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Preface 

Mark with serene impartiality 

  The strife of things, and yet be comforted, 

Knowing that by the chain causality 

  All separate existences are wed 

Oscar Wilde, “Humanitad” 

This Festschrift is dedicated to Maciej Koutny on the occasion of his 60th birthday. As 

Maciej’s colleagues are undoubtedly aware, causality (with Petri nets used as the harness) is 

a prominent unifying topic of Maciej’s research, and it was selected as the topic of this Fest-

schrift. 

It turns out that causality is a very complicated phenomenon. E.g. this book is ‘caused’ by 

Maciej’s 60th birthday – even though its creation had preceded this remarkable occasion. This 

constitutes an instance of reverse temporal causality, whose formal modelling would un-

doubtedly require Petri nets with inhibitor arcs, contextual loops, and step semantics, not to 

mention the heavy mathematical artillery that Maciej uses so fluently. It is left to the reader 

to complete this formal model. (I didn’t get research funding for this.) 

     

Attendees of Petri Nets 2018 (Bratislava) on the way to the conference banquet. Maciej is on 

the left, holding the conference banner. Photo credit: Juraj Mazari. 

Apparently, the number 60 has some special significance, which I could not comprehend 

(being only 42, i.e. having accomplished only 70%). Hence, I have commissioned a personal 

research project to discover the secrets of 60, using the computational resources at my dis-

posal. The experiment was conducted on a PC with a 64-bit Intel Core i7-6700K 4.00GHz 

CPU with 4 cores (hyperthreaded) and 64Gb RAM. “60” was entered into Wikipedia’s search 

box, and the results were carefully analysed. It turns out that 60 is: 

 the natural number following 59 and preceding 61; 

 being three times 20, it is called “three score”; 

 the number of seconds in a minute, and the number of minutes in an hour (a 

legacy of the Babylonian number system); 

iii



 a highly composite number (a.k.a. anti-prime), as it has more divisors than any 

smaller positive integer has; 

 the sum of a pair of twin primes (29 + 31), the sum of four consecutive primes 

(11 + 13 + 17 + 19), adjacent to two primes (59 and 61), and the smallest 

number that is the sum of two odd primes in six ways (it takes a lot of courage 

being anti-prime surrounded by primes on all sides!); 

 a unitary perfect number, as it is equal to the sum of its proper unitary divisors, 

excluding the number itself; a divisor d of a number n is a unitary divisor if d 

and n/d share no common factors; 

 an abundant number, as the sum of its proper divisors is greater than the num-

ber itself. 

There are many more interesting and potentially relevant mathematical and non-mathe-

matical facts about 60, but the penny dropped when I noticed this: 

The number of miles per hour an automobile accelerates to from rest (0-60) as 

one of the standard measurements of performance. 

The moment of truth! 60 is the standard performance measurement point, so we can now 

officially conclude that Maciej has been accelerating up to 60 impressively well (and contin-

ues to do so). Wikipedia also tells that the forthcoming perfect number is 496, which is the 

next goal for Maciej. 

 

This book presents a collection of essays and papers written by Maciej’s friends, col-

leagues, and disciples (these categories are not mutually exclusive – in fact, their overlaps 

are conjectured to be considerable). The contributions include personal essays as well as 

technical papers – both kinds of ingredients are essential for a balanced Festschrift. 

I would like to thank everyone who contributed papers, supported or helped with the pro-

duction of this Festschrift and with the organization of the presentation event. Finally, on 

behalf of all these people, I would like to congratulate Maciej on this occasion and wish him 

many happy returns!  

 

Victor Khomenko 

September 2018 

Newcastle upon Tyne 
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Multiparty Session Types in Distributed
Systems With Migration

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science, Iaşi, Romania
“A.I.Cuza” University, Blvd. Carol I no.11, 700506 Iaşi, Romania

bogdan.aman@gmail.com, gabriel@info.uaic.ro

Abstract. We propose a multiparty session type system for distributed
systems involving timed migration between explicit locations and local
communications. We use TiMo (Timed Mobility) as the process calculus
over which we define the session types, and investigate certain scenar-
ios in which processes are required to behave according to these types.
The typing system ensures some properties including type soundness,
communication and migration safety.

1 Introduction

In the current distributed systems there exist a high number of mobile enti-
ties moving between different locations and interacting with other entities to
exchange data through communication. It is necessary to go beyond the sequen-
tial computation of the λ-calculus, even beyond the concurrent processes of the
π-calculus. It is also worth to consider timed processes and explicit locations
for migration. This is why we use a process calculus named TiMo able to
describe migrating processes in a unified framework working with timers, ex-
plicit locations and local clocks in distributed systems [10]. We can see TiMo as
a prototyping language for multi-agent systems, featuring mobility and local
interaction. Multi-agent systems typically consist of a large number of agents
which exhibit autonomic behaviour depending on their timeouts and actions.
The mobility of agents and interaction between the agents through communica-
tion may introduce new and sometimes unexpected behaviours. Components can
be highly heterogeneous, each operating at different temporal scales and having
different objectives. Analysing these systems is becoming more and more nec-
essary because they are really complex and increasingly used in various critical
application domains such as e-commerce and distributed collaborative systems.
Thus, it is important to have some modelling techniques which are able to de-
scribe such systems, and to reason about their behaviour in both qualitative and
quantitative terms. To move towards this goal, we consider that it is important
to develop a specific typing system.

In distributed systems, the behavioural types were introduced to secure the
compatibility of interaction patterns among processes [23]. The behavioural type
of a process specifies its expected interactions by using a simple type language,



and so determining a correct evolution. Building secure mobile environments
requires solutions for a lot of problems due to the inherent timed migration and
communication of the computing entities. We extend TiMo with session types
able to reason over migrating and communicating processes and their timed be-
haviour. The idea is to use these session types to coordinate the communicating
processes inside sessions (represented by the locations of our calculus) by rep-
resenting the trace of the channels usage as a structured sequences of types.
The migration capabilities represent the change of the current session for a user,
when different sessions are active and each session is independently characterised
by corresponding global types.

Global types [24] are specifications of the interactions between the processes
that participate in a session. For each session represented in TiMo by the in-
volved distributed locations, there exist a global type specifying its evolution.
Also, for each participant uniquely identified by a natural number, there exist
a global type that illustrates the movement of the participant between different
sessions during the evolution of the whole system. Each global type associated to
a session can be projected onto a set of local types describing the session from the
perspective of each single participant. As done in [4], we use timed global types
and local session types, but with some differences explained in what follows.

In this paper we consider systems in which processes may be engaged in
different sessions during their evolutions, where each session is independently
characterised by corresponding global types. Also, in our approach an arbitrary
number of participants can dynamically join or leave sessions (represented as
locations in our calculus) during their evolutions, and so we do not require
session creation as is usually done in session types.

2 TiMo : Syntax and Semantics

In TiMo the processes can migrate between different locations of a distributed
environment consisting of a number of explicit distinct locations. Timing con-
straints over migration and communication actions are used to coordinate pro-
cesses in time and space. The passage of time in TiMo is described with respect
to a global clock, while migration and communication actions are performed
in a maximal parallel manner. Timing constraints for migration allow one to
specify a temporal timeout after which a mobile process must move to another
location. Two processes may communicate only if they are present at the same
location. In TiMo , the transitions caused by performing actions with timeouts
are alternated with continuous transitions. The semantics of TiMo is provided
by multiset labelled transitions in which multisets of actions are executed in
parallel (in one step).

Timing constraints applied to mobile processes allow us to specify how many
time units are required by a process to move from one location to another. A
timer in TiMo is denoted by ∆t, where t ∈ N. Such a timer is associated with
a migration action such as gotbridge then P indicating that process P moves
to location bridge after t time units. A timer ∆5 associated with an output
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communication process a∆5!〈z〉 then P else Q makes the channel a available
for communication (namely it can send z) for a period of 5 time units. It is also
possible to restrict the waiting time for an input communication process a∆4?(x)
then P else Q along a channel a; if the interaction does not happen before the
timeout 4, the process gives up and continues as the alternative process Q.

The syntax of TiMo is given in Table 1, where the following are assumed:

• a set Loc of locations, a set Chan of communication channels, and a set Id
of process identifiers (each id ∈ Id has its arity mid);

• for each id ∈ Id there is a unique process definition id(u1, . . . , umid)
def
= Pid,

where the distinct variables ui are parameters;
• a ∈ Chan is a communication channel; l is a location or a location variable;
• t ∈ N is a timeout of an action; u is a tuple of variables;
• v is a tuple of expressions built from values, variables and allowed operations.

Processes P,Q ::= a∆t!〈v〉 then P else Q p (output)
a∆t?(u) then P else Q p (input)
gotl then P p (move)
0 p (termination)
id(v) p (recursion)
P | Q (parallel)

Located Processes L ::= l[[P ]]
Systems N ::= L p L | N p 0

Table 1. TiMo Syntax

Shorthand notation:

a ! 〈v〉 → P will be used to denote a∆∞ ! 〈v〉 then P else stop

a ? (u) → P will be used to denote a∆∞ ? (u) then P else stop

The only binding constructor is a∆t?(u) then P else Q that binds the variable
u within P (but not within Q). fv(P ) is used to denote the free variables of
a process P (and similarly for systems); for a process definition, it is assumed
that fv(Pid) ⊆ {u1, . . . , umid}, where ui are the process parameters. Processes
are defined up-to an alpha-conversion, and P{v/u, . . .} denotes P in which all
free occurrences of the variable u are replaced by v, eventually after alpha-
converting P in order to avoid clashes.

Mobility is provided by a process gotl then P that describes the migration
from the current location to the location indicated by l after t time units. Since l
can be a variable, and so its value is assigned dynamically through communica-
tion with other processes, this form of migration supports a flexible scheme for
the movement of processes from one location to another. Thus, the behaviour can
adapt to various changes of the distributed environment. Processes are further
constructed from the (terminated) process 0, and parallel composition P | Q. A
located process l[[P ]] specifies a process P running at location l, and a system
is built from its components L | N . A system N is well-formed if there are no
free variables in N .

Multiparty Session Types in Distributed Systems withMigration 3



2.1 Operational Semantics of TiMo

The first component of the operational semantics of TiMo is the structural
equivalence ≡ over systems. The structural equivalence is the smallest congru-
ence such that the equalities in Table 2 hold.

(PNULL) P | 0 ≡ P
(NNULL) N | 0 ≡ N
(NCOMM) N | N ′ ≡ N ′ | N
(NASSOC) (N | N ′) | N ′′ ≡ N | (N ′ | N ′′)
(NSPLIT) l[[P | Q]] ≡ l[[P ]] | l[[Q]]

Table 2. TiMo Structural Congruence

Essentially, the role of ≡ is to rearrange a system in order to apply the rules
of the operational semantics given in Table 3. Using the equalities of Table 2,
a given system N can always be transformed into a finite parallel composition
of located processes of the form l1[[P1]] | . . . | ln[[Pn]] such that no process Pi
has the parallel composition operator at its topmost level. Each located process
li[[Pi]] is called a component of N , and the whole expression l1[[P1]] | . . . | ln[[Pn]]
is called a component decomposition of the system N .

The operational semantics rules of TiMo are presented in Table 3. The

multiset labelled transitions of form N
Λ−→ N ′ use a multiset Λ to indicate the

actions executed in parallel in one step. When the multiset Λ contains only one

action λ, in order to simplify the notation, N
{λ}−−→ N ′ is simply written as

N
λ−→ N ′. The transitions of form N

t N ′ represent a time step of length t.

