
SYSTEM DESIGN FOR NON-ENGINEERING STUDENTS AND
THE SYNCHRONISATION PROBLEM

D. J. Wheeler

Rapporteurs: Mr. J. S. Clowes
 Dr. P. Henderson

Abstract: Dr. Wheeler began by describing, briefly, the course on hardware
design which he teaches at the University of Cambridge. As he remarked, the
organisation of Computer Science teaching at Cambridge is rather different
from the arrangements described by other speakers.

Two courses in computing science are offered at Cambridge; a third
year undergraduate course and a post-graduate diploma course. The two
courses have some lectures in common and Dr. Wheeler teaches the parts
dealing with hardware design.

The main purpose of the instruction in logical design is simply to give
the students some idea of what goes on inside a machine; it is not intended to
train as computer designers. A secondary purpose is to enable students, when
they become users, to attach instrumentation and other peripheral devices to
computers. In fact, it is apparent that only a very small percentage of the
total logical design effort required for a large system is associated with the
CPU. A much larger proportion goes into the design of peripherals, many of
these being designed locally for some special purpose.

The method adopted for teaching about hardware is the historical
approach. Starting with a description of a simple computer possessing a store
and a processor, new devices are introduced in turn and the reasons for their
introduction explained. Thus the students are introduced to index registers,
sub routines, adder enhancements of various types and store overlapping.
Next input and output buffering

88.

and the use of the common store as a buffer which introduces the idea of
interrupts. This leads to the consideration of simple channels for autonomous
transfers, and immediately brings in present day problems. As soon as
interrupts are allowed, one has to consider modes of computer working,
program protection, and system software with its ramifications.

At this point they leave the general development of computers and
pursue the great drive of designers, the quest for speed! Overlapped
arithmetic units, overlapped stores and methods for speeding-up other parts of
the computer are discussed. Returning to the general theme, dynamic storage
protection is considered. Finally, it is shown that, since the simple machine
has become so complicated, it is now too expensive to use it for any ordinary
purpose and so peripheral processors are necessary, each like the original
simple computer!

Other logical design topics treated more briefly are communications,
microprogramming and coding. This hardware course is supported by other
courses on system design and by courses on Boolean algebra and sequential
logic.

One of the essential functions of a university course seems to be to
produce examination questions! In practice, the hardware course is not very
good for this and it is very difficult to invent good questions and even harder
to mark them.

The course will obviously develop in the future and the next innovation
is likely to be the introduction of hardware practice. Teaching about hardware
is now given in schools and this will soon begin to affect university courses.
Thus, it is not possible at present to forecase what the course will be like
after, say, a period of 2 or 3 years.

The problem of synchronisation

Dr. Wheeler devoted the rest of his talk to a discussion of a particular
problem in logical design. He chose to do this, rather than give a more
general talk, because he considers that discussion of this point should form
part of every course on hardware or logical design. His reasons for isolating
and emphasizing this point, which he calls the problem of synchronisation, are
as follows:

89.

(1) Many existing computers have faults because of neglect of this point.
(Dr. Wheeler has found that at least 50% of the computers whose
logical design he has studied in detail have faults of this kind).

(2) The point is rarely taught well and only occasionally appears in the text
books.

(3) It is apparently difficult to appreciate. Furthermore, people trained in
switching theory or logical design find it especially difficult.

(4) The problem is general. It is common to all forms of logic and may
also be present in systems programs. It touches many disciplines, for
example, circuit theory, logical design, system programming and
information theory.

(5) The occasional malfunctioning of all practical computers and
peripherals is to be expected if this point is neglected.

The problem of synchronisation occurs whenever we have to
connect together two devices one of which is synchronous and cannot

be stopped. The standard kind of design for a computer with peripheral units
is an example. In order to be specific, we shall pursue this particular
example, which leads us,to consider how to deal with interrupts.

When an interrupt occurs, the computer receives a signal from the

outside world saying that some device is ready and the machine has to use this
signal to make a decision about what to do next. We may assume that the
signal has passed through suitable circuitry so that it is a perfectly shaped
signal exactly like all the other signals in the computer, except that it is not
synchronised to them in any way.

One naive way of handling interrupts would be to use the interrupt

signal to switch between two possible paths of control at the end of each
instruction cycle. In practice this involves examining the wave form on the
interrupt channel and since this is not synchronised with the CPU ambiguity is
possible. Since this violates the rules of logical design it should never be
adopted in practice and we need consider it no further.

90.

An alternative design is to gate the signal into some form of flip-flop
and use the state of this flip-flop to select between the alternative paths of
control at the appropriate time. This solution is logically correct but, in
practice, it will not work.

