveillance systems.

In chapter 5, the bases for the creation of this framework were established. The

definition and encapsulation of different RTN components into subsystem

moduleswere presented and we showed how these subsystems can be used in the

design of a generic surveillance system. Thus, these generic subsystems can be held in

libraries and then can be added to the framework making them available for the design

of such systems. Nevertheless, an important drawback that has been found using RTN

concepts to design such systems is that RTN networks are by nature static, although

RTN has the tools to allow dynamic RTN network designs. On the other hand, OO

methodologies and technologies based on OO concepts such as CORBA, claim that

they provide good scalability to the system, by allowing the creation of dynamic

components and their integration into the system “on-the-fly”. It is usually through the

use of data repository components, which contain the required information to create

components dynamically. Nevertheless, it is strongly recommended by RTN

practitioners that the activities should not be created dynamically and the network

should remain invariant at run-time. This is because the dynamism in the network as

explained in chapter 3 and 4 may provoke unexpected behaviours, which may affect the

stability of the system. It may also increase the lack of control management over the

system and over the resources raising possible failures within the system.

 246

However, surveillance systems can be by nature very dynamic. It is common to find the

need to add new components like sensors or data processing units to the system within

its lifecycle. Therefore, research needs to be conducted into the study of the extension

of RTN, i.e. DRTN (Dynamics in RTN), to the design of dynamic systems. In this case,

a possible solution to combine the dynamism of surveillance systems and the static

nature of RTN network designs is obtained by following what RTN practitioners

recommend: once the design of the upgraded component is done, it should be

integrated to the RTN network by turning on the new component and then, turning off

the old component without switching down the whole RTN network. Moreover at the

design phase, e.g., if the designer wants to attach more than one DPU to the CC0

subsystem defined in Chapter 5 (see Figure 6-1), then the new component has to be

extended easily to allow the attachment of a new DPU. In other words, the creation of

extended components from the static components (templates) found in the library of the

framework in the same design, should be a straightforward process. Once the new CC0

is extended, it should replace the old component in the network. Therefore, the RTN

network may be upgraded under the management control over the new components that

have been inserted, avoiding then, the dynamic creation of new upgraded components.

 247

Figure 6-1. Topological network view of the generic 3GSS presented in chapter 5.

An ideal framework helps the designer to go step by step from the capturing

requirements process through the design, implementation and building process.

Unfortunately, there is no a current methodology that can accomplish this, not even

with DORIS methodology. Besides the substantial research in developing modelling

tools to execute designs allowing the evaluation of the design decisions, there is

research in software engineering to make the process of capturing requirements an

automatic process. However, this process requires significant interaction with the users

therefore; it is extraordinarily difficult to capture this process automatically.. Even

though the work reported in this thesis has focused on the design phase, the capture of

the requirements and specifications of a generic surveillance system was necessary, and

was done through the research and study of several existing surveillance systems.

Therefore, the requirements for a generic surveillance system are captured and

expressed through the functional definition of a generic surveillance system, illustrated

in chapter 5. Even though requirements were captured, it was a laborious process that

required the research and the review of many existing surveillance systems to conclude

with the obtained possible generic requirements for such systems. Therefore, like in

This CC0 node has five DPUs
attached

This CC0 node has two DPUs
attached

 248

DORIS methodology which as explained in chapter 3, it uses the CORE method to

capture the requirements of a system. Thus, it should be interesting to research the

building of a semi-automatic process (instead of automatic process, because the

interaction with the users is still necessary) to help to capture the requirements for

specific surveillance application.

As mentioned, the design phase of the framework proposed here follows the RTN

concepts and DORIS methodology. Therefore, the CASE tool for this framework

should be consistent with the standard notations as DORIS. Moreover, connections

between these components should use the same RTN concepts of paths, ports and

windows; ports components used by active elements, windows used by passive

elements and paths to define the connection between port/windows.

Once the design is realised, as mentioned in chapter 3 and 4, MADGE tool checks the

(internal) consistency of the design through the stages defined as part of the

development aspects in MASCOT-3: Introduced, Register and Enrolled. In the last

stage, the modules are completed and coded (in ADA programming language). As

discussed above, nowadays OO programming languages have a strong popularity in the

implementation of visual surveillance systems. Many programmers know at least one

OO programming language only a few of them know the ADA programming language.

In MBDA, as deduced from a private conversation [H. Simpson 2005], some

programmers tend to carry on the design and the implementation of a corresponding

activity in a subsystem using UML and then an OO programming language, once they

are assigned the implementation of a specific task, which has been obtained from the

design of the whole system using RTN/DORIS. Furthermore, in Newcastle University,

some research has been conducted to map some RTN concepts like the pool protocol

using agent programming languages. Thus, a possible research line could be to carry on

the study of the generation of a library of RTN components to conventional OO

programming language like C/C++ to generate then the code in such a language instead

of using ADA language. Although as mentioned in chapter 3, the use of these kinds of

languages into the implementation of the design of surveillance systems may not be a

 249

pragmatic approach; it may provide less control management over the system, and

unexpected behaviours could arise. There is also for example the possibility of bringing

up unwanted effects such as memory leaks.

6.3.2 Inclusion of Formal Methods to the framework

As introduced in chapter 1, there is research work to apply formal methods to the

requirements and to high-level designs where most of the details are abstracted, or to

apply them only to the most critical components. Formal methods may be defined as

the mathematically rigorous techniques and tools for the specification, design and

verification of software and hardware systems. In other words, a formal method is a

formal proof that verifies that the created system accomplishes its specifications. The

value of formal methods is that they provide a means to symbolically examine the

entire state space of a digital design (whether hardware or software) and establish a

correctness or safety property that is true for all possible inputs. However, this is rarely

done in practice today (except for the critical components of safety critical systems)

because of the enormous complexity of real systems and the lack of understanding of

what formalism can be associated with a particular representation or problem domain

(for example, we talk about real-time throughout this work but temporality is never

represented explicitly).

The textual notation and the graphical notation in RTN/DORIS are the two forms that

help to control the evolving design structure, wherein each stage must reflect precisely

the definitions set out in previous stages. As suggested by [Mustafa 2000],

RTN/DORIS practitioners use contingency analysis13. This analysis technique is time

and resource consuming, but does not provide an exhaustive test. In other words, at the

time of writing, RTN/DORIS methodology does not apply any formal method directly

to the verification of the high-level designs.

On the other hand, RTN/DORIS practitioners claim [IECCA and MUF 1983b] that the

method is formal enough to provide the necessary visibility to support management and

13Approach which consist in prototyping a component, testing it and simulate over time domain if it
works.

 250

control of the design during development and subsequent maintenance. Note that this

formalism on the design process is concerned with the idea of applying rigorous

techniques to the design process rather than defining the designs using mathematical

tools. However, drawing from a private conversation [H. Simpson 2003], RTN/DORIS

practitioners also claim that a design using DORIS is formal, because the design is

constituted by a network of basic RTN components, which have already been verified

using a formal verification technique such as RTL14, which models the design of these

components to evaluate their design. Nevertheless, as stated in [Mustafa 2000], it is not

the same to say that “as far as we can tell, there are no errors” than to say “there are no

errors in the design”. The last statement implies the proof of the design.