(Stop) l[[0]] 6 λ−→ (DStop) l[[0]]
t l[[0]]

(DMove) if t ≥ t′ then l[[gotl′ then P ]]
t′ l[[got−t

′
l′ then P ]]

(Move0) l[[go0l′ then P ]]
l.l′−−→ l′[[P ]]

(Com) l[[a∆t!〈v〉 then P else Q]] | l[[a∆t′?(u) then P ′ else Q′]]
{v/u}@l−−−−−→ l[[P ]] | l[[P ′{v/u}]]

(DPut) if t ≥ t′ > 0 then l[[a∆t!〈v〉 then P else Q]]
t′ l[[a∆t−t

′
!〈v〉 then P else Q]]

(Put0) l[[a∆0!〈v〉 then P else Q]]
a!∆0@l−−−−−→ l[[Q]]

(DGet) if t ≥ t′ > 0 then l[[a∆t?(u) then P else Q]]
t′ l[[a∆t−t

′
?(u) then P else Q]]

(Get0) l[[a∆0?(u) then P else Q]]
a?∆0@l−−−−−→ l[[Q]]

(DCall) if l[[Pid{v/x}]] t l[[P ′id]] and id(v)
def
= Pid then l[[id(v)]]

t l[[P ′id]]

(Call) if l[[Pid{v/x}]] id@l−−−→ l[[P ′id]] and id(v)
def
= Pid then l[[id(v)]]

id@l−−−→ l[[P ′id]]

(DPar) if N1
t N ′1, N2

t N ′2 and N1 | N2 6 λ−→ then N1 | N2
t N ′1 | N ′2

(Par) if N1
Λ1−−→ N ′1 and N2

Λ2−−→ N ′2 then N1 | N2
Λ1∪Λ2−−−−→ N ′1 | N ′2

(DEquiv) if N ≡ N ′, N ′ t N ′′ and N ′′ ≡ N ′′′ then N
t N ′′′

(Equiv) if N ≡ N ′, N ′ Λ−→ N ′′ and N ′′ ≡ N ′′′ then N
Λ−→ N ′′′

Table 3. TiMo Operational Semantics

4 Bogdan Aman and Gabriel Ciobanu



In rule (Move0), the process go0l′ then P migrates from location l to loca-
tion l′ and evolves as process P . In rule (Com), a process a∆t!〈v〉 then P else Q
located at locationl, succeeds in sending a tuple of values v over channel a to pro-
cess a∆t?(u) then P ′ else Q′ also located at l. Both processes continue to execute
at location l, the first one as P and the second one as P ′{v/u}. If a communica-
tion action has a timer equal to 0, then by using the rule (Put0) for output action
or the rule (Get0) for input action, the generic process a∆0 ∗ then P else Q
where ∗ ∈ {!〈v〉, ?(x)} continues as the process Q. Rule (Call) describes the
evolution of a recursion process. The rules (Equiv) and (DEquiv) are used to
rearrange a system in order to apply a rule. Rule (Par) is used to compose
larger systems from smaller ones by putting them in parallel, and considering
the union of multisets of actions.

The rules devoted to the passing of time are starting with D. For instance,

in rule (DPar), N1 | N2 6 λ−→ means that no action λ (i.e, an action labelled by
l′ . l, {v/u}@l, id@l, go∆0@l, a?∆0@l or a!∆0@l) can be applied in the system
N1 | N2. Negative premises are used to denote the fact that the passing to a new
step is performed based on the absence of actions; the use of negative premises
does not lead to an inconsistent set of rules.

A complete computational step is captured by a derivation of the form:

N
Λ−→ N1

t N ′.
This means that a complete step is a parallel execution of individual actions

of Λ followed by a time step. Performing a complete step N
Λ−→ N1

t N ′ means
that N ′ is directly reachable from N . If there is no applicable action (Λ = ∅),
N

Λ−→ N1
t N ′ is written N

t N ′ to indicate (only) the time progress.

Proposition 1. For all systems N , N ′ and N ′′,

if N
t N ′ and N

t N ′′, then N ′≡N ′′.

Proposition 1 states that the passage of time does not introduce any nondeter-
minism into the execution of a process.

Proposition 2. For all systems N , N ′ and N ′′,

N
(t+t′) N ′ if and only if there is a N ′′ such that N

t N ′′ and N ′′
t′ N ′.

Proposition 2 states that whenever a process is able to evolve for a certain time t,
then it must evolve through every time moment before t; this ensures that the
process evolves continuously.

3 Example

Time issues and mobility are essential in several systems in which a correct
evolution depends not only on the actions taken, but also when and where the
actions happen. A system may crash if an action is taken too early or too late,
or in an inappropriate location. We illustrate how TiMo works by a TravelShop
example used also in [12]. In this example, a client process attempts to pay as

Multiparty Session Types in Distributed Systems withMigration 5



little as possible for a ticket to a predefined destination. The scenario involves
five locations and six processes. The role of each of the locations is as follows:

– home is a location where the client process starts and ends its journey;

– travelshop is the main location; it is initially visible to the client;

– standard and special are two locations of the service where clients can find
out about the ticket prices;

– bank is a location where the payment is made.

The role of each of the processes is as follows:

– client is a process which initially resides in the home location, and is deter-
mined to pay for a flight after comparing two offers (standard and special)
provided by the travel shop. Upon entering the travel shop, client receives
the location of the standard offer and, after moving there and obtaining this
offer, the client is given the location where a special offer can be obtained.
After that, client moves to the bank and pays for the cheaper of the two
offers, and then returns to home.

– agent first informs client where to look for the standard offer and then moves
to bank in order to collect the money from the till. After that agent returns
back to travelshop.

– flightinfo communicates the standard offer to clients as well as the location
of the special offer.

– saleinfo communicates the special offer to clients together with the location
of the bank. saleinfo can also accept an update of the special offer by the
travel shop.

– update initially resides at the travelshop location and then migrates to special
in order to update the special offer.

– till resides at the bank location and can either receive e-money paid in by
clients, or transfer the e-money accumulated so far to agent .

Figure 1 describes schematically the evolution of the TravelShop system.

Fig. 1. The agency example

The specification of the running example in TiMo is given in Table 4.

6 Bogdan Aman and Gabriel Ciobanu



TravelShop
df
=

home [[ client(130 ) ]] | travelshop [[ agent(100 ) | update(60 ) ]] |
standard [[ flightinfo(110 , special) ]] | special [[ saleinfo(90 , bank) ]] |
bank [[ till(10 ) ]]

client(init)
df
=

go∆5 travelshop → flight ? (standardoffer) → go∆4 standardoffer →
info ? (p1 , specialoffer) → go∆3 specialoffer → info ? (p2 , paying) →
go∆6 paying → pay ! 〈min{p1 , p2}〉 →
go∆4 home → client(init−min{p1 , p2})

agent(balance)
df
=

flight ! 〈standard〉 → go∆10 bank → pay ? (profit) → go∆12 travelshop →
agent(balance + profit)

update(saleprice)
df
=

go∆0 special → info ! 〈saleprice〉 → stop

flightinfo(price,next)
df
=

info ! 〈price,next〉 → flightinfo(price,next)

saleinfo(price,next)
df
=

info∆10 ? (newprice) then saleinfo(newprice,next)

else info ! 〈price,next〉 → saleinfo(price,next)

till(cash)
df
=

pay∆1 ? (newpayment)

then till(cash + newpayment) else pay∆2 ! 〈cash〉 then till(0 ) else till(cash)

Table 4. TiMo description of the running example.

4 Type System

Let X be a set of clocks ranging over x1, . . . , xn and taking values in R≥0, where
each participant i has assigned its own clock xi. A clock assignment v : X → R≥0
returns the time of the clocks in X. We write v + t for the assignment mapping
all x ∈ X to v(x) + t. We denote by v0 the assignment mapping all the clocks
to 0; in our approach, when an action is performed by a participant i, the clock
xi is set to the value 0. The set Φ(X) of clock constraints over X is given by:

ϕ ::= true | x > c | x = c | ¬ϕ.
An interaction in a global type consists of a send action together with a

receive action, each annotated with a clock constraint. The clock constraint
specifies when the action could be executed. A difference from the approach
described in [4] is that we do not need to use reset predicates to specify which
clocks must be reset, because each participant has only one clock assigned to
him and the clock is reset after each consumed action.

Multiparty Session Types in Distributed Systems withMigration 7



The syntax for sorts S, timed global types G, and timed local types T is:
S ::= bool p nat p . . . p Gc
Gc ::= p→ q : 〈S〉{C}.Gc p Gc | Gc p µt.Gc p t p end C ::= {ϕp, ϕq}
Gm ::= l→ l′ : 〈p〉{M}.Gm p µt.Gm p t p end M ::= {ϕp}
Tc ::=!p : 〈S〉{B}.Tc p?p : 〈S〉{B}.Tc p µt.Tc p t p end B ::= {ϕp}

The sorts S include base types (bool, nat, etc.), and Gc is for communication
session (for the creation of a new session of typeG). InGc, type p→ q : 〈S〉{C}.G
models an interaction: p sends to q a message of sort S; the session then continues
as prescribed by G. The step is annotated with a time assertion C ::= {ϕp, ϕq},
where ϕp and ϕq are the clock constraints for the output and input actions,
respectively. Parallel type Gc | Gc puts in parallel the global types of several
sessions. Recursive type µt.G associates a type variable t to a recursion body G;
we assume that type variables are guarded in the standard way and end occurs
at least once in G. We denote by P(G) the set of participants involved in the
sessions of the distributed system that are typed by the global type G.

By Gm we model the movement of the participant between the different
sessions of the distributed system. The types have a similar explanation as in
Gc, except that each one involves only one participant and not two.

In T interactions are modelled from a participant’s viewpoint either as send-
ing types !p : 〈S〉{B}.Tc or receiving types ?p : 〈S〉{B}.Tc. We denote the
projection of Gc onto p ∈ P(G) by G ↓p; the definition is standard (see [24]),
except that each {ϕp, ϕq} is projected onto the sender (resp. receiver) by keep-
ing only the output/input part ϕp and ϕq, respectively. E.g., if Gc = p → q :
〈S〉{ϕp, ϕq}.G′c, then G′c ↓p=!p : 〈S〉{ϕp}.G′c ↓ p and G′c ↓q=?q : 〈S〉{ϕq}.G′c ↓ q.

Example 1. The specifications of our example from Figure 1 and Table 4 get
several distinct global types. Even if usually we use numbers to represent partic-
ipants, in this case we use the process names just to be easier to follow. Since we
have five locations and six participants, we have two global types Gc and Gm,
each one formed out of six types.

Ghome = Gflightinfo = Gsaleinfo = Gtill = end
Gtravelshop = µt.agent→ client : 〈string〉{xagent ≥ 0, xclient ≥ 0}.t
Gstandard = µt.

flightinfo→ agent : 〈int, string〉{xflightinfo ≥ 0, xagent ≥ 0}.t
Gspecial = update→ saleinfo : 〈int〉.{xupdate ≥ 0, xcaleinf ≤ 10}.