In order to see why this circuit is unsatisfactory one has to consider, in
detail, how flip-flops work. The results of such an examination can be looked
at from a number of points of view. Mathematically, the output voltage of the
flip-flop is the solution of some differential equation and cannot change value
instantaneously but must vary continuously with time and also with the initial
conditions. Thus if the output is used at a particular time, the output will
depend continuously on the initial conditions when the flip-flop was set.
Thus there exists an input condition to make the output or not settled at any
future time!

Circuit theory indicates that the flip-flop may settle down in a third,
unstable, state with output ½. However, a more detailed analysis shows that
the probability of the output remaining at this value diminishes with time as e -

B t , where B is the effective bandwidth of the flip-flop, and t is the time
allowed for the flip-flop to settle before the output is used.

Looking at the problem in another way, we can say that all we have to
do is to decide which of two events happens first, the intercept or sampling
pulse. To make such a decision does not require many bits of information,
except in the case when the two events are close together. So information
theory tells us that we will occassionaly require a large number of bits to
make a correct decision and this will require a long time.

The final conclusion of all these theories is the same, that to
synchronise two devices requires more time than is needed in simple logic
design at every other part of the computer!

At this stage it is interesting to introduce some figures. Suppose that
we wish to make a synchronising decision every microsecond, this involves
approximately e3 0 samples per annum. If we also wish to design for not more
than 1 error per year, then, with current values of B -1 , we must allow 30 times
as much time for the decision. In

91.

practise the situation can be worse than this because flip-flops are not
designed to turn over quickly in the intermediate state. Thus the really
critical case requires even more time than average bandwidth considerations
will show.

When logical designers are first confronted with this problem they
believe that they can get round it by elaborating their circuits. More elaborate
design does alleviate the trouble but the fundamental difficulty, that
synchronisation requires more time than a simple circuit transition. still
remains.

The error rate can be reduced to any desired level by

introducing suitable delays into the circuitry. Since synchronisation

problems tend to occur at crucial parts of the machine cycle, e.g. when one is
about to access the store, this solution reduces the overall speed of the
machine.

In principle one could remove the difficulty altogether by using

asynchronous logic. Logical elements currently available from manufacturers
are not suitable for this purpose, as one requires circuits which will indicate
when they are ready. Theoretically such circuits can be produced but, in
practice, one would always be involved with unstoppable drums and magnetic
tapes, so asynchronous logic does not really offer a solution to the problem.

A practical technique for alleviating the problem is to take advantage of
the idea of parallelism. A long delay is introduced into the interrupt circuit,
of the order of an instruction. The practical effect of this is to delay response
to the interrupt. This is often acceptable but can cause difficulties for the
software writers who require early warning of fault conditions, e.g. overflow,
if error tracing is not to become too difficult.

Dr. Wheeler concluded his talk with the following general remarks on

the problem of synchronisation.

Other instances of the occurrence of synchronisation problems are:

92.

Telephone networks. Here it is the main cause of cross-connections and
the situation is made worse because the bandwidth of a relay is quite
small. Supervisors. Dijkstra’s technique of semaphores involves
sensing and changing something in the same instant it thus assumes an
infinite bandwidth which is probably permissible in the case of a
program much as this.
The incidence of faults due to synchronisation problems will tend to

rise as software activity increases but they will occur randomly. They could
cause friction between engineers and software writers.

It is difficult to see how one can devise techniques for tracing these
faults when software and logic diagrams appear to be perfect.

Laboratory hardware experiments tend to conceal this problem since
they nearly always involve strictly synchronous circuits.

Discussion

Dr. Wheeler asked for the views of members of his audience on the
importance of the point he had raised and whether, or not, it should be taught
to computer science students.
Professor Ercoli said he thought it was not very important, at least for
computing science students. It is really a problem of sampling theory and
belongs, properly, to the field of control engineering.
Dr. Wheeler remarked that he had never seen the point discussed in books on
sampling theory.
Professor Seitz thought the point was important but, although it was often
passed on by word of mouth, it was never written about.
Dr. Wheeler said there had been a paper on the subject round about 19501
Professor Seitz "That is word of mouth".
Next Professor Suchard expressed the view that thiw was a particular aspect
of a general problem, namely, the absence of any consideration of time in
most teaching on computer design. This

1. In spite of an extensive search this paper has not been identified.

93.

was the fault of mathematicians who reduced logical design to Boolean
algebra. Points of this nature were also ignored in courses on circuit design
because, there, one was not concerned with how the circuits were used.

Dr. Wheeler agreed that this point lay on the boundary between logical
design, circuit design and information theory and this was the cause of its
general neglect.

Professor Seitz said that the point was very difficult to demonstrate
experimentally.

Professor Michaelson thought that students should be made aware of the
point, although there was nothing they could do about it.

Mr. Elphick remarked that the effect of teaching about this point would be to
destroy the students belief that certain things could be treated as "black
boxes". He asked if Dr. Wheeler thought they should be reassured.

Dr. Wheeler replied "No". The training of computer science students should
be such as to make them sufficiently suspicious of everthing.

94.