The following formal modelling languages have been used in the past to try to verify

some RTN components or some RTN/DORIS designs. In [Simpson 2003f] a formalism

using RTL is applied to the definition of the four protocols and the routers of RTN

illustrated in chapter 3. In [Clark 2000], [Feixa 2000], [Mustafa 2000] the authors

applied Petri nets15 and Coloured Petri nets to verify the three and four slot

communication mechanisms. In [Haveman 1997] the author verified a simple system

that receives data through two different sources, using RTL. In [Paynter 2000] the

authors research on the integration of new formal notation for the specification of the

temporal and functional behaviour of the concurrent processes, to supplement and

formalise DORIS method. In [Muñoz 2002] the author modelled RTN components

using LOTOS and pointed to possible ways in which RTN designs could also be

modelled and verified using this technique. Therefore, it should be interesting to carry

on with the research work established in [Muñoz 2002], researching further more into

the mapping of RTN/DORIS components to the E-LOTOS language to obtain the

formalism required in the designs, and then, to include this into the framework to

design surveillance systems.

14 It is the first order logic language for reasoning in system events about time occurrences.
15 It is a formal, graphical and executable technique for the specification and analysis of concurrent,
discrete-events.

 251

 252

Appendix A

Jackson System Development

Action Structure Diagram- illustrates the structure of the different actions.

System Specification Diagram- illustrates the specification of the system as a

model of the real world.

 * 0 0

Sequential actions Iterative actions Selected actions

Real world System

State Vector

Data Flow

 253

ADARTS

State Transition Diagram- illustrates the states and the transitions that occur in the

system.

Data Flow/Control Flow Diagram- shows the relationship between the control and

data transformations.

Message Communication Module and Information Hiding module- represents

respectively all the possible communication cases among tasks and the data stores

or state transition tables.

State n

State m

Event (condition)/Action

T: Trigger
E: Enable
D: Disable

Discrete DataFlow

Event DataFlow

Data Transformation

Control Transformation
(executes State transition diagram)

 254

ROOM

ROOMCharts- represents the finite state machine of the system

ROOM entities- the graphical notation of the elements used in ROOM.

Task synchronisation
(event)

Message communication
loosely coupled

Message communication
closely coupled

task

MESSAGE COMMUNICATION MODULE

INFORMATION HIDING MODULE (IHM)

IHM

task

task

task

task

task

task task

 I

 State

 Initial state transition

Transitions (entry or exit
actions)

states

 255

Actor 1 Actor 2

ExampleSystem
Relay port

External port

Actor 1
Actor 2

Actor 3

Internal port

ExampleSystem classes

Actor 1
Actor 2
…

Datacom
…

Parameters

Datacom

Actor
classes

Protocol
classes

Data
Classes
(Passive Data
Object)

Datacom

class: Parameters{
Public: int pa1;
}

protocol class:
Datacom
in: { input1}
out:{output1}

 256

BOOCH

Class Diagram- represents the classes and their relationships.

 Metaclass name

Class relationships

Class icons

class name

attributes
operations()
{constraints}

class utility name

attributes
operations()
{constraints}

parameterised
class name

formal
arguments

Instanciated
Class name

actual
arguments

association

inheritance

has instantiation

metaclass using

Class relationships Class relationships

Class relationships Class relationships

Nesting Notes

text

by value

by reference

public

protected

private

implementation

label

Role
[key]
{constraint} attribute class

cardinality

friend

virtual

abstract class

static

A

S

F

V

class name

nested
class

class category name

 classes

 257

Object Diagram- represents the objects that make up the system and their

relationships.

Module Diagram- illustrates the number of classes and objects in the module.

 G

 P

 F

 L order: message
object/value

 role
[key]
{constraint}

simple
 synchronous

balking

 asynchronous

timeout

 global

 local

 parameter

 field

 name
 attributes

Object Icon Synchronisation Visibility

subsystem

main program specification body

Module Icons

Dependency

 258

Process Diagram- shows how the processes are going to be mapped to processors.

State Transition Diagram- illustrates the events that cause a transition of a state

and the actions that result from that state change.

Sequence Diagram – illustrates the interactions between objects occurring at run-

time.

Icons

Connection

 label

process 1
process 2
…
process n

processor device

State transitions

name state 1

state 3

state 2

superstate

start

stop

event [guard] /action

actions

State Icon

History

Nesting

 H

 259

OMT- the graphical notation of OMT entities

event

operation()

operation()

operation()

event

object 4 object 3 object 1 object 2

script

 260

HOOD

Class name

Attributes

Operations

[Class Name]
Attribute
Values

Object Class

Class name

Attributes

Operations

Class name

Attributes

Operations

[Class Name]
Attribute
Values

[Class Name]
Attribute
Values

Association

Link

Class name

Attributes

Operations

Class name

Attributes

Operations

Class name

Attributes

Operations

Class name

Attributes

Operations

qualification

attributes

Line terminators

one

optional

many

aggregation

inheritance

Multiple inheritance

 261

Summary of HOOD entities- using OMT notation [HOOD 1986a]

HOOD Object- the graphical notation Object Description Skeleton

 Object
 (module)

VN
(virtual
nodes)

 class

 generic

Instantiated
Object

Basic
class

Generically
Instantiated
class

generic
class

generic
object

constraint link

simple link

inheritance

entity

 262

HOOD Class and instances implementation

HOOD generic instance

 environment

internals required
interface

Object_Name

USED OBJECTS

provided
interface

Provided
Operations

Graphical representation of Active Object and Passive Object respectively.

A Active_Object
_

 Operation1
 Operation2

Passive_Object

 Operation1
 Operation2

CLASS

HOOD Class representation Target Implementation

INSTANCES VARIABLES
FOR EACH INTANCE

CLASS VARIABLES
UNIQUE FOR THE CLASS
AND ALL INSTANCES

CLASS TARGET CODE
COMMON TO ALL
INSTANCES OF THE
CLASS

 263

HOOD Virtual Node

HOOD relationships

 A Parent_Object

 Object B

A Inst[2…10]:generic_name

 Object A

INST1:Generic_Name

 op1
 op2
 op3

 E Obj_Y

Obj_X

V VN_Name

 Start_Server

 Stop_Server

 Message_In

 V Remote_VN

 264

UML

 Parent_Object

 Object B

 Operation1
 Operation2

 Object A

 Operation1
 Operation2 Operation1

 Operation2
 Operation3

Object B

 Operation1

Object A

 Operation1

SUBCLASS SUPERCLASS

inheritance

 Uses relationship

Include relationship

 265

UML entities- the graphical notation of different UML entities from [UML2003]

UML entities- the graphical notation of different UML entities from [UML2003]

 Class Name

 Class B

 Class A

 Class Name

 Association
 Class

Multiplicities

 exactly one

numerically
specified

 ordered

 optional
(zero or one)

many
(zero or more)

 aggregation

composition

role
name

 Class

 Class

 Class

 Class

 Class

 Class

 Class

 Subtype 1 Subtype 2

 Supertype

Generalisation

Note

Qualified Association

Navigability

Instance Specification

Dependency

 some useful text

 object name:Class Name

 Client Supplier

 Class qualifier

 Source Targe
t

attribute:Type[0…1]=initialValue

operation(arg list):return type
abstractOperation

Constraint {name:description}
Keyword «keyword»�

role of B

 role of A

 {ordered} *

 m…n

 0…1

 *

 1

 266

Class diagram- shows the properties and operations of a class and the constraints

that apply to the connected objects.

 Set

Set<Integer>

Component

Composite Structure

 part:Class
bound element

Actor

 T

port connector

 Abstract
 Class

«interface»
 Interface

 Client
 Class

Implementing
 Class

realisation

dependency

provided interface required interface

template class

 267

Object Diagram- illustrates a picture of the objects in a system at a point time.