µt.saleinfo→ client : 〈int, string〉{xsaleinfo ≥ 0, xclient ≥ 0}.t
Gbank = µt.client→ till : 〈int〉{xclient ≥ 0, xtill ≤ 1}.

till→ agent : 〈int〉{xtill ≤ 2, xagent ≥ 0}.t
Gclient = µt.home→ travelshop : 〈client〉{xclient = 5}.

travelshop→ standard : 〈client〉{xclient = 4}.
standard→ special : 〈client〉{xclient = 3}.
special→ bank : 〈client〉{xclient = 6}.
bank → home : 〈client〉{xclient = 4}.t

Gagent = µt.travelshop→ bank : 〈agent〉{xagent = 10}.
bank → travelshop : 〈agent〉{xagent = 12}.t

Gupdate = travelshop→ special : 〈update〉{xupdate = 0}

8 Bogdan Aman and Gabriel Ciobanu



The fact that Ghome = end means that there is no communication performed
at location home, while Gflightinfo = Gsaleinfo = Gtill = end means that the
participants flightinfo, saleinfo and till are static (they do not perform any
migration). The definition of the global type Gtravelshop means that at location
travelshop always only the agent should be able to send a message containing a
string to the client. In a similar manner, the global types Gstandard, Gspecial and
Gbank describe the expected patterns of interactions inside their corresponding
locations. Note that the last three types, namely Gclient, Gagent and Gupdate,
represent the desired behaviour of the moving participants as depicted in Figure 1
by arrows.

The typing system uses a map from shared names to either their sorts
(S, S′, . . .) or to a special sort 〈Gc〉 used to type various communication ses-
sions (represented as locations in our approach). Since a type is inferred for
each participating process in a certain session, we use the notation T@l (called
located type) to represent a local type T assigned to a participating process p
in a communication session. As we deal with multiple sessions, the type of each
participant is given by the value of its local clock and the local communication
types for all locations of the system, and also by its mobility type. Using all
these ingredients, we define the following typing system:

Γ ::= ∅ | Γ, 〈Gm〉 | Γ, l : 〈Gc〉 | Γ, t : ∆
∆ ::= ∅ | ∆, p : (v, {T@l}l∈Loc, Gp).

A sorting (Γ, Γ ′, . . .) is a finite map from names to sorts, and from process
variables to sequences of types. Typings (∆,∆′, . . .) record linear usage of session
channels and migration capabilities by assigning a family of located types to a
vector of session channels. We use the judgement Γ ` P B∆ saying that “under
the environment Γ , process P has typing ∆”.

We get some results dealing with the type preservation under structural
equivalence and operational reduction. According to these results, if a well-typed
process takes a reduction step of any kind, the resulting process will be also
well-typed. As processes interact, the types need to follow this evolution. This
dynamics is formalised by a type reduction relation ⇒ on environments ∆.

The next theorem guarantees that if a process is well-typed, than any process
congruent with it (by using the structural equivalence ≡) is still well-typed.

Theorem 1. (subject congruence) Γ ` N B∆ and N ≡ N ′ imply Γ ` N ′B∆.

Subject reduction guarantees that typing is preserved by reductions; if a
process is well-typed, then the process obtained after a computational step is
also well-typed.

Theorem 2. (subject reduction) Γ ` N B∆ and N → N ′ imply Γ ` N ′ B∆′,
where ∆ = ∆′ or ∆⇒ ∆′.

Multiparty Session Types in Distributed Systems withMigration 9



5 Conclusion and Related Work

A first version of TiMo was proposed by Ciobanu and Koutny in [10] as a
simplified version of timed distributed π-calculus [13]. Several variants were de-
veloped during the last decade. The same co-authors defined the access permis-
sions given by a type system in PerTiMo [12], while other authors proposed a
probabilistic extension pTiMo in [14], as well as a real-time extension rTiMo [1].
Recently, a calculus for structure-aware mobile systems that combines TiMo and
the bigraph model was defined in [27]. Inspired by TiMo , a flexible software
platform was introduced in [9] to support the specification of distributed systems
involving timed migration and safe communication [8]. Interesting properties of
distributed systems described by TiMo refer to process migration, time con-
straints, bounded liveness and optimal reachability [2, 11]. A verification tool
called TiMo@PAT [15] was developed by using Process Analysis Toolkit, an
extensible platform for various model checkers. A probabilistic temporal logic
called PLTM was introduced in [14] to verify complex properties making ex-
plicit reference to specific locations, temporal constraints over local clocks and
multisets of actions.

A distributed calculus that provides nested multiparty and dynamically join-
able sessions, and use intra-session and intra-site communications was proposed
in [5]. Processes of the Conversation calculus are used in [6, 26] to treat dynamic
join and leave of the participants. The dynamic join and leaving mechanism
based on the multiparty session types was extended in [19] by introducing the
notion of roles. In order to obtain more expressivity, a nested, higher-order mul-
tiparty session types was proposed in [18].

Multiparty session types usually guarantee progress only within a single ses-
sion [20, 23, 19]. Progress for interleaved sessions was considered for modelling
sessions in Java [16, 22]. However, the guarantee of progress can be given only
for one single active binary session. In [21, 7] there are constructions of processes
providing missing participants in dyadic sessions, which are simpler than the
static interaction type system for global progress in dynamically interleaved and
interfered multiparty sessions as developed in [17]. In [4], the global times are
enriched with time constraints such that the multiparty session types are able
to express temporal properties in a way similar to timed automata. In order to
express such temporal properties, Scribble was extended with timed constrains
in [25]. General conditions of progress and non-zero properties of timed commu-
nicating automata at the top of multiparty compatibility were proposed in [3].

Our approach combines these approaches by treating in an unifying frame-
work the time constraints, dynamical join and leave mechanisms and interleaved
sessions. To our knowledge, this is the first work trying to accomplish this.

Acknowledgement We enjoy very much to collaborate and be co-authors with
Maciej. We send him many thanks and our best wishes.
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A Note on Simultaneous Choice-free Synthesis
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Abstract. A �nite set of transition systems {TS1, . . . ,TSn} shall be
called simultaneously Petri net solvable if there is a single Petri net N
with di�erent initial markings {M01, . . . ,M0n}, such that for every i =
1, . . . , n, the reachability graph of (N,M0i) is isomorphic to TS i. We
consider the special case that N must be choice-free, that is, contains no
structural choices, and we explore how the analysis of small cycles allows
to discard ill-formed systems in a pre-synthesis phase, and how they can
be used to construct an adequate solution when this is possible.

Keywords: Choice-Freeness, Initial Markings, Labelled Transition Systems,
Petri Nets, System Synthesis.

1 Introduction

In various papers, Maciej Koutny developed � with some colleagues � some kind
of event structures allowing to model, in particular, a simultaneity feature. Thus,
Maciej seems to like this word. This prompted the second author of this paper
to consider introducing a new kind of simultaneity in our area of research. The
idea is to allow, in a Petri net synthesis context, an underlying net to have a set
of initial markings, rather than only a single one.

Classically, a Petri net synthesis problem starts from a �nite labelled transition
system (lts) and asks to build an unlabelled Petri net (possibly of some structural
subclass) and an initial marking such that the corresponding reachability graph
is isomorphic to the given lts. If this is not possible, one would like to have
reasons why, as simple as possible, to be able to mend the given lts in order to
�nally reach a solvable case satisfying a more or less speci�c aim.

? Supported by DFG (German Research Foundation) through grant Be 1267/15-1 ARS

(Algorithms for Reengineering and Synthesis) and Be 1267/16-1 ASYST (Algorithms
for Synthesis and Pre-Synthesis Based on Petri Net Structure Theory).



In a simultaneous synthesis, one starts from several lts and one searches for a
single net and several initial markings such the corresponding reachability graphs
are isomorphic to the given lts's.

As a motivating example, consider the labelled transition systems shown in Fig-
ure 1. Note that their label sets are not equal. We shall be asking the ques-
tion whether or not there exists a single Petri net N with two initial markings
M01,M02, such that the two transition systems are implemented by (N,M01)
and by (N,M02), respectively. Figure 2 shows that this is indeed possible. In
this case, we say that N , together with the two initial markings, solves � or
synthesises � the two given transition systems simultaneously.

TS1:

ı1
a d

b b

c

TS2:

ı2
d d

c

c

Fig. 1. Two �nite transition systems TS1 and TS2. A simultaneous Petri net solution
is sought.

a

d c

b

p1

p2

p4p3

PNS1

a

d c

b

p1

p2

p4p3

PNS2

Fig. 2. PNS1 and PNS2 simultaneously solve TS1 and TS2 (respectively) choice-freely
(no place has more than one output transition), since the reachability graph of PNS i
is isomorphic to TS i (i = 1, 2). Observe that PNS1 and PNS2 have the same set of
transitions, although not all of them occur in both reachability graphs.

The choice of a speci�c subclass of nets to be built may considerably change the
problem, and its complexity, as illustrated in Figure 3. This example shows that
even if TS 3 and TS 4 are individually solvable choice-freely and a simultaneous
solution exists, there does not have to be a simultaneous choice-free solution.

De�nition 1. (Simultaneous) solvability of lts by PNS

An (unlabelled) Petri net N and a marking M0 solve (or synthesise) a labelled
transition system TS if the reachability graph of the Petri net system (N,M0) is
isomorphic to TS . A Petri net N and n markings M01, . . . ,M0n solve n labelled
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TS3: ı s
a

b
TS4: ı s

a

c

PNS3

a

b

c

p1 p2

pc

PNS4

a

c

b

q1 q2

pb

a

b

c

pb

pc

Fig. 3. Two transition systems TS3 and TS4, and individual choice-free solutions of
them (PNS3, respectively, PNS4), both over the transition set {a, b, c}. There exists
a simultaneous solution (bottom right): depending on whether pb or pc carries an
initial token, TS3 or TS4 is solved. Later, we will demonstrate that no choice-free
simultaneous solution exists.

transition systems TS 1, . . . ,TSn simultaneously if the reachability graph of the
Petri net system (N,M0i) is isomorphic to TS i, for 1 ≤ i ≤ n. A transition
system is solvable (choice-freely solvable, or cf-solvable, for short) if it can be
solved by a Petri net system (a choice-free Petri net system, respectively), and
similarly for simultaneous solvability. 1

In order to solve such a problem, we could use an additional initial state from
which n arrows (with fresh labels) lead to the n initial states of TS 1, . . . ,TSn,
and ask for the individual solvability of the resulting amended system. Then
one considers the markings reached after performing the additional transitions,
and drops the latter, in order to obtain a simultaneous solution. However, this
general procedure is not very e�ective because the complexity of the synthesis
algorithms usually grows rapidly with the number of states in the lts. Moreover
it does not work for searching a choice-free solution if n ≥ 2.

We shall thus adopt a more �distributed� strategy, considering the various lts
separately before consolidating their characteristics.

2 Small cycles, semi�ows and residues

Previous works on cf-synthesis exhibited the importance of Parikh vectors of
sequences in an lts (counting the number of occurrences of each label), small
cycles (no other cycle has a smaller Parikh vector) and short paths between two
states (no shorter path exists).

A well-known property of bounded choice-free systems is that any two small
cycles in its reachability graph either have the same Parikh vector or disjoint
supports. This is illustrated by PNS 1 and TS 1 in Figures 2 and 1, where there
are two disjoint Parikh vectors of small cycles (b and c).

Note on Simultaneous Choice-free Synthesis 15



This is no longer true for unbounded systems, as illustrated by Figure 4.

PNS5

a

b

c

p

TS5 ı

a

b

c

a

b

c
· · ·

Fig. 4. An unbounded cf-net (on the left) and its reachability graph (on the right) with
intersecting small cycles ac and bc.

A �rst result we obtained is that the disjunction property extends to small cycles
in several bounded reachability graphs of a same cf-net.

Theorem 1. Small cycles in a simultaneous synthesis

Let (N,M1
0 ) and (N,M2

0 ) be two bounded systems arising from the same choice-
free net N . Let M1[σ1〉M1 be a small cycle in the reachability graph of the former
and M2[σ2〉M2 be a small cycle in the reachability graph of the latter. Then σ1
and σ2 are either Parikh-equivalent or disjoint.