Example taken from [UML 2003,pp.88]

Component Diagram- shows the connection between the components

 Comp2

 Comp1

 Comp3

 Comp 4

 Comp5

* children

Organisation

Person

 Party
location

 0..1 parent

engineering:Organisation

location:Europa

apps:Organisation

location:Holland

tools:Organisation

location:UK

Tom:Person

location=”Bristol”

 Jen:Person

location=”London”

 parent

 parent

 Class Diagram
 Object Diagram

 268

Statechart Diagram- Example taken from [UML 2 Metamodel2005,pp.129]

SubmachineState

 Guard

Expression:BooleanExpression

StateMachine

 StateVexter Transition

 SynchState

Bound : UnlimitedInteger

 FinalState SimpleState CompositeState

 Pseudostate

kind:PseudostateKind

 SubState

referenceState:Name

ModelElement
 (from CORE)

 Action
(from
Common
Behaviour)

 State

0..1 context

 behaviour
 transitions

0..1

target incoming

1

 source outgoing

 1

 0..1 guard
 1

 internalTransition 0..1

 0..1 effect
0..1

 1 top
 0..1 0..1

 entry

 0..1

 0..1 doActivity

 0..1

 0..1 exit

0..1 deferrableEvent

 0..*

container

 0..1

Event

 0..*

 269

Package Diagram- Illustrates the packages and their dependencies

Deployment Diagram- illustrates which software pieces run on which hardware

pieces. Example taken from [UML 2003, pp.98]

 Package 1

 Package 2

 Package 3
 Package 4

BrowserClient
browser

Web Server
{OS=Solaris}
{web Server=apache}
{number deployed =3}

 herculesWeb.war

Rich Client
{OS=Windows}

 herculesClient.exe

Oracle DBMS

EJB container
herculesBase.ear
herculesAR.ear
herculesAP.ear

 JoveGL.exe
 {vendor=romanSoft}
 {component = General Ledger}

 Application Server

http/LAN

 JDBC

Java RMI/LAN

http/Internet

communication path

device node

 execution
environment node

tagged value

deployed
 artifact

 270

Use Case Diagram- illustrates the actors, the use cases, and the relationships

among them.

Activity Diagram- states the essential sequencing rules.

Actor

Use Case

Use Case

«include»

 Activity

 Activity Activity

start

fork

[else] [condition]

join

branch

merge

 Activity
Class::method)

 Activity
 with
subdiagram

end

 271

Timing diagram- shows the timing constraints between state changes either for a

single object or for different objects. Example taken from [UML 2003, pp.150].

Interaction Diagram- illustrates how group of objects collaborate in some

behaviour. The most common interaction diagram is called sequence diagram.

Hotplate

Pump

Off
On

On
Off

Object

Object

 {>10s}

states

waterEmpty

timing constraint

state
change

{<15m}

event

name:Class

new object

message

create

 return

 delete

self-call

sd name loop

opt

alt

ref

[for all thingies]

[condition]

[condition]

[other condition]

[else]

name of interaction (args)

synchronous
asynchronous[UML >=1.4]
asynchronous[UML <=1.3]

*: iteration message()
[condition] message() [UML1]

 272

Appendix B

Capture module of ADVISOR

The capture module captures and digitises the video input data taken by cameras. It

sub-samples and compresses the video information into JPEG format to maximise

storage capability and adds time stamping information to the captured images. The

capture module outputs, which are raw image sequences, are transmitted to several

other components in the ADVISOR system. The capture functionality also includes

a mode of operation that allows playback of previously captured video sequences

into the system from the hard drive.

 273

Figure B- 1 Diagrammatic representation of the low level design of the capture

module.

 274

Figure B- 1. Capture module

Motion detection module of ADVISOR

The Motion Detector submodule detects image changes when objects move and

generates a description for each moving region. The Motion Detector module also

classifies the moving regions into mobile object classes such as Person, Group,

Metro-train and Noise.

 275

The Motion Detector component can be viewed as a two-stage algorithm. The first

stage separates an image sequence into a ‘relatively’ stable background and a

varying foreground overlay. The second stage identifies the moving regions

belonging to the foreground overlay and classifies them in a predefined mobile

object class as described previously. The identified moving objects are framed by

fitting ‘blobs’ around the group of pixels belonging to the same moving object. For

each input image, the motion detector submodule generates three outputs:

• The background image: this module performs the task of upgrading the

background. The upgraded background is transmitted infrequently (the

frame rate was one image per minute per camera) because of the relatively

low changing nature of the image intensities.

• The foreground image: this output was transmitted at the same rate as the

incoming image sequences per camera, i.e. 5fps.

• Blob descriptions: one set per incoming image per camera, which is sent in

XML format.

Figure B- 2 shows a diagram for the motion detection module. Figure B- 3, 4, 5 and

Figure B- 6 illustrate the diagrams of moving regions detection algorithms, for the

update reference image algorithm and for the merging of detected moving regions

and reclassification algorithm respectively.

 276

Figure B- 2. Diagram of the motion detection module (extracted from the

ADVISOR specification documents [ADVISOR 2003]).

 277

Figure B- 3.Diagram of the submodule for the detection of moving regions.

 278

Figure B- 4. Diagram of the submodule to Update the reference image (or

commonly called “background” in computer vision).

 279

Figure B- 5. Diagram of the submodule for the classification of detected

regions.

 280

Figure B- 6. Diagram of the submodule to merge detected moving regions.

 281

Crowd Monitor module of ADVISOR

The ADVISOR crowd monitoring module measures crowd related properties such

as direction of flow and density and motion, based on the video images that are sent

by the capture module over the LAN. The crowd monitor module attempts to detect

specific potentially dangerous situations. This module is designed to deal with four

areas of abnormal behaviour based on the motion information extracted by a motion

detection board (hardware called STM1300 and based on a TriMedia 1300 Digital

Signal Processor):

• Unusual or forbidden direction of motion.

• Objects that are stationary for unusually long periods of time.

• Individuals inside a forbidden area.

• Overcrowding detection.

The detection of any of these situations makes the crowd module generate and send

a message in XML format to the Behaviour Analysis module which generates an

alarm. The Behaviour Analysis module then deals with the event, including the

fusion with other events if necessary, and routes the event to other relevant parts of

the system such as the HCI or the archive. Figure B- 7, 8, 9 and Figure B- 10

present diagrams of the module called Crowd Monitor Module. This module, as

seen in Figure B- 7, consists of two main submodules: one of them is called the

Load Motion program and is illustrated in Figure B- 8. One of the key functions of

the DSP in the STM1300 card is to compute image motion vectors in real-time..

Therefore, the output from this card is sent to another submodule (see Figure B- 9

and Figure B- 10) that together with some thresholds is able to detect the pre-

defined events which have been listed above.

 282

Figure B- 7. Diagram of the Crowd Monitor Module, which has two main

submodules: Crowd Device program and Load Motion program in the

STM1300 card.

 283

Figure B- 8. Diagram of the submodule called Load Motion Program.

 284

Figure B- 9. First part of the diagram corresponding to the submodule called

Crowd Monitor Device program.

 285

Figure B- 10. Second part of the diagram that describes the submodule called

Crowd Monitor Device program.

 286

Appendix C

Figure C-1. ADVISORSYSTEM

 287

 288

Figure C-2. HCICENTRAL.

 289

Figure C-3. LOCALDATAPROCESSING.

Figure C-4. COMUHCISUBSYSTEM.

 290

Figure C-5. DATAPROCESSINGNODE.

 291

 292

Figure C-6. PLAYBACKCHANNEL.

 293

Figure C-7. IMAGECHANNEL.

 294

Figure C-8. XMLCHANNEL.

 295

Figure C-9. DISTRIBUTRDS.

 296

Figure C-10. LOCALASU.

 297

Figure C-11. LOCALHCISTATION.

 298

Figure C-12. RDSLINK.

 299

Figure C-13. COM.

 300

Figure C-14. ASUSUBSYSTEM.

 301

Figure C-15. CORBA_SUBSYSTEM.

 302

Figure C-16. HUMANINTERFACE.

 303

Figure C-17. MULTIDISTRIBUTION.

 304

Figure C-18. DISTRIBUTSIGNAL.

 305

Figure C-19. COMSUBSYSTEM.

 306

Figure C-20. CROWD_MONITOR.

 307

Figure C-21. CONFI_PARAMETERS.

Figure C-22. IMPLREPOSITORYSUBS.

 308

 309

Figure C-23. DISTRIBUTRDF.

 310

Figure C-24. DISTRIBUTRTI.

 311

Figure C-25. MONITOR.

 312

Figure C-26. DEVICE.

 313

Figure C-27. CORBA_SUB.

 314

Figure C-28. INTERFACEREPOSITORY.

 315

Figure C-29. RPCLINK.

 316

Figure C-30. RDFLINK.

Figure C-31. RTILINK.

 317

Figure C-32. IMAGEPROCESSING.

 318

The ADVISOR Prototype architecture using the DORIS method

 319

Figure C-33. ADVISORSYSTEM.

 320

Figure C-34. HCICENTRAL.

 321

Figure C-35. COMMUNICATION.

 322

Figure C-36. HCINODE.

Figure C-37. CROWD_MONITOR.

 323

Appendix D

Figure D-1. LSIVSS.

 324

 325

Figure D-2. CC1.

 326

Figure D-3. CC0.

 327

Figure D-4. DPU.

 328

Figure D-5. M_USER.

 329

Figure D-6. COMMUNICC1_CC1.

 330

Figure D-7. COMMUNICC1_CC0.

 331

Figure D-8. COMMUNICC0_DPU.

 332

Figure D-9. COMMUNIM_USR.

 333

Figure D-10. COMMUNIDPU_DPU.

Figure D-11. ALGORITHMS.

 334

Figure D-12. CA.

 335

 336

Figure D-13. DATANEVENTS.

 337

Figure D-14. CONTROL_ALG.

 338

Figure D-15. LOCAL_DPU_INFO_MODULE.

 339

Figure D-16. MU.

 340

Figure D-17. VISUAL.

 341

Figure D-18. GAR_DATA.

 342

Figure D-19. L_USER.

 343

Figure D-20. VISUAL_CC.

 344

Figure D-21. L_USERCC1.

 345

Figure D-22. CC0_INFO.

 346

Figure D-23. CC1_INFO.

Figure D-24. FAC_CC1.

 347

 348

Figure D-25. CONFIG.

 349

Figure D-26. FAC.

 350

Figure D-27. DPU_INFO.

 351

Figure D-28. DATA_REPOSITORY_CC0.

 352

Figure D-29. DATA_REPOSITORY_CC1.

Figure D-30. DATA_REPOSITORY_DPU.

 353

 354

Figure D-31. USER_DATA_REPOSITORY.

 355

Figure D-32. LAR.

 356

Figure D-33. LAR_DPU.

Figure D-34. LOCAL_DPU_REPOSITORY.

 357

List of own publications

1) M. Valera, S.A. Velastin, (2005). Intelligent distributed surveillance systems: A

Review. In IEE Proceedings - Vision, Image and Signal Processing, 152(2), pp.

192-204.

2) M. Valera, S.A. Velastin, (2004). Real-time architecture for large distributed

surveillance systems. IEE Workshop in Intelligent Distributed Surveillance

Systems, London, pp. 41-45.

3) M. Valera, S.A. Velastin, (2004).Real-Time Networks to design a distributed

architecture for large real time surveillance systems. 8th World Multi-

Conference on Systemics, Cybernetics and Informatics(SCI2004).USA, pp. 60-

65.

4) M. Valera, (2004). Design method for real-time intelligent distributed wide-area

surveillance system. PREP2004,University of Hertfordshire,UK.

5) M. Valera, S.A. Velastin (2003) An Approach For Designing A Real-Time

Intelligent Distributed Surveillance System. Symposium on Intelligent

Distributed Surveillance Systems, IEE, UK, pp. 6/1-6/5.

 357

References
1. [ADVISOR 2003]

ADVISOR (2003). ADVISOR. [Online]. Available at <http://www-sop.inria.fr

/orion/ADVISOR/>. [Accessed 11th March 2006].

2. [Almeida et al. 2002]

Almeida, L., Pedreiras, P., Alberto, J., Fonseca, G. The FFT-CAN Protocol: Why

and How. IEEE Transactions on Industrial Electronics, 49(6), pp.1189-1201.

3. [Arulampalam et al. 2002]

Arulampalam, S., Maskell, S., Gordon, N., Clapp, T. (2002). A Tutorial on Particle

Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking. IEEE

Transactions on Signal Processing, 50(2), pp.174-188.

4. [Barni et al. 2000]

Barni, M., Bartolini, F., Cappellini, V., Piva, A. (2000). Digital Watermarking for

the Authentication of AVS Video Sequences. in Multimedia Video Based

Surveillance Systems, G. L. Foresti, G.L., Mahonen, P., Regazzoni, C.S. (eds.),

Kluwer Academic Publishers, Boston, pp. 186-196.

5. [Bate 1986]

Bate, G. (1986). Mascot 3: an informal introductory tutorial. Software Engineering

Journal, 1(3), 95-102.

6. [Bennewitz et al. 2002]

Bennewitz, M., Burgard, W., Thrun, S. (2002). Using EM to learn motion

behaviours of persons with mobile robots. In Proceedings of the Conference on

Intelligent Robots and Systems (IROS), Switzerland, pp. 502 – 507.

7. [Berris et al. 2003]

Berris, W., Price, W.G., Bober, M.Z. (2003). The use of MEG-7 for intelligent

analysis and retrieval in video surveillance. In Proceedings of the IEE Workshop on

Intelligent Distributed Surveillance Systems, London, pp. 8/1-8/5.

8. [Beymer et al. 1997]

Beymer, D., McLauchlan, P., Coifman, B., Malik, J. (1997). A Real-Time

Computer Vision System for Measuring Traffic Parameters. In Proceedings of the

 358

1997 Conference on Computer Vision and Pattern Recognition, IEEE Computer

Society, pp. 495-502.

9. [Black et al. 2003]

Black, J., Ellis, T., Rosin, P. (2003). A Novel Method for Video Tracking

Performance Evaluation. The Joint IEEE International Workshop on Visual

Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 125-

132.

10. [Boasson 2002]

Boasson, M. (2002). Embedded Systems Unsuitable for Object Orientation. In J.

Blieberger, J., Strohmeier, A. (Eds.). Lecture Notes in Computer Science, Reliable

Software Technologies - Ada-Europe. Chapter 1.

11. [Booch 1991a]

Booch, G. (1991). Object Oriented design: with applications. Wokingham,

Redwood City, California, USA. Benjamin and Cummings.