This allows to rule out the simultaneous solvability of systems TS 3 and TS 4 in
Figure 3 since the two small cycles ab and ac are neither Parikh-equivalent nor
disjoint.

In fact, it can also be proved that the Parikh vectors of small cycles occurring in
the �nite reachability graph of some cf-net are minimal semi-�ows of the latter,
and the next series of new results concern semi�ows. In formulating them, we
exploit a classic residue operation de�ned for sequences and extended to T -
vectors.

Let τ, σ ∈ T ∗ be two sequences over some label set T . The (left) residue of τ
with respect to σ, denoted by τ −• σ, arises from cancelling successively in τ the
leftmost occurrences of all symbols from σ, read from left to right. Inductively:
τ −• ε = τ ; τ −• t = τ if t /∈ supp(τ); τ −• t is the sequence obtained by erasing the
leftmost t in τ if t ∈ supp(τ); and τ −• (tσ) = (τ −• t)−• σ. Said di�erently, τ −• σ is
τ with, for each t ∈ T , the �rst min(P(τ)(t),P(σ)(t)) occurrences of t dropped.
Let σ ∈ T ∗ and Φ ∈ NT : σ−• Φ is the sequence obtained from σ by cancelling the
min(P(τ)(t), Φ(t)) leftmost occurrences of t for each t ∈ T . Let Φ, Ψ ∈ NT : Ψ−• Φ
is the T -vector such that, for each t ∈ T , (Ψ −• Φ)(t) = max(Ψ(t) − Φ(t), 0) =
Ψ(t)−min(Ψ(t), Φ(t)). The consistency between these various forms of residues
arises from the observation that P(τ −• σ) = P(τ −• P(σ)) = P(τ)−• P(σ). Other
interesting properties about residues are that (σ −• σ1) −• σ2 = σ −• (P(σ1) +
P(σ2)) = (σ −• σ2)−• σ1 and σσ′ −• σ = σ′.
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In the reachability graph of a cf-system (N,M0), it is known that all the short
paths from M0 to a reachable marking M have the same Parikh vector, called
the distance ∆M of M from the initial marking.

Theorem 2. Properties of semiflows in cf-systems

Let (N,M0) be a cf-system, M any reachable marking and Ψ a semi�ow of N .
Then,

1. ∆M 6≥ Ψ (short distance property);
2. for some reachable marking M ′, we have ∆M ′ = ∆M −• Ψ (reduced distance

property);
3. if there is a cycle around M with Parikh vector Γ disjoint from Ψ , there is

also a cycle around M ′ with Parikh vector Γ when ∆M ′ = ∆M −• Ψ (early
cycle property).

This may be the base for the development of very discriminating structural
checks during an (individual or simultaneous) cf-presynthesis. For instance, Fig-
ure 5 illustrates the use of the short distance property, Figure 6 illustrates the
reduced distance property, and Figure 7 illustrates the early cycle property

TS6:

ı
a

b

TS7:

ı qa b

Fig. 5. Two transition systems TS6 and TS7 which are individually, but not simul-
taneously, solvable by a choice-free net. In TS6, there is a small cycle ı[ab〉ı, while in
TS7, ∆q = P(ab) for a state q 6= ı, so that ¬(∆q 6≥ P(ab)), contradicting the short
distance property.

3 Simultaneous cf-synthesis

If a set of transition systems has a simultaneous cf-solution, then necessarily
the pre-synthesis, which checks the properties described above, succeeds, and all
given transition systems have an individual solution. Conversely:

1. If the pre-synthesis fails, we know there is no solution and we should not
enter the proper synthesis phase.

2. If the pre-synthesis succeeds, it may still happen that some (or all) given
transition systems have no individual solution.

3. If the pre-synthesis succeeds and all given transition systems have an indi-
vidual solution, it may still happen that there is no simultaneous solution.
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TS8:

ı
s

a b b a
b

c

TS9:

ı
a

b

b

a

b a
b

c

a

b

c
2

32PNS9:

Fig. 6. TS8 does not satisfy the reduced distance property since∆s = P(abb), there is a
small cycle s[abc〉s, but there is no state s′ such that ∆s′ = P(abb−• abc) = P(b). Hence,
it is not (individually) cf-solvable. By contrast, TS9 satis�es the reduced distance
property and is cf-solvable, as illustrated by PNS9.

TS6: ı
a

b
TS10: ı

a

c

TS11: ı
a

cc

PNS6:
a

b

c

PNS11:
a

b

c

Fig. 7. The two transition systems TS10 and TS11 are individually cf-solvable. TS10

is not simultaneously cf-solvable with TS6, since there is a loop c after a, but not
initially while a−• ab = ε, contravening the early cycle property. By contrast, TS11 is
simultaneously cf-solvable with TS6, as shown by PNS6 and PNS11.

4. If there is one, it is not always trivial to build it from the obtained individual
ones. This is why we need to proceed adequately, as explained by means of
Figures 8 and 9.

If there is a simultaneous solution, the underlying net must have as (minimal)
semi�ows the Parikh vectors of all the (small) cycles in all the given lts (possibly
more). The classic pre-synthesis procedures developed in previous papers provide
for each given lts TS i the set Gi of all the Parikh vectors of small cycles. We may
then de�ne G = ∪iGi. The synthesis procedures presented in the same papers
build for each TS i (when it is possible) a cf-solution PNS i which is automatically
compatible with all the semi�ows in Gi. It is however possible to adapt those
synthesis procedures in order to build (when possible) for each TS i a cf-solution
PNS ′i compatible with all the semi�ows in G. If this is not possible, we know
there is no simultaneous cf-solution. The main result we obtain is then:
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TS12: ı1 s
a

TS13: ı2 q
a

b

PNS12: ap1 PNS13:

a

b

p′1 p′2

Fig. 8. Two transition systems TS12 and TS13 and two individual cf-solutions: it is
not easy to deduce a simultaneous solution (if possible).

Proposition 1. Transition homogenisation and merging

Let PNS ′1, . . . ,PNS ′n be solutions of TS 1, . . . ,TSn (respectively), all with the
same transition set T , while respecting all the semi�ows in G; then in their
synchronisation it is possible, for all i ∈ {1, . . . ,m}, to choose a marking in
order to generate TS i.

PNS ′12: a

b

p1 p2

pb

PNS ′13:
a

b

p′1 p′2

a

b

p1 p2
p′1 p′2

pb

Fig. 9. Homogenised individual cf-solutions of TS12 and TS13. Compared with PNS12

in Figure 8, the net PNS ′12 also contains a transition b with a token-free input place
pb (in order to make the label sets equal), as well as dashed arrows and a new place
p2. The latter create a semi�ow which corresponds to the small cycle of TS13 (and
thus to the semi�ow (a, b) of PNS13 and PNS ′13). The simultaneous solution arises by
transition synchronisation (with markings according to Proposition 1) and is shown at
the bottom of the �gure. Depending on whether a token is absent or not on pb, TS12

or TS13 is solved.
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1 Introduction

This article relates ideas published in [12], and which originated in joint work
with Maciej Koutny in [11]. In the latter, we had been investigating the pos-
sibilities of joint firing of transitions in contextual Petri nets, finding a firing
rule that goes beyond step semantics. The resulting interval semantics works
under the assumption that for every transition, some time passes between the
verification of input tokens, and their actual consumption (+ the production of
output tokens): an interval during which the same tokens may authorize firings
in parallel. By accounting for this, the interval semantics allows all transitions
possible under step and individual semantics, and further firings as well, making
new states and behaviours accessible.

Here, we transfer these ideas to the domain of boolean networks. Note that all
proofs can be found in [12]. Boolean networks model dynamics of systems where
several components (or nodes) interact. They specify for each node an update
function to determine its next value according to the configuration (global state)
of the network. Boolean networks are widely used to model dynamics of biological
networks, such as gene networks and cellular signalling pathways.

The scheduling of nodes updates is known to have a strong influence on the
reachable configurations of the networks. The relationships between different
updating modes received a lot of attention both in transition-centered models of
networks such as Petri nets on the one hand, [15,6,8,28,29] (in particular when
read arcs are used to model finely the update mechanisms), and function-centered
models such as cellular automata [23,5] and Boolean networks [16,26,13,3,19,20],
on which this article is focused. Notice that transformations exist from BNs to
Petri nets [24,9,10] showing the strong relationship between the two formalisms.

The updating modes usually considered for Boolean networks are the follow-
ing: the synchronous updating, where all nodes are updated simultaneously, gen-
erating a deterministic dynamics; the (fully) asynchronous updating, where only
one node can be updated at a time, this node being chosen non-deterministically.
Asynchronous updating generates non-deterministic dynamics due to the differ-
ent ordering of updates, which can be interpreted as considering in the same
model different update speeds. Then, the generalized asynchronous updating
allows all the combinations of simultaneous updates subsets of nodes, ranging
from single nodes (matching asynchronous transitions) to the full set of nodes
(matching synchronous transitions). Other updating modes like sequential or



block sequential have also been considered in the literature on cellular automata
and Boolean networks [5,3], and usually lead to transitions allowed by the gen-
eralized asynchronous updating.

When a Boolean network aims at modelling a dynamical system having time
features, as it is typically the case for biological systems, the choice of the up-
date mode is crucial as it determines the set of configurations reachable from a
given initial configuration. In applications, it is usual to assess the accordance
of a Boolean network with the concrete system by checking if the observed con-
figurations are indeed reachable in the Boolean network. Whenever it is not the
case, it typically means that the designed Boolean functions do not model the
system correctly, and thus should be modified before further model analysis.

Given that only partial information is available in general on the actual
velocity of different nodes and transitions in the concrete system, a common
approach is to choose the most general updating mode, i.e., the one entailing as
few constraints as possible regarding the unknown scheduling of node updates.
In such a setting, and because we abstract away many parameters of the system
dynamics, we expect that the Boolean network models an over-approximation of
possible transitions, i.e., that any reachable configuration in the concrete system
should be reachable in the Boolean network.

In this paper, we show that the generalized asynchronous updating, subsum-
ing synchronous and asynchronous updating, can miss transitions, hence reach-
able configurations, which correspond to particular, but plausible, behaviours.
Thus, the resulting analysis can be misleading on the absence of some behaviours,
notably regarding the reachability of attractors (configurations reachable on the
long-run), and may lead to reject valid models.

The proposed updating mode for Boolean networks, called interval seman-
tics, aims at enabling the reachability of configurations by considering a novel,
generalized update scheduling policy. Essentially, the interval semantics consid-
ers the possibility of a delay between the triggering of the update of a node, and
its actual completion: this models the case of species whose value changes can
be slow.

The interval semantics can be expressed as the asynchronous updating over a
Boolean network which encodes the decoupling of update triggering and update
application. Therefore, our approach allows the definition of an asynchronous
Boolean network which simulates the general asynchronous dynamics of the orig-
inal Boolean network, while including additional and plausible behaviours, and
still preserving important dynamical constraints on fixpoints and causality of
transitions: the fixpoints of the interval semantics form a one-to-one relationship
with the fixpoints of the generalized asynchronous updating.

We illustrate the benefit of the interval semantics on a small example of
Boolean network, which is actually embedded in many models of biological net-
works (e.g., [17,18,27]). Therefore, the analysis of dynamics of these biological
models can be substantially impacted by considering the interval semantics.