12. [Booch et al. 2000b]

Booch, G., Jacobson, I., Rumbaugh, J. (2000). UML Distilled Second Edition, A

brief Guide to the Standard Object Modelling Language. USA. Addison Wesley

Longman, Inc.

13. [Boult et al. 2001]

Boult, T.E., Micheals, R.J., Gao, X., Eckmann, M. (2001). Into the woods: visual

surveillance of non-cooperative and camouflaged targets in complex outdoor

settings. Proceedings of the IEEE, 89(1), pp. 1382-1401.

14. [Brodsky et al. 2001]

Brodsky, T., Cohen, R., Cohen-Solal, E., Gutta, S., Lyons, D., Philomin, V.,

Trajkovic, M. (2001). Visual surveillance in retail stores and in the home. In

Advanced Video-based Surveillance Systems, Kluwer Academic Publishers,

Boston, Chapter 4, pp. 50-61.

15. [Bui et al. 2001]

Bui, H. H., Venkatesh, S., West, G. A. W. (2001). Tracking and Surveillance in

Wide-Area Spatial Environments Using the Abstract Hidden Markov Model.

IJPRAI, 15(1), pp. 177-195.

 359

16. [Burns and Wellings 1994]

Burns, A. and Wellings, A.J. (1994). HRT-HOOD: A Structured Design Method

for Hard Real-Time Systems. Real-Time Systems Journal, 6(1), pp.73-114.

17. [Cameron 1986]

Cameron, J.R (1986). An overview of JSD. IEEE Transactions on Software

Engineering, 12(2), pp.222-240.

18. [Carnegie Mellon Software Engineering Institute 2005]

Carnegie Mellon Software Engineering Institute (last modification 2005).

Middleware Software Technology Roadmap. [Online]. Available at <

http://www.sei.cmu.edu/str/descriptions/middleware.html>. [accessed 1st March

2006].

19. [Christensen and Alblas 2000]

Christensen, M. and R. Alblas, R. (2000). V2- Design issues in distributed video

surveillance systems. Demark, 2000, pp. 1-86 [Online]. Available at

<http://www.cs.auc.dk/education/archive/1999/dat5-6/speciale-seminar.html>.

[Accessed 7th March].

20. [Clark 2000]

Clark, I.G. (2000). A unified approach to the study of asynchronous communication

mechanisms in real time systems. Ph.D. Thesis, University, King's College,

London.

21. [COHERENT 2005]

EPSRC Grant JOINT FINAL REPORT(2005). Computational HEteRogEneously

timed NeTworks(COHERENT). [Online]. Available at

<http://www.staff.ncl.ac.uk/i.g.clarck/async/coherent/Coherent-final-report.pdf>.

[accessed 1st March 2006].

22. [Collins et al. 2000a]

Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y.,

Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L. (2000). A System for

Video Surveillance and Monitoring. Robotics Institute, Carnegie Mellon

University, pp 1-68.

23. [Collins et al. 2001b]

 360

Collins, R. T., Lipton, A.J., Fujiyoshi, H., Kanade, T. (2001). Algorithms for

cooperative Multisensor Surveillance. Proceedings of the IEEE, 89(10), pp. 1456-

1475.

24. [Conti et al. 2002]

Conti, M., Donatiello, L., Furini, M. Design and Analysis of RT-Ring: A Protocol

for supporting Real-Time Communications. IEEE Transactions on Industrial

Electronics, 49(6), pp.1214-1226.

25. [CORBA 2005]

Catalog of OMG Specifications (2005). Specialized CORBA specifications.

[Online]. Available at < http://www.omg.org/technology/documents/

spec_catalog.htm >. [accessed 14th March 2006].

26. [Coulouris et al. 2001]

Coulouris, G., Dollimore, J., Kindberg, T. (2001). Distributed Systems: Concepts

and Design, Third Edition. London, Pearson Education Limited.

27. [Cristian and Fetzer 1999]

Cristian, F. and Fetzer, C. (1999). The Timed Asynchronous Distributed

SystemModel. IEEE Transactions on Parallel and Distributed Systems,10(6), pp.

643-657.

28. [CROMATICA 1999]

Digital Imaging Research Centre- Vision Systems (1999). CROMATICA [Online].

Available at <http://dilnxsrv.king.ac.uk/cromatica/>. [Accessed 11th March 2006].

29. [Decleir et al. 1999]

Decleir, C., Hacid, M.S., Koulourndijan, J. (1999). A database Approach for

Modelling and Querying Video Data. In Proceedings of the 15th International

Conference on Data Engineering, Australia, pp.1-22.

30. [Diehl et al. 2000]

Diehl, S., Hartel, P., Sestoft, P. (2000). Abstract Machines for programming

language implementation. Future Generation Computer Systems. 16(7). 739-751.

31. [Erik Wyke 2000]

 361

SNART Awards. Investigation of models for real-time systems: AIDA through

UML and ROOM by Erik Wyke. [Online]. Available at <

http://www.snart.org/previous_prizes.shtml>. [accessed 4th March 2006].

32. [Ferryman et al. 2000]

Ferryman, J.M., Maybank, S.J., Worrall, A.D. (2000). Visual Surveillance for

Moving Vehicles. International Journal of Computer Vision,37(2), Kluwer

Academic Publishers,Netherlands, pp. 187-197.

33. [François and Medioni 2001]

François, A.R.J. and Medioni, G.G. (2001). A Modular Software Architecture for

Real-Time Video Processing. Lectures Notes in Computer Science, Proceedings of

the Second International Workshop on Computer Vision Systems. 2095. pp 35-49.

34. [Garcia et al. 2000]

Garcia, L. M., Grupen, R.A. (2000).Towards a Real-Time Framework for Visual

Monitoring Tasks. Third IEEE International Workshop on Visual Surveillance,

Ireland, pp. 47-56.

35. [Geradts and Bijhold 2000]

Geradts, Z. and Bijhold, J. (2000). Forensic Video Investigation. In Multimedia

Video Based Surveillance Systems, G. L. Foresti, G.L., Mahonen, P., Regazzoni,

C.S., (eds.). Kluwer Academic Publishers, Boston, pp.4-12.

36. [Ghosh 2001]

Ghosh, S. (2001). Understanding complex, real-world systems through

asynchronous, distributed decision-making algorithms. The Journal of Systems and

Software. 58(2), pp. 153-167.

37. [Gomaa 1984a]

Gomaa, H. (1984). A software Design Method for RT systems. Communications of

the ACM, 27(9), 938-949.

38. [Gomaa 1989b]

Gomaa, H. (1989). Structuring Criteria for Real Time System Design. Proc 11th

International Conference on Software Engineering, ACM, Pittsburgh, pp. 290-301.

39. [Gomaa 1993c]

 362

Gomaa, H. (1993). Software Design Methods for Concurrent and Real-Time

systems. USA. Addison & Wesley Professional.

40. [Gong and Xiang 2003]

S. Gong, T. Xiang, T. (2003). Recognition of Group Activities using Dynamic

Probabilistic Networks. Ninth IEEE International Conference on Computer Vision,

volume 2,France, pp.742-750.

41. [Graham 1994]

Graham, I. (1994). Object Oriented methods, 2nd ed. Harlow. Addison & Wesley.

42. [Haritaoglu et al. 2000]

Haritaoglu, I., Harwood, D., Davis, L.S. (2000). W4:Real-Time Surveillance of

People and their activities. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(8), pp. 809-830.

43. [Haveman 1997]

Haveman, J. (1997). Transaction Decomposition: Refinement of Timing

Constraints. In Proceedings of the South Pacific Conference on Formal Methods.