Outline. Sect. 2 gives the definitions of Boolean networks and their synchronous,
asynchronous, and generalized asynchronous updating. Sect. 3 gives a motivating
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f1(x)
∆
= ¬x2

f2(x)
∆
= ¬x1

f3(x)
∆
= ¬x1 ∧ x2

(a)

010 110 011 111

000 100 001 101

(b)

0 time

quantity

1

species 2
species 1
species 3

(c)

Fig. 1. (a) Example BN f of dimension 3; (b) Transition relations between configu-
rations in B3 according to the generalized asynchronous updating of f ; (c) A possible
evolution of the quantities of the species (species 1 in dashed line, species 2 plain,
species 3 dotted).

example showing the limit of the generalized asynchronous updating. Sect. 4
introduces the interval semantics for Boolean networks by providing an encoding
as an asynchronous Boolean network and by establishing the relation with the
generalized asynchronous updating and consistency criteria. Further extensions
of the interval semantics are discussed in Sect. 5. Finally, Sect. 6 discusses the
relevance of the results for the analysis of biological models, and suggests further
work.

2 Definitions

We write B = {0, 1} and [n] = {1, . . . , n}. Given a configuration x ∈ Bn and
i ∈ [n], we denote xi the ith component of x, so that x = x1 . . . xn. Given two

configurations x, y ∈ Bn, the components that differ are noted ∆(x, y)
∆
= {i ∈

[n] | xi 6= yi}.

Definition 1 (Boolean network). A Boolean network (BN) of dimension n
is a collection of functions f = 〈f1, . . . , fn〉 where ∀i ∈ [n], fi : Bn → B.

Given x ∈ Bn, we write f(x) for f1(x) . . . fn(x).
Fig. 1 (a) shows an example of BN of dimension 3.
When modelling biological systems, each node i ∈ [n] usually represents

a biochemical species, being either active (or present, value 1) or inactive (or
absent, value 0). Each function fi indicates how the evolution of the value of i is
influenced by the current value of other components. However, this description

22 Thomas Chatain, Stefan Haar, Löıc Paulevé, and Stefan Schwoon



can be interpreted in several ways, therefore several updating modes coexist for
BNs, depending on the assumptions about the order in which the evolutions
predicted by the fi apply.

The asynchronous updating assumes that only one component is updated at
each time step. The choice of the component to update is non deterministic.

Definition 2 (Asynchronous updating). Given a BN f , the binary relation
f−−−→

async
⊆ Bn × Bn is defined as:

x
f−−−→

async
y

∆⇐⇒ ∃i ∈ [n], ∆(x, y) = {i} ∧ yi = fi(x) .

We write
f−−−→

async

∗ for the transitive closure of
f−−−→

async
.

The synchronous updating can be seen as the opposite: all components are
updated at each time step. This leads to a purely deterministic dynamics.

Definition 3 (Synchronous updating). Given a BN f , the binary relation
f−−−→

sync
⊆ Bn × Bn is defined as:

x
f−−−→

sync
y

∆⇐⇒ x 6= y ∧ ∀i ∈ [n], yi = fi(x) .

By forcing all the components to evolve synchronously, the synchronous up-
dating makes a strong assumption on the dynamics of the system. In many
concrete cases, for instance in systems biology, this assumption is clearly unre-
alistic, at least because the components model the quantity of some biochemical
species which evolve at different speeds.

As a result, the synchronous updating fails to describe some behaviours that
are possible in the asynchronous mode, such as the transition 010 → 011 rep-
resented in Fig. 1 (b) which represents the activation of species 3 when species
1 is inactive and species 2 is active (f3(010) = 1). There are also transitions
which are possible in the synchronous but not in the asynchronous updating,
for instance 000→ 110. Remark that 110 is not even reachable from 000 in the
asynchronous updating.

The generalized asynchronous updating generalizes both the asynchronous
and the synchronous ones: it allows updating synchronously any nonempty sub-
set of components.

Definition 4 (Generalized asynchronous updating). Given a BN f , the

binary relation
f−→⊆ Bn × Bn is defined as:

x
f−→ y

∆⇐⇒ x 6= y ∧ ∀i ∈ ∆(x, y) : yi = fi(x) .

Clearly, x
f−−−→

async
y ⇒ x

f−→ y and x
f−−−→

sync
y ⇒ x

f−→ y. The converse proposi-

tions are false in general. It is even false that x
f−→ y implies x

f−−−→
async

y∨x f−−−→
sync

y.
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Note that we forbid “idle” transitions (x→ x) whatsoever the updating mode.

For each node i ∈ [n] of the BN, fi typically depends only on a subset of
nodes of the network. The influence graph of a BN (also called interaction or
causal graph) summarizes these dependencies by having an edge from node j
to i if fi depends on the value of j. Formally, fi depends on xj if there exists
a configuration x ∈ Bn such that fi(x) is different from fi(x

′) where x′ is x
having solely the component j different (x′j = ¬xj). Moreover, assuming xj = 0
(therefore x′j = 1), we say that j has a positive influence on i (in configuration
x) if fi(x) < fi(x

′), and a negative influence if fi(x) > fi(x
′). It is possible that

a node has different signs of influence on i in different configurations (leading
to non-monotonic fi). It is worth noticing that different BNs can have the same
influence graph.

Definition 5 (Influence graph). Given a BN f , its influence graph G(f) is
a directed graph ([n], E+, E−) with positives and negatives edges such that

(j, i) ∈ E+
∆⇐⇒ ∃x, y ∈ Bn : ∆(x, y) = {j}, xj < yj , fi(x) < fi(y)

(j, i) ∈ E− ∆⇐⇒ ∃x, y ∈ Bn : ∆(x, y) = {j}, xj < yj , fi(x) > fi(y)

A (directed) cycle composed of edges in E+ ∪ E− is said positive when it is
composed by an even number of edges in E− (and in number of edges in E+),
otherwise, it is negative.

The influence graph is an important object in the literature of BNs [25,2].
For instance, many studies have shown that one can derive dynamical features
of a BN f by the sole analysis of its influence graph G(f). Importantly, the
presence of negative and positive cycles in the influence graph, and the way
they are intertwined can help to determine the nature of attractors (that are the
smallest sets of configurations closed by the transition relationship) [22], and
derive bounds on the number of fixpoints and attractors a BN having the same
influence graph can have [21,1,4].

3 Motivating example

Fig. 1 shows an example of BN of dimension 3 and
f−→ relation between config-

urations. The BN shows that the quantity of 3 increases when 1 is absent and
2 is present. In any scenario starting from 000 where 3 eventually increases, 2
has to increase to trigger the increase of 3. Hence, according to the generalized
asynchronous updating, the only transition which represents an increase of 3 is
010→ 011. After this, no transition is possible.

But, assuming the BN abstracts continuous evolution of quantities, the fol-
lowing scenario, pictured in Fig. 1(c), becomes possible: initially, the absence of
species 1 causes an increase of the quantity of species 2, represented in plain line
on the figure. Symmetrically, the absence of species 2 causes an increase of the
quantity of species 1 (dashed line). This corresponds to the evolution described
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by the arrow 000 → 110 in Fig. 1(b) and leads to a (transient) configuration
where species 1 and 2 are present.

Assume that 1 and 2 increase slowly. After some time, however, the quantity
of 2 becomes sufficient for influencing positively the quantity of 3, while there
is still too little of species 1 for influencing negatively the quantity of 3. Species
3 can then increase. In the scenario represented in the figure, 3 (dotted line)
increases quickly, and then 1 and 2 continue to increase. In summary, the quantity
of species 3 increased from 0 to 1 during the increase of 1 and 2, which was not
predicted by the generalized asynchronous updating (Fig. 1(b)).

One could argue that in this case, one should better consider more fine-
grained models, for instance by allowing more than binary values on nodes in
order to reflect the different activation thresholds. However, the definition of
the refined models would require additional parameters (the different activation
thresholds) which are unknown in general. Our goal is to allow capturing these
behaviours already in the Boolean abstraction, so that any refinement would
remove possible transitions, and not create new ones.

4 Interval Semantics for Boolean Networks

Interval semantics has been proposed for Petri nets in [11] with the aim at
generalizing the notion of steps [14], that are sets of transitions that can be si-
multaneously fired. The interval semantics adds the possibility to trigger, within
a single step, transitions that become enabled by the firing transitions. The mo-
tivating example given in the previous section illustrates how this semantics can
augment the set of reachable configurations.

In this section, we propose an encoding of the interval semantics for Boolean
networks as an asynchronous Boolean network. Essentially, each node i ∈ [n]
is decoupled in two nodes: a “write” node storing the next value (2i − 1) and
a “read” node for the current value (2i). The decoupling is used to store an
ongoing value change, while other nodes of the system still read the current (to
be changed) value of the node. A value change is then performed according to
the automaton given in Fig. 2: assuming we start in both write and read node
with value 0, if fi(x) is true, then the write node is updated to value 1. The read
node is updated in a second step, leading to the value where both write and read
nodes are 1. Then, if fi(x) is false, the write node is updated first, followed, in
a second stage by the update of the read node.

Once the write node (2i − 1) has changed its value, it can no longer revert
back until the read node has been updated. Hence, if fi(x) become false in
the intermediate value 10, the read node will still go through value 1 (possibly
enabling transitions) before the write node can be updated to 0, if still applicable.

4.1 Encoding

From the automaton given in Fig. 2, one can derive Boolean functions for the
write (2i−1) and read (2i) nodes. It results in the following BN f̃ , encoding the
interval semantics for the BN f :
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1 11

01

000

10

f i
(x

)

ε
¬f i

(x
)

ε

Fig. 2. Automaton of the value change of a node i in the interval semantics. The states
marked 0 and 1 represents the value 0 and 1 of the node. The labels fi(x) and ¬fi(x)
on edges are the conditions for firing the transitions; ε indicates that the transitions
can be done without condition. The states are labeled by the corresponding values of
nodes (2i− 1)(2i) in our encoding.

Definition 6 (Interval semantics for Boolean networks). Given a BN f
of dimension n, f̃ is a BN of dimension 2n where ∀i ∈ [n],

f̃2i−1(z)
∆
= (fi(γ(z)) ∧ (¬z2i ∨ z2i−1)) ∨ (¬z2i ∧ z2i−1)

f̃2i(z)
∆
= z2i−1

where γ(z) ∈ Bn is defined as γ(z)i
∆
= z2i for every i ∈ [n].

Given x ∈ Bn, α(x) ∈ B2n is defined as α(x)2i−1 = α(x)2i
∆
= xi for every i ∈ [n].

A configuration z ∈ B2n is called consistent when α(γ(z)) = z.

The function γ : B2n → Bn maps a configuration of the interval semantics
to a configuration of the BN f by projecting on the read nodes. The function
α : Bn → B2n gives the interval semantics configuration of a configuration of the
Boolean network f , where the read and write nodes have a consistent value.

Example 1. Applied to the BN f of Fig. 1, we obtain the following possible
sequence of asynchronous iterations of f̃ :

00 00 00
f̃−−−→

async
10 00 00

f̃−−−→
async

10 10 00
f̃−−−→

async
10 11 00

f̃−−−→
async

10 11 10
f̃−−−→

async
10 11 11

f̃−−−→
async

11 11 11

Therefore, with the interval semantics, the configuration 111 of f is reachable
from 000, contrary to the generalized asynchronous semantics. This is due to the
decoupling of the update of node 1: the activation of 1 is delayed which allows
activating node 3 beforehand.

Any transition of the generalized asynchronous semantics can be simulated
by the interval semantics.
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Theorem 1. For all x, y ∈ Bn,

x
f−→ y ⇒ α(x)

f̃−−−→
async

∗ α(y) .

4.2 Consistency

The above theorem shows that the asynchronous semantics of the Boolean net-
work encoding our interval semantics can reproduce any behaviour of the gen-
eralized asynchronous semantics. The aim of this section is to show that the
interval semantics still preserves important constraints of the BN on its dynam-
ics. In particular, we show the one-to-one relationship between the fixpoints
of the BN and its encoding for interval semantics; and that the influences are
preserved with their sign.

Lemma 1 states that from any configuration of encoded BN, one can always
reach a configuration which corresponds to a configuration of the original BN
(i.e., a configuration z ∈ B2n such that α(γ(z)) = z):

Lemma 1 (Reachability of consistent configurations). For any z ∈ B2n

such that α(γ(z)) 6= z, ∃y ∈ Bn : z
f̃−−−→

async

∗ α(y).

The one-to-one relationship between fixpoints of f and fixpoints of f̃ is given
by the following lemma:

Lemma 2 (Fixpoint equivalence). ∀x ∈ Bn, f(x) = x ⇒ f(α(x)) = α(x);
and ∀z ∈ B2n, f̃(z) = z ⇒ α(γ(z)) = z ∧ f(γ(z)) = γ(z).

5 Further Extensions

Our interval semantics decouples the update of a node in order to allow the
interleaving of transitions during the interval when the next value has been
computed (write node) but not applied yet (read node still with the before-
update value). This also implies that, during this interval, the other nodes have
access only to the before-update value. A third feature of the interval semantics
is the enforcement of the update application: once an update is triggered (write
node gets a different value than the read node), no further update on the same
node is possible until the update has been applied. Thus, if for instance the
update triggers a change of value from 0 to 1, the interval semantics guarantees
that the read node will eventually have the value 1.

These two aspects, restricted access to the before-update value of nodes and
enforcement of update application, were essentially motivated by our choice that
our interval semantics should simulate the synchronous update of nodes used
in the classical synchronous and generalized asynchronous semantics, as stated
in Theorem 1. However, one could go further and consider extended interval
semantics which relax either the restricted access to the before-update value of
nodes, or the enforcement of update application, or both. We will see that these
relaxations of our interval semantics still preserve the consistency properties
stated in Sect. 4.2.
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Fig. 3. Automaton of the value change of a node i in the extended interval semantics
where the update can be canceled if fi(x) changes of value during the interval of update.
Notations follow the ones of Fig. 2

5.1 Update cancellation

The relaxation of the enforcement of update application can be interpreted as the
ability to cancel an ongoing update when fi changes of value during the interval
of update. This can be described by the automaton of Fig. 3, and encoded by
removing ¬z2i and z2i−1 from the definition of f̃2i−1 in Def. 6.

Theorem 1 and the lemmas in previous section are still verified with update
cancellation.

5.2 Reading from either the before-update or after-update values

In terms of modeling, the restriction to before-update values can be seen as
an asymmetry in the consideration of transitions: the resource modified by the
transition is still available during the interval of update, whereas the result is
only available once the transition finished. When modelling biological systems,
it translates into considering only species which are slow to reach their activity
threshold.

Actually, the choice of whether the before-update, after-update or both values
are available during the update may be done according to the knowledge of
the modeled system. Our construction can easily be adapted for giving access,
depending on the node, to the after-update value instead of the before-update
value. For instance, if the node i should follow closely value changes of node i,
then node j should access the after-update value (write node) of i, whereas, as
in our motivating example, if i is slow to update compared to j, node j should
access the before-update value (read node) of i.

Finally, one could also consider a more permissive symmetric version which
would allow the access of both before-update and after-update values. This choice
may be very reasonable when not much is known about the system, for instance
about the relative speed of the nodes.
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5.3 Comparison with multi-valued networks

Multi-valued networks [7] are an extension of Boolean networks where the do-
main of each node i ∈ [n] ranges over a finite discrete ordered domain Di. The
value changes of the nodes are specified using a function gi : D1 × · · · × Dn →
{−, 0,+} which determines the direction of the value change.

Thus, a strong constraint of this semantics is that value changes are always
unitary: a transition will either change the value to the smallest higher one, or
the highest smaller one, if it exists. However, one can remark that the automaton
modeling the value change with the interval semantics (Fig. 2) does not satisfy
such a constraint, and hence cannot be encoded as a single multi-valued node.

6 Discussion

As shown in our motivating example in Sect. 3, the interval semantics can en-
able the reachability of configurations that are not allowed in other updating
modes, notably asynchronous or generalized asynchronous. This can be prob-
lematic when expecting Boolean networks to produce an over-approximation of
reachable configurations due to the abstraction of parameters related to speed
and activity threshold of components, as it is usually assumed when modelling
biological networks. It appears that the Boolean network in Sect. 3 is embedded
in numerous actual models of biological networks (e.g., [17,18,27]). Therefore,
the result of analysis of the transient dynamics of these models may be deeply
impacted by using the interval semantics, which had never been considered pre-
viously.

The transitions enabled by the interval semantics are due to nodes which
update slowly: whenever committed to a value change, in the meantime of the
update application, the other nodes of the network still evolve subject to its
before-update value. This time scale consideration brings an interesting feature
when modeling biological networks which gathers processes of different nature
and velocity. Our encoding allows the application of the interval semantics only
to a subset of nodes, offering a flexible modelling approach.

Future work consider determining semantics of Boolean networks which guar-
antee the formal simulation of hybrid and continuous network dynamics.
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Abstract. TiMo (Timed Mobility) is a process algebra developed for
modelling mobile based systems with timing constraints. We present a
new semantic model for Timed Mobility (TiMo ) by mapping its op-
erational semantics rules to corresponding rewrite rules in Maude. We
use the meta-programming capabilities of Maude to formulate a rewrit-
ing strategy that captures the maximal parallel computational steps of
TiMo . We formally prove the correctness of the translation of TiMo into
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1 Introduction

In this paper we highlight one of the many contribution made by Maciej Koutny
to the �eld of modelling and reasoning about concurrent systems, namely the
development of TiMo (Timed Mobility). TiMowas introduced in [9] as a pro-
cess calculus able to describe migrating agents using speci�c features such as
explicit locations, timeouts, and timed migration and communication in dis-
tributed systems. After this �rst step, the same authors presented a structural
translation of TiMo into behaviourally equivalent high level timed Petri nets in
[10]. As a result, it is obtained a formal net semantics for timed interaction and
migration which is both structural and allows to deal directly with concurrency
and causality. In [11], TiMo is extended with (dynamic) access permissions; a
more detailed version is presented in [18]. Overall, the approach is motivated
by the `globally asynchronous/locally synchronous' execution strategy (as found
in GALS approach [22]) in a semantic framework based on local maximal con-
currency. Processes are viewed as residing within distinct locations, where each
location has its own local clock. Processes are allowed to migrate between loca-
tions, and this is controlled by timers linked to the local clock of the location
containing the process. Timers are also used to control communication between
co-located processes.



The operational semantics of TiMo is provided by a transition system la-
belled with multisets of actions executed in parallel in one step. A complete
computational step is captured by a parallel execution of actions followed by a
time step. Based on such an operational semantics, it is proved that the passage
of time does not introduce any nondeterminism into the execution of a process,
and the processes evolve properly in time. The standard notion of bisimilarity is
extended to TiMo in [4] to deal with timed transitions and multisets of actions.

In this paper we use Rewriting Logic (RL), an algebraic formal modelling ap-
proach based on using equations to de�ne static states and rewrite rules to de�ne
dynamic state transitions [30]. In previous work [13], a new semantic model for
TiMowas developed by using RL and strategies with the aim of providing a
foundation for tool support. In particular, rewriting strategies are used to cap-
ture the locally maximal concurrent step of a TiMo speci�cation and the RL
approach was realised using the support tool Elan [7]. This approach was then
extended in [16] with access permissions in order to develop a new semantic
model for PerTiMo [18]. These semantical models are formally proved to be
sound and complete with respect to the original operational semantics on which
they were based. We build on this work here, and develop an updated RL se-
mantic model for TiMo based on using Maude [20], an adaptable formal tool
framework for modelling and analysing RL models. Maude provides a range of
interesting analysis tools (such as an LTL model checker [24]) and importantly,
it has powerful meta�programming capabilities [19] which allow rewriting strate-
gies [25] to be developed to re�ne an RL model.

We develop a new semantic model for TiMo by mapping its operational se-
mantics rule set to a corresponding set of rewrite rules inMaude. An interesting
aspect of this is how to cope with the maximal concurrency captured by the the
time progression rule which is based on using negative premises. We make use of
Maude's meta�programming capabilities to formulate a rewriting strategy [25]
that captures this maximal parallel computational step. We formally discuss the
correctness of the resultingMaude speci�cation by proving it is both sound and
complete with respect to the original operational semantics of TiMo.

To illustrate the new Maude framework, we consider a case study based on
a Complex Adaptive System (CAS) [26, 5]. We formulate a new TiMo model of
a simple robot swarm example based on robots collaborating to pull up sticks
[27, 28], and then use Maude to simulate and analyse this model. This simple
example gives useful insight into the �exibility of the proposed RL modelling
approach and illustrates the type of interesting analysis that can be done.

The paper is structured as follows. Section 2 describes the syntax and seman-
tics of TiMo. Section 3 brie�y introduces RL and the Maude support tool. In
Section 4, we develop an RL model of TiMo usingMaude and its metaprogram-
ming capabilities. In Section 5 we illustrate the framework we have developed
using a robot swarm example based on collaborative stick pulling. Finally, in
Section 6 we make some concluding remarks.
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2 The Development of TiMo

TiMo (Timed Mobility) [9�11] is a process algebra for mobile based systems
where it is possible to add timers to communication and mobility actions. Pro-
cesses reside within distinct locations and each location runs according to its
own local clock. Processes are allowed to migrate between locations and com-
munication can occur between co�located processes; these actions are controlled
by timers linked to the local clock of the location the process resides in.

To formalise TiMo we begin by de�ning a set Loc of locations, a set Chan of
communication channels, and a set Id of process identi�ers, where each id ∈ Id
has aritymid . We use x to denote a �nite tuple of elements (x1, . . . , xk) whenever
it does not lead to a confusion.

The syntax of TiMo is given in Table 1, where P represents processes and
N represents networks. Moreover, for each id ∈ Id , there is a unique process
de�nition (Def), where Pid is a process expression, the ui's are distinct variables
playing the role of parameters, and the X id

i 's are data types. In Table 1, it is
assumed that: (i) a ∈ Chan is a channel, and t ∈ N∪ {∞} represents a timeout;
(ii) each vi is an expression built from data values and variables; (iii) each ui is
a variable, and each Xi is a data type; (iv) l is a location or a location variable;
and (v)s is a special symbol used to state that a process is temporarily `stalled'.

Processes P ::= a∆t ! 〈v〉 then P else P ′ p (output)
a∆t ? (u:X) then P else P ′ p (input)
go∆t l then P p (move)
P |P ′ p (parallel)
id(v) p (recursion)
stop p (termination)
sP (stalling)

Networks N ::= l [[P ]] p N |N ′

De�nition id(u1, . . . , umid : X id
1 , . . . , X

id
mid

)
df

= Pid (Def)

Table 1. TiMo Syntax. Length of u is the same as X, and length of v in id(v) is mid .

The only variable binding construct is a∆t ? (u:X) then P else P ′ which
binds the variables u within P (but not within P ′). We use fv(P ) to denote
the free variables of a process P (and similarly for networks). For a process
de�nition as in (Def), we assume that fv(Pid) ⊆ {u1, . . . , umid

}, and so the free
variables of Pid are parameter bound. Processes are de�ned up to the alpha-
conversion, and {v/u, . . .}P is obtained from P by replacing all free occurrences
of a variable u by v, etc, possibly after alpha-converting P in order to avoid
clashes. Moreover, if v and u are tuples of the same length then {v/u}P denotes
{v1/u1, v2/u2, . . . , vk/uk}P .