[Online]. Available at <http://citeseer.ist.psu.edu/ haveman97transaction.html >.

[Accessed 19th July 2006].

44. [Hauck 1995]

Hauck, S. (1995). Asynchronous Design Methodologies: An overview. Proceedings

of IEEE, 83(1), pp. 69-93.

45. [Heikkila and Silven 1999]

Heikkila, J. and Silven, O. (1999). A Real-Time System for Monitoring of Cyclists

and Pedestrians. In Second IEEE International Workshop on Visual Surveillance,

Colorado, 1999, pp. 74-81.

46. [Hemayed 2003]

Hemayed, E.E. (2003). A survey of self-camera calibration. In Proceedings of the

IEEE Conference on Advanced Video and Signal Based Surveillance, Florida, pp

351-358.

47. [Henning and Vinoski 1999]

Henning, M. and Vinoski, S., (1999). Advanced CORBA Programming with C++.

USA. Addison-Wesley.

 363

48. [HOOD 1986a]

CISI Ingénieré, CRI A/S, Matra Space, Mitchell R.J. (ed.) (1988). The Manual for

the HOOD Design Methodology: HOOD Manual. Netherlands. European Space

Agency.

49. [HOOD 1989b]

Vielcanet, P. CISI Ingénieré (ed.) (1989). HOOD design method and

control/command techniques for the development of real time software.

Proceedings of the sixth Washington Ada symposium on Ada. pp. 213-219.

50. [HOOD 2004c]

HOOD: An Industrial Approach for Software Design (2004).Rosen, J-P. Overview

of HOOD chapter. [Online]. Available at < http://www.adalog.fr/ hoodbook.htm>.

[Accessed 7th March 2006].

51. [Hull et al. 2004]

Hull, M.E.C., Ewart, S., Millar, R.J., Hanna, J.R.P. (2004). Modeling Complex

Real- Time and Embedded Systems- The UML and DORIS combination. Real

Time Systems, 26, 135-159.

52. [ICSE 2004]

Invited talk (2004). In Proceedings 26th International Conference on Software

Engineering (2004). Edinburgh International Conference Centre, Scotland, UK.

53. [IECCA and MUF 1978a]

Joint IECCA and MUF Committee (1978). The Official Handbook of Mascot.UK.

54. [IECCA and MUF 1983b]

Joint IECCA and MUF Committee (1983). The Official Handbook of Mascot II,

Issue 1.UK.

55. [IECCA and MUF 1987c]

Joint IECCA and MUF Committee (1987). The Official Handbook of Mascot.

version 3.1, Issue 1.UK.

56. [Ivanov et al. 1999]

Ivanov, Y., Stauffer, C., Bobick, A., Grimson, W.E.L. (1999). Video Surveillance

of Interactions. In Second IEEE International Workshop on Visual Surveillance,

Colorado, pp. 82-91.

 364

57. [Ivanov and Bobick 2000]

Ivanov,Y. and Bobick, A. (2000). Recognition of visual activities and interaction by

stochastic parsing. IEEE Transactions of Pattern Recognition and Machine

Intelligence. 22(8), pp.852-872.

58. [Jackson 1983a]

Jackson, M. A. (1983). System Development. London. Prentice-Hall International.

59. [Jackson 1994b]

Jackson, M. (1994). Jackson Development Methods: JSP and JSD. Encyclopedia of

Software Engineering. Vol I, John Wiley & Sons. pp 585-593.

60. [Jackson and Rouskas 2002]

Jackson, L.E. and Rouskas, G.N. (2002). Deterministic Preemptive Scheduling of

Real-Time Tasks. Computer, IEEE, 35(5), pp. 72-79.

61. [JavaBeans 2006]

Sun Developer Network (SDN) (2006). Desktop Java, JavaBeans. [Online].

Available at <http://java.sun.com/products/javabeans>. [Accessed 19th July 2006].

62. [Jaynes 1999]

C. Jaynes, C. (1999). Multi-view Calibration from Planar Motion for Video

Surveillance. Second IEEE International Workshop on Visual Surveillance,

Colorado, 1999, pp. 59-67.

63. [Jian-Guang et al. 2003]

Jian-Guang, L., Qi-Feing, L., Tie-Niu, T., Wei-Ming, H. (2003). 3-D Model Based

Visual Traffic Surveillance. Acta Automatica Sinica, 29(3), pp. 434-449.

64. [Kalinsky and Barr 2002]

Kalinsky, D. and Barr, M. (2002). Priority Inversion. Embedded Systems

Programming. April, pp. 55-56.

65. [Krumm et al. 2000]

Krumm, J., Harris, S., Meyers, B., Brumit, B., Hale, M., Shafer, S. (2000). Multi-

Camera Multi-Person Tracking for Easy Living. Third IEEE International

Workshop on Visual Surveillance, Ireland, pp. 8-11.

66. [London Underground Ltd (n.d.)]

 365

London Underground Limited (n.d.). Standard for CCTV systems. S&CSE-ST0015-

A2 London, Signal and Control Systems engineering.

67. [Macmillan Technical Publishing and Cisco Systems 1998]

Macmillan Technical Publishing and Cisco Systems. (1998). Cisco CCIE

Fundamentals: Network Design and Case Studies. USA. Cisco Press.

68. [Mähönen and Saaranen 2000]

Mähönen, P. and Saaranen, M. (2000). Broadband Multimedia Transmission for

Surveillance Applications. In Multimedia Video Based Surveillance Systems, G. L.

Foresti, G.L., Mahonen, P., Regazzoni, C.S., (eds.). Kluwer Academic Publishers,

Boston, pp. 173-185.

69. [Makris et al. 2004]

Makris, D., Ellis, T., Black, J. (2004). Bridging the gaps between cameras. In

International Conference on Multimedia and Expo, Taiwan, pp. 205-210.

70. [Marchesotti et al. 2003]

Marchesotti, L., Messina, A., Marcenaro, L., Regazzoni, C. S. (2003). A

cooperative Multisensor System for Face Detection in Video Surveillance

Applications. Acta Automatica Sinica, 29(3), pp. 423-433.

71. [Marcenaro et al. 2001]

Marcenaro, L., Oberti, F., Foresti, G.L., Regazzoni, C.S. (2001). Distributed

architectures and logical-task decomposition in Multimedia surveillance systems.

Proceedings of the IEEE, 89(10), pp. 1419-1438.

72. [Marsden and Fabre 2001]

Marsden, E. and Fabre, J.C. (2001). Failure analysis of an ORB in presence of

faults. Dependable Systems of Systems (DSoS). IST-1999-11585. Project founded

by the European Community under the Information Society Technology.

73. [Medvidovic and Taylor 2000]

Medvidovic, N. and Taylor, R.N. (2000). A Classification and Comparison

Framework for Software Architecture Description Languages. Software

Engineering, 26(1), 70-93.

74. [Micheloni et al. 2003]

 366

Micheloni, C., Foresti, G.L., Snidaro, L. (2003). A co-operative multi-camera

system for video-surveillance of parking lots. Intelligent Distributed Surveillance

Systems Symposium by the IEE, London, pp. 21-24.

75. [Microsoft .Net 2006]

.NET: Driving Business Value with the Microsoft Platform (2006). What is .NET?.

[Online]. Available at <http://www.microsoft.com/net/ default.mspx>. [Accessed

19th July 2006].

76. [Middleware 2005]

IEEE distributed systems online (2005). Middleware areas. [Online]. Available at

<http://dsonline.computer.org/middleware>. [Accessed 12th March 2006].