A process a∆t ! 〈v〉 then P else P ′ attempts to send a tuple of values v over
the channel a for t time units. If successful, it continues as process P ; otherwise
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(Eq1-3) N |N ′≡N ′ |N (N |N ′) |N ′′≡N | (N ′ |N ′′) l [[P |P ′ ]]≡l [[P ]] | l [[P ′ ]]

(Call) l [[ id(v) ]]
id@l−→ l [[s {v/u}Pid ]] (Move) l [[ go∆t l′ then P ]]

l′@l−→ l′ [[sP ]]

(Com)

v1 ∈ X1 . . . vk ∈ Xk
l [[ a∆t ! 〈v〉 then P else Q | a∆t′ ? (u:X) then P ′ else Q′ ]]

a〈v〉@l
−−−−−−−−−−−−−→ l [[sP | s {v/u}P ′ ]]

(Par)
N

ψ−→ N ′

N |N ′′ ψ−→ N ′ |N ′′
(Time)

N 6−→l

N
√

l−→ φl(N)

(Equiv)
N ≡ N ′ N ′

ψ−→ N ′′ N ′′ ≡ N ′′′

N
ψ−→ N ′′′

Table 2. Three rules of the structural equivalence (Eq1-Eq3), and six action rules
(Call), (Move), (Com), (Par), (Equiv), (Time) of the operational semantics. In
(Par) and (Equiv) ψ is an action, and in (Time) l is a location.

it continues as the alternative process P ′. A process a∆t ? (u:X) then P else P ′

attempts for t time units to input a tuple of values of type X and substitute
them for the variables u. Mobility is implemented by a process go∆t l then P
which moves from the current location to the location l within t time units. Note
that since l can be a variable, and so its value is assigned dynamically through
communication with other processes, migration actions support a �exible scheme
for moving processes around a network. Processes are further constructed from
the (terminated) process stop and parallel composition P |P ′. Finally, process
expressions of the formsP are a purely technical device which is used in the sub-
sequent formalisation of structural operational semantics of TiMo; intuitively,
s speci�es that a process P is temporarily (i.e., until a clock tick) stalled and
so cannot execute any action. A located process l[[P ]] is a process running at
location l, and a network is composed out of its components N |N ′.

A network N is well-formed if: (i) there are no free variables in N ; (ii) there
are no occurrences of the special symbols inN ; (iii) assuming that id is as in the
recursive equation (Def), for every id(v) occurring inN or on the right hand side
of any recursive equation, the expression vi is of type corresponding to X

id
i . We

let Prs(TM ) and Net(TM ) represent the set of well-formed TiMo process and
network terms respectively. The �rst component of the operational semantics of
TiMo is the structural equivalence ≡ on networks. It is the smallest congruence
such that the equalities (Eq1�Eq3) in Table 2 hold. Using (Eq1�Eq3) one
can always transform a given network N into a �nite parallel composition of
networks of the form l1 [[P1 ]] | . . . | ln [[Pn ]] such that no process Pi has the
parallel composition operator at its topmost level. Each subnetwork li [[Pi ]] is
called a component of N , the set of all components is denoted by comp(N),
and the parallel composition is called a component decomposition of the network
N . Note that these notions are well de�ned since component decomposition is
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unique up to the permutation of the components. This follows from the rule
(Call) which treats recursive de�nitions as function calls which take a unit of
time. Another consequence of such a treatment is that it is impossible to execute
an in�nite sequence of action steps without executing any local clock ticks.

Table 2 introduces two kinds of operational semantics rules: N
ψ−→ N ′ and

N
√

l−→ N ′. The former is an execution of an action ψ by some process, and the
latter a unit time progression at location l. In the rule (Time), N 6→l means
that the rules (Call) and (Com) as well as (Move) with ∆t = ∆0 cannot
be applied to N for this particular location l. Moreover, φl(N) is obtained by
taking the component decomposition of N and simultaneously replacing all the
components of the form l [[ go∆t l′ then P ]] by l [[ go∆t−1 l′ then P ]], and all
components of the form l [[ a∆tω then P else Q ]] (where ω stands for ! 〈v〉 or
? (u:X)) by l [[Q ]] if t = 0, and l [[ a∆t−1ω then P else Q ]] otherwise. After
that, all the occurrences of the symbol s in N are erased.

The above de�nes executions of individual actions. A complete computational

step is captured by a derivation of the form N
Ψ

=⇒ N ′, where Ψ = {ψ1, . . . , ψm}
(m ≥ 0) is a �nite multiset of l-actions for some location l (i.e., actions of the

form id@l or l′@l or a〈v〉@l) such that N
ψ1−→ N1 · · ·Nm−1 ψm−→ Nm

√
l−→ N ′.

That is, a derivation is a condensed representation of a sequence of individual
actions followed by a clock tick, all happening at the same location. Intuitively,
we capture the cumulative e�ect of the concurrent execution of the multiset of
actions Ψ at location l. We say that N ′ is directly reachable from N . Note that

whenever there is only a time progression at a location, we have N
∅

=⇒ N ′.
One can show that derivations are well de�ned as one cannot execute an

unbounded sequence of action moves without time progress, and the execution
Ψ is made up of independent (or concurrent) individual executions. Moreover,
derivations preserve well-formedness of networks (see [9]).

3 Rewriting Logic and Maude

Rewriting logic (RL) [30] is a formal modelling and analysis framework based
on an algebraic speci�cation approach. In order to model a dynamic system in
RL there are two stages. First the static states of the system are speci�ed using
standard equational speci�cation techniques. Secondly, rewrite rules are used
to specify the non�deterministic state transitions that represent the dynamic
behaviour of the system. The application of rewrite rules can be controlled us-
ing rewriting strategies [25] and the result is an expressive and versatile formal
framework. RL has been applied to model a wide range of di�erent formalisms
and systems, including: biological systems [23, 31], Petri nets [34, 32], and process
algebras [29, 16].

A range of di�erent tools have been developed to support RL (see [20, 7,
6]). In this paper, we use Maude [20], an advanced support tool for RL that
provides a range of interesting analysis tools (such as an LTL model checker
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[24]) and meta�programming capabilities.Maude has been widely used to create
executable environments for di�erent languages and models of computation [21].

In order to illustrate using Maude consider the following simple RL speci�-
cation written in Maude:

mod EXABCD is

sorts Entity State .

subsort Entity < State .

ops A B C D : -> Entity .

op __ : State State -> State [assoc comm].

rl [rule1] : A A => B .

rl [rule2] : A B => C .

rl [rule3] : C => A A A .

rl [rule4] : C B => D A .

endm

The system contains four entities A, B, C, and D which are declared as constants of
sort Entity. The states of the system are represented as multi�sets of entities and
these are modelled by introducing the sort State. The sort Entity is declared
as a subsort of State which means that an entity can be viewed as a singleton
state. We use an implicit multi-set union operator __ : State State -> State

(where _ is denotes the location of an in�x argument) and de�ne this to be asso-
ciative and commutative by adding the �ags [assoc comm] (this corresponds to
adding the appropriate equations for these properties). The dynamic transitions
allowed in the system are then de�ned using the four rewrite rules given in the
speci�cation. As an example, consider the following rewrite trace derived from
the initial state C C:

C C => A A A C => B A C => D A A => D B

A range of analysis tools are provided byMaude, such as the built�in model
checking command search S =>+ P, which allows us to check if a pattern term
P can be reached by rewriting an initial ground term S. For example, we can use
the search command to check if we can derive a state containing D D from an
initial state C C C:

search C C C =>+ D D s:State .

This search returns true (with s instantiated with A) and we can view a corre-
sponding witness rewrite trace.

One key motivation for using Maude is the meta�programming capabilities
it o�ers. This meta�programming allows the de�nition of rewriting strategies
which can be used to control the way in which the rewrite rules are applied. To
illustrate this, consider the following meta�programming example which de�nes
a rewrite strategy that prioritises rule3 over the other rules.
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ceq rwStrat(T) = if Step? :: Result4Tuple then getTerm(Step?)

else (if Step2? :: ResultPair then getTerm(Step2?) else T fi)

fi

if Step? := metaXapply(upModule('EXABCD,false),T,'rule3,

none,0,unbounded,0)

/\ Step2? := metaRewrite(upModule('EXABCD,false),T,1) .

The rewriting strategy rwStrat is de�ned using a conditional equation which
allows local de�nitions (based on :=) to be used to combine the various parts
of the strategy. It makes use of two built�in meta�level functions: metaXapply
which allows a given rule to be applied (in this case rule1) to a term T ; and
metaRewrite which allows a term T to be rewritten. Type checking is used
to ensure that the meta�level functions have been successfully applied, e.g.
Step? :: Result4Tuple is used to check if rule1 has been successfully ap-
plied. For full details of the notation used here and further rewriting strategy
examples see the Maude manual [21].

4 Translating TiMo into Maude

In this section we consider how to translate a TiMo speci�cation TM into a
semantically equivalentMaude modelMd(TM ). We begin by de�ning the sorts
required in Md(TM ) to model the key TiMo concepts of channels, locations,
processes and networks as follows:

sorts Chan VLoc ALoc Loc Prs Nets .

subsorts VLoc ALoc < Loc .

Note that in order to model the location parameter passing that can occur in
communication we de�ned the sort Loc for locations to consist of two subsorts:
VLoc which represents locations variables; and ALoc representing actual location
names.

Next we de�ne the function symbols needed in Md(TM ) to represent pro-
cesses and networks.

op stop : -> Prs .

op S : Prs -> Prs .

op _|_ : Prs Prs -> Prs [assoc comm] .

op go : Time Loc Prs -> Prs .

op in : Chan Time VLoc Prs Prs -> Prs .

op out : Chan Time Loc Prs Prs -> Prs .

op _[_] : ALoc Prs -> Nets .

op _|_ : Nets Nets -> Nets [assoc comm] .

Note that the function symbol _|_ is overloaded and is used to represent par-
allel composition of both processes and networks in TiMo. Both instances are
de�ned (equationally) to be associative and commutative using the operator

38 Gabriel Ciobanu and Jason Steggles



�ags [assoc comm]. The function symbol S is used to represent the special stall
symbol s used in TiMo to control time progression.

To model process de�nitions we need to add a function symbol

op id : s1 ... sn -> Prs

for each process identi�er id(u1, . . . , un : s1, . . . , sn) in our TiMo speci�cation
TM , where si is assumed to be a well�de�ned algebraic data type in Md(TM )
representing si.

To capture the dynamic semantics of TiMo processes and networks, as de-
�ned by the action rules in Table 2, we need to formulate appropriate rewrite
rules to de�ne the behaviour of the Maude model. In order to simplify working
with network terms we make the simplifying assumption that network compo-
nents with the same location are always merged into a single network structure
(this assumption is clearly valid given Eq 3 from Table 2). We enforce this by
adding the following equation to Md(TM ):

eq (AL[P1]) | (AL[P2]) = AL[P1 | P2] .

Each individual network location term l[P1 | ... | Pn] will therefore consist
of a number of atomic processes Pi (where a process term is referred to as atomic
if it does not have the parallel operator at its topmost level).

When considering mobility we have a non�deterministic choice between ex-
ecuting a go command or allowing time to pass. We incorporate this behaviour
into Md(TM ) by adding the following pair of rules:

rl [move] : (AL[go(T,AL1,P1) | P2] | N) =>

(AL[P2] | AL1[S(P1)] | N) .

rl [move] : (AL[go(T,AL1,P1) | P2] | N) =>

(AL[S(go(T-1),AL1,P1)) | P2] | N) if notExp(T) .