77. [Mowbray and Zahavi 1995]

Mowbray, J.T. and Zahavi, R. (1995).The Essential CORBA, System Integration

Using Distributed Objects. John Wiley & Sons, Inc.

78. [MPI 2003a]

SP Parallel Programing Workshop (2003). Message Passing Interface (MPI).

[Online]. Available at <http://www.mhpcc.edu/training/workshop/mpi/ MAIN.html

>. [Accessed 19th July 2006].

79. [MPI 2006b]

Cornell University, Cornell Theory Center (2006). Basis of MPI Programming.

[Online]. Available at <http://www.tc.cornell.edu/

Services/Education/Topics/MPI/Basics/Introduction.html >

80. [Mullery 1979]

Mullery, G.P. (1979). CORE-A method for Controlled Requirement Specification.

In Proceedings of the 4th International Conference on Software Engineering, IEEE,

Munich, September, [n.d.], pp. 126-135.

81. [Muñoz 2002]

Muñoz, R. (2002). Using LOTOS for the Analysis of MASCOT. Ph.D. Thesis.

King’s College London, UK.

82. [Mustafa 2000]

Mustafa, A.J. (2000). Petri Nets approach for the analysis of MASCOT

interprocess communications. Ph.D. Thesis. King’s College London. London.

 367

83. [Naedele 2001]

Naedele, M. (2001). An approach to modeling and evaluation of functional and

timing specification of real-time systems. The Journal of Systems and Software,

57(2), pp. 155-174.

84. [Ng et al. 1999]

K.C. Ng, K.C., Ishiguro, H., Trivedi, M., Sogo, T. (1999). Monitoring Dynamically

Changing Environments by Ubiquitous Vision System. Second IEEE Workshop on

Visual Surveillance, pp. 67-74.

85. [Nguyen et al. 2003a]

Nguyen, N.T., Venkatesh, S.,West, G., Bui, H.H. (2003). Multiple Camera

Coordination in a Surveillance System. Acta Automatica Sinica, 29(3), pp. 408-

421.

86. [Nguyen et al. 2003b]

Nguyen, N.T., Bui, H.H., Venkatesh, S., West, G. (2003). Recognising and

Monitoring High-Level Behaviour in Complex Spatial Environments. IEEE

International Conference on Computer Vision and Pattern Recognition, Wisconsin,

pp.1-6.

87. [Norhashimah et al. 2003]

Norhashimah, P., Fang, H., Jiang, J. Video Extraction in Compressed Domain.

IEEE Conference on Advanced Video and Signal Based Surveillance, Florida, pp.

321-327.

88. [Nwagboso 1998]

Nwagboso, C. (1998).User focused Surveillance Systems Integration for Intelligent

Transport Systems. In Advanced Video-based Surveillance Systems. C.S.

Regazzoni, G. Fabri, G. Vernazza (eds.), Kluwer Academic Publishers, Boston,

Chapter 1.1, 1998, pp. 8-12.

89. [Oates et al. 2000]

Oates, T., Schmill, M.D., Cohen, P.R. (2000). A method for clustering the

experiences of a mobile robot with human judgements. In Proceedings of the

Seventeenth National Conference on Artificial Intelligence and Twelfth Conference

on Innovative Applications of Artificial Intelligence, AAAI Press, pp. 846-851.

 368

90. [O’Donoghue and Hull 1996]

O’Donoghue, P.G. and Hull, M.E.C. (1996). Using Timed CSP during object

oriented design of real-time systems. Information and Software Technology, 38(2),

pp. 89-102.

91. [Oren et al. 1997]

Oren, M., Papageorgiou, C., Sinham, P., Osuna, E., Poggio, T. (1997). Pedestrian

detection using wavelet templates. In Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, Puerto Rico, pp.193-199.

92. [Paquet and Teare 2001]

Paquet, C. and Teare, D. (2001). Building Scalable Cisco Networks. USA, Cisco

Press.

93. [Parnas 1972]

Parnas, D.L, Morris, R. (ed.) (1972). On the Criteria To Be Used in Decomposing

Systems into Modules. Communications of the ACM. 15(12). 1053-1058.

94. [Pavlidis et al. 2001]

Pavlidis, I., Morellas, V., Tsiamyrtzis, P., Harp, S. (2001). Urban Surveillance

Systems: From the laboratory to the commercial world. Proceedings of the IEEE,

89(10), pp. 1478-1495.

95. [Paulidis and Morellas 2002]

Paulidis, I. and Morellas, V. (2002). Two examples of Indoor and Outdoor

Surveillance Systems. In Video-based Surveillance Systems, Remagnino, P., Jones,

G.A., Paragios, N., Regazzoni, C.S. (eds.). Kluwer Academic Publishers, Boston,

pp. 39-51.

96. [Paynter 2000]

Paynter, S., Armstrong, J., Haveman, J., (2000). ADL: The Activity Description

Language for Real-Time Networks. Formal Aspects of Computing. 12(2), 120-144.

97. [Pellegrini and Tonani 1998]

Pellegrini, M. and P. Tonani, P. (1998). Highway traffic monitoring. In Advanced

Video-based Surveillance Systems. Regazzoni, C.S., Fabri, G., Vernazza, G.,

(eds.). Kluwer Academic Publishers, Boston, pp. 27-33.

98. [Peters and Pedrycz 2000]

 369

Peters, J.F., Pedrycz, W. (2000). Software Engineering: An Engineering Approach.

New York, John & Sons.

99. [Ping Lai Lo et al. 2003]

Ping Lai Lo, B., Sun, J., Velastin, S.A. (2003). Fusing Visual and Audio

Information in a Distributed Intelligent Surveillance System for Public transport

Systems. Acta Automatica Sinica, 29(3), pp 393-407.

100. [Phillip 1996]

Phillip, A. L. (1996). Real Time Systems Design and Analysis an Engineer’s

Handbook. 2nd Edition IEEE PRESS. John Wiley & Sons.

101. [Phillips 1967]

Phillips, C.S.E. (1967). Networks for Real-Time Programming. Computer Journal.

10(1). 46-52.

102. [Pozzobon et al. 1998]

Pozzobon, A., Sciutto, G., Recagno, V. (1998). Security in Ports: the User

Requirements for Surveillance System. In Advanced Video-based Surveillance

Systems, Regazzoni, C.S., Fabri, G., Vernazza, G. (eds.). Kluwer Academic

Publishers, Boston, pp 18-26.

103. [Rath and Manmatha 2003]

Rath, T. M. and Manmatha, R. (2003). Features for word spotting in historical

manuscripts. In Proceedings of the Seventh International Conference on Document

Analysis and Recognition, pp.512-527.

104. [Regazzoni et al. 2001]

Regazzoni, C. S., Ramesh, V., Foresti, G. L. (2001). Special Issue on Video

Communications, Processing, and Understanding for Third Generation Surveillance

Systems. Proceedings of the IEEE. 89(10), pp.1355-1365.

105. [Remagnino et al. 1997]

Remagnino, P., Baumberg, A., Grove, T., Hogg, D., Tan, T., Worral, A., Baker, K.

(1997). An Integrated Traffic and Pedestrian Model-Based Vision System. In

BMVC97 Proceedings, Israel, pp. 380-389.

106. [Ronetti and Dambra 2000]

 370

Ronetti, N. and Dambra, C. (2000). Railway Station Surveillance: The Italian Case.

In Multimedia Video Based Surveillance Systems, G. L. Foresti, G.L., Mahonen, P.,

Regazzoni, C.S., (eds.). Kluwer Academic Publishers, Boston, pp. 13-20.

107. [Rumbaugh et al. 1991]

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W. (1991). Object-

Oriented Modeling and Design, Englewood Cliffs, Prentice Hall.

108. [Rybski et al. 2002]

Rybski, P. E., Stoeter, S.A., Gini, M., Hougen, D.F., Papanikolopoulos, N.P.

(2002). Performance of a Distributed Robotic System Using Shared

Communications Channels. IEEE Transactions on Robotics and Automation, 18(5),

pp.713-727.

109. [Saad and Smith 2003]

Saad, A. and Smith, D. (2003). An IEEE 1394-Firewire-based embedded video

system for surveillance applications. IEEE Conference on Advanced Video and

Signal Based Surveillance, Florida, pp. 213-219.

110. [Seidewitz and Stark 1986]

Seidewitz, E. and Stark, M. (1986). Towards a General Object Oriented Software

Development Methodology. MD 20771. NASA Goddard Space Flight Center.

Greenbelt.

111. [Simpson 1986a]

Simpson, H.R. (1986). The MASCOT method. Software Engineering Journal, 1(3),

pp. 103-120.

112. [Simpson 1990b]

Simpson, H.R. (1990). A Data Interaction Architecture for Real Time Embedded

Multi Processor Systems. Proceedings of a RAeS Conference on Computing

Techniques in Guided Flight. Royal Aeronautical Society Conference. Boscombe

Down, pp. 1-10.

113. [Simpson 1990c]

Simpson, H.R. (1990). Four-slot fully asynchronous communication mechanism.

IEE Proceedings on Computers and Digital Techniques.137(1). 17-30.

114. [Simpson 1992d]

 371

Simpson, H.R. (1992). Real Time Networks in Configurable Distributed Systems.

Processing of the IEE International Workshop on Configurable Distributed

Systems. Imperial College London, UK, pp 1-14.

115. [Simpson 1994e]

Simpson, H.R. (1994). Architecture for Computer Based Systems. IEEE Computer

Society Press Reprint. Los Alamitos. USA, pp. 70-82.

116. [Simpson 2003f]

Simpson, H.R. (2003). Protocols for process interaction. IEE Proceedings on

Computers and Digital Techniques. 150(3). 157-182.

117. [Stauffer et al. 2000]

Stauffer, C., Eric, W., Grimson, L. (2000). Learning Patterns of Activity using

Real-Time tracking. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(8), pp. 747-757.

118. [Stankovic and Ramamritham 1990]

Stankovic, J.A. and Ramamritham, K. (1990). What is Predictability for Real-Time

Systems?. Real-Time Systems, 2(4), pp. 247-254.

119. [Stringa and Regazzoni 1998]

Stringa, E. and Regazzoni, C.S. (1998). Content-based Retrieval and real-Time

Detection from video sequences acquired by surveillance systems. International

Conference on Image Processing, Chicago, pp. 138-142.

120. [Summer School 2004]

Summer School in Computer Vision (2004). Software tools for Computer Vision.

Summer School in Computer Vision in Surrey University, UK.

121. [Thonnat and Rota 2000]

Thonnat, M. and Rota, N. (2000). Video sequence Interpretation for Visual

Surveillance. Third IEEE International Workshop on Visual Surveillance, Dublin,

pp.59-68.

122. [Tierney et al. 2000]

Tierney B., Johnston W., Lee J., Thompson M. (2000). A Data Intensive

Distributed Computing Architecture for “Grid” applications. Future Generation

System, 16(5),473-481.

 372

123. [Turner 1993]

Turner, K.J. (1993). Using formal description techniques: an introduction to

ESTELLE, LOTOS and SDL, John Wiley & Sons Ltd.

124. [UML 2003]

Fowler, M. (2003). UML Distilled Third Edition, A Brief Guide To The Standard

Object Modeling Language. Pearson Education, Inc.

125. [UML 2 Metamodel 2005]

Catalogue of OMG Modelling And Metadata Specifications (2005). UML 2

Metamodel. [Online]. Available at < http://www.omg.org/cgi-bin/doc?formal/05-

04-01 >. [accessed 6th March 2006].

126. [UML 2006]

UML TM Resource Page (2006). OMG’s List Of UML 2.0 Tools. [Online].

Available at <http://www.uml.org >. [accessed 6th March 2006].

127. [Valera and Velastin 2003a]

Valera, M. and Velastin, S A. (2003). An approach for designing a real-time

intelligent distributed surveillance system. In Proceedings of the IEE Workshop on

Intelligent Distributed Surveillance Systems, London, pp. 42-48.

128. [Valera and Velastin 2005b]

Valera M. and Velastin, S.A. (2005). Intelligent distributed surveillance systems: a

review. IEE Procedings of Visual Image Signal Process, 152(2), pp. 192-204.

129. [Velastin 2003]

Velastin, S A. (2003). Getting the Best Use out of CCTV in the Railways. London,

Rail Safety and Standards Board, pp 1-17.

130. [Wikipedia 2001]

Wikipedia (2001). System Engineering. [Online]. Available at <

http://en.wikipedia.org/wiki/Systems_engineering> [accessed 2nd March2006].

131. [Wren et al. 1997]

Wren, C., Azarbayejani, A., Darrell, T., Pentland, A. (1997). Pfinder:Real-Time

Tracking of the Human Body. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(7), pp. 780-785.

132. [Wu et al. 2001]

 373

Wu, C.H., Irwin, J.D., Dai, F. F. (2001). Enabling Multimedia Applications for

Factory Automation. IEEE Transactions on Industrial Electronics,48(5), pp.913-

919.

133. [Xia 2000]

Xia, F. (2000). Concurrent Real Time Systems with such techniques as MASCOT

and Petri nets. Ph.D. Thesis. King's College, London.

134. [Xu et al. 2004]

Xu, M., Lowey, L., Orwell, J. (2004) .Architecture and algorithms for tracking

football players with multiple cameras. In Proceedings of the IEE Workshop on

Intelligent Distributed Surveillance Systems, London, 2004, pp. 51-56.

135. [Ye et al. 2001]

Ye, H., Walsh, G.C., Bushnell, L.G. (2001). Real-Time Mixed-Traffic Wireless

Networks. IEEE Transactions on Industrial Electronics, 48(5), pp.883-890.

136. [Yourdon and Constantine 1979]

Yourdon, E. and Constantine, L.L., (1979). Structured design. Prentice-Hall.

137. [Yuancai 2002]

Yuancai, Ye C.(2002), Use of free SocketPro package for creating super client and

server applications.[Online]. Available at < http://www.codeproject.com/

internet/yesocketpro.asp> [accessed 1st March 2006].

138. [Yuan et al. 2003]

Yuan, X., Sun, Z., Varol, Y., Bebis, G. (2003). A Distributed Visual Surveillance

System. IEEE Conference on Advanced Video and Signal Based Surveillance,

Florida, pp.199-205.

139. [Yun et al. 1993]

Yun, K.Y., Dill, D. L., Nowick, S. M. (1993).Practical generalizations of

asynchronous state machines. The European Conference on Design Automation

with The European Event in ASIC Design. pp. 525-582.

140. [Zhi-Hong 2003]

Zhi-Hong, Z. (2003). Lane Detection and Car Tracking on the Highway. Acta

Automatica Sinica, 29(3), pp. 450-456.

 374