The idea is that while T > 0 (i.e. notExp(T) equates to true) either rule can be
applied allowing the process to either wait or to execute the move. However, as
soon as the timer T has expired (i.e. T = 0 and so notExp(T) equates to false)
then only the �rst rule that moves P1 to the new location AL1 can be used.

Communication in TiMo is based on output and input processes synchro-
nising on a common channel within a location. We model this synchronisation
by using the following rule:

rl [com] : (AL[out(C,T1,AL1,P1,P2) | in(C,T2,VL,P3,P4)]) | N) =>

(AL[S(P1) | S(sub(P3,VL,AL1))] | N) .

This rule makes use of a substitution function sub : Prs VLoc ALoc -> Prs,
where the term sub(P,VL,AL) represents the process term resulting from substi-
tuting all free occurrences (not bound by an input action symbol) of the location
variable VL in the process term P by the actual location term AL. It is straight-
forward to de�ne sub equationally using recursion over process terms.

For each process de�nition

id(u1, . . . , un : s1, . . . , sn)
df

= Pid
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we add the following corresponding rule to Md(TM ):

rl [call] : (AL[id(u1,...,un) | P] | N) => (AL[S(Pid) | P] | N) .

where Pid is the process term that results from translating Pid into Md(TM )
and each ui is a variable of sort si in Md(TM ).

In the sequel we refer to rules move, com and call as process transition rules.
Every derivation step in TiMo �nishes with the application of the (Time)

action rule (see Table 2). This allows time to progress by updating timers and
removing all instances of the stall symbol. To model this in Md(TM ) we intro-
duce a function tick : Prs -> Prs which we de�ne equational using recursion
over process terms. The following equations illustrate the approach taken:

eq tick(S(P)) = P .

eq tick(in(C,0,VL,P1,P2)) = P2 .

ceq tick(in(C,T,VL,P1,P2)) = in(C,T-1,VL,P1,P2) if notExp(T) .

eq tick(P1 | P2) = tick(P1) | tick(P2) .

Note that the go command does not feature explicitly in these equations since
its timer is handled within the move process rules above. We then overload tick

so that it can be applied to network terms in the obvious way.
We now have to compose the above components to correctly model within

Md(TM ) a derivation step. This is done by de�ning a rewriting strategy using
Maude's metalevel programming capabilities [20, 25]. First, we de�ne a metalevel
operation update : Term -> Term which allows processes in the chosen location
to perform an action if allowable.

ceq update(T) =

if Step? :: ResultPair then getTerm(Step?) else T fi

if Step? := metaRewrite(upModule('Md(TM), false), T, unbounded) .

We then build on this by de�ning a metalevel operation next : Term -> Term

which applies update to a term and then allows time to progress by applying
the tick function.

ceq next(T) =

if Step? :: ResultPair then getTerm(Step?) else T1 fi

if T1 := update(T) /\

Step? := metaReduce(upModule('Md(TM), false), 'tick[T1]) .

Note that in the above we use the metalevel representation of tick as indicated
by the backquote and that metaReduce is used to apply the de�ning equations
in Md(TM ).

Finally, we introduce a conditional rule step which allows the rewriting strat-
egy next to be automatically applied within Maude.

crl [step] : AL[P] => downTerm(T1,NTerm)

if T1 := nextState(upTerm(AL[P])) .
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This conditional rule avoids the need to directly useMaude's metalevel notation
by applying the built�in functions upterm and downTerm for moving between
the module and metalevel representation of terms. Note the second parameter
to downTerm is a term NTerm which sets the expected kind to be returned from
the operation (see [21]).

We conclude this section by considering the important question of the cor-
rectness of the above semantic translation from TiMo to Maude. In order to
formally show that the translation is correct we need to show: soundness � each
step in our Maude model represents a derivation step in TiMo; and complete-
ness � every derivation step possible in TiMo is represented in our Maude
model. To formalise the above correctness properties we begin by de�ning a bi-
jective mapping σ : Net(TM ) → valTerm(Md(TM )) from the set Net(TM ) of
TiMo network terms in TM to their corresponding terms in Md(TM ) (this is
straightforward to do using the natural translation given by the syntax). Note
that not all terms in Md(TM ) are well�de�ned since they may incorrectly con-
tain the stall symbol or may contain unbounded location variables. We there-
fore let valTerm(Md(TM )) denote the set of all well�de�ned network terms in
Md(TM ).

The following result shows the step rule preserves valTerm(Md(TM )) terms.

Theorem 1 For any network term net1 ∈ valTerm(Md(TM )), if net1 => net2

by an application of the rule step then net2 ∈ valTerm(Md(TM )).

Proof. Consider a network term Loc[p1 | ... | pn] ∈ valTerm(Md(TM )),
where n > 0 and each process term pi is atomic. It can be shown that each
process term pi can be updated by at most one of the process transition rules
and this gives four cases to consider: 1) rule move was applied; 2) rule com was
applied; 3) rule call was applied; or 4) no process transition rule was applied
and time was simply allowed to progress. It can be shown that each of these
cases results in a well-de�ned term that represents a corresponding TiMo pro-
cess. (See [13] for an example of this type of proof.) 2

We can now show that Md(TM ) is a sound and complete model of TiMo
speci�cation TM (see Figure 1).

Soundness

net1 net2

N1 N2

-
step

-
Ψ

=⇒

6
σ−1

6
σ−1 Completeness

N1 N2

net1 net2

-
Ψ

=⇒

-step

6
σ

6
σ

Fig. 1. The properties of soundness and completeness required for Md(TM ) to be a
correct model of TM .

Developing and Applying a Rewriting Framework for Timed Mobility 41



Theorem 2 (Soundness) Let net1, net2 ∈ valTerm(Md(TM )) be valid net-
work terms. Then if net1 => net2 by an application of the rule step then

σ−1(net1)
Ψ

=⇒ σ−1(net2) for some �nite multiset Ψ = {ψ1 , . . . , ψm} of l-actions
and some location l (i. e. the diagram for soundness in Figure 1 commutes).

Proof. By the de�nition of rule step and the notion of a derivation in TiMo it
su�ces to consider a valid network location term of the form

l[p1 | ... | pn] ∈ valTerm(Md(TM )),

where n > 0 and each process term pi is atomic. It can be seen that each pro-
cess term pi is involved in at most one process transition rule application when
rule step is applied. This gives use four possible cases to consider: 1) rule move
was applied; 2) rule call was applied; 3) rule com was applied; or 4) no process
transition rule was applied and time was simply allowed to progress. For brevity,
we consider only Case 1) in detail here (for a complete example of this type of
proof see [13]).

Case 1) Suppose pi has the form go(t,l2,p) and that a move rule is ap-
plied. Then there are two possible cases to consider:
i) Timer is reduced : Suppose t > 0 and the move rule applied simply allowed
time to progress

go(t,l2,p) => S(go(t-1,l2,p))

By the de�nition of strategy next and tick we know the stall symbol S will be
removed resulting in the process term go(t-1,l2,p). By the de�nition of time
progression in TiMo and the assumption t > 0 we have

l [[ go∆t l2 then σ−1(p) ]]
√

l−−→ at [[ go∆t−1 l2 then σ−1(p) ]]

as required.
ii) Process moves: Suppose applying the move rule resulted in the process mov-
ing to location l2 producing the network term l2[S(p)]. By the de�nition of
strategy next and tick we know the stall symbol S will be removed resulting
in the network term l2[p]. By the action rule (Move) (Table 2) we have

l [[ go∆t l2 then σ−1(p) ]]
l2@l−−−→ l2 [[sσ−1(p) ]]

The result follows since the stall symbol s will be removed by the time progres-
sion step in TiMo. 2

Theorem 3 (Completeness) Let N1, N2 ∈ Net(TM ) be any well�formed net-

work terms in TM . Then, if N1
Ψ

=⇒ N2, for some location l and some multi-set
Ψ = {ψ1 , . . . , ψm} of l-actions, then σ(N1) => σ(N2) by applying the step rule.
In other words, the diagram for completeness in Figure 1 commutes.
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Proof. By the de�nition of a derivation in TiMo and the step rule it su�ces
to consider a well�formed network of the form

l [[P1 | . . . | Pn ]] ≡ l [[P1 ]] | . . . | l [[Pn ]],

where n > 0 and each Pi is an atomic process. Suppose

l [[P1 | . . . | Pn ]]
Ψ

=⇒ N ′,

for some �nite set of l�actions Ψ = {ψ1 , . . . , ψm}, m ≥ 0. Then it can be seen
that each atomic process Pi is involved in at most one l�action ψi . We show that
the derivation applied to each process Pi is correctly captured by the step rule
in Md(TM ). We have four possible cases to consider: 1) rule move was applied;
2) rule call was applied; 3) rule com was applied; or 4) no process transition rule
was applied and time was simply allowed to progress. For brevity, we consider
only Case 3) in detail here (for a complete example of this type of proof see [13]).

Case 3) Suppose the action rule (Com) has been applied to two processes
Pi and Pj , for i 6= j, i.e.

l [[ c∆t1 ! 〈l2〉 then P 1
i else P 2

i | c∆t2 ? (vl : Loc) then P 1
j else P 2

j ) ]]

c<l2>@l−−−−−−→ l [[sP 1
i | s{l2/vl}P 1

j ]]

where the stall symbols s will be removed by the �nal time step. Then we have

σ(c∆t1 ! 〈l2〉 then P 1
i else P 2

i | c∆t2 ? (vl : Loc) then P 1
j else P 2

j ))
= out(c,t1,l2,σ(P 1

i ),σ(P 2
i )) | in(c,t2,vl,σ(P 1

j ),σ(P 2
j ))

By applying the com rule we have

out(c,t1,l2,σ(P 1
i ),σ(P 2

i )) | in(c,t2,vl,σ(P 1
j ),σ(P 2

j ))
= S(σ(P 1

i )) | S(sub(σ(P 1
j ),vl,l2))

where all occurrences of the stall symbol S will be removed by the tick function.
It is then straightforward to see that

σ(P 1
i | {l2/vl}P 1

j ) = σ(P 1
i ) | sub(σ(P 1

j ), vl, l2)

by de�nition of σ. 2

5 Case Study: Robot Swarm

In this section we investigate applying the developedMaude framework to anal-
yse a simple Complex Adaptive Systems (CAS) [26, 5]. We formulate a new TiMo
model of a simple robot swarm example based on robots collaborating to pull
up sticks [27, 28], and then useMaude to simulate and analyse this model. This
simple example gives useful insight into the �exibility of the proposed Maude
modelling approach and illustrates the type of interesting analysis possible.
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Fig. 2. A graphical representation of the two TiMo processes stick and robot

5.1 A TiMo Speci�cation of the Stick Pulling Problem

The stick pulling problem [27, 28] is a robot swarm example in which a group of
robots are given the task of locating and pulling up a set of sticks distributed in
a given space. Importantly, no one robot is able to pull up a stick by themselves
and so two robots need to collaborate to remove a stick.

To model the problem we de�ne a TiMo speci�cation SP. We begin by
specifying a simple grid space which is made up of locations labelled L(i, j),
where i is the row and j is the column. To indicate the locations reachable from
a given grid location we use an output process over a channel m de�ned as
follows:

D(l)
df

= m∆2 ! 〈l〉 then D(l) else D(l)

As an example of how this can be used, consider de�ning a 3× 3 grid in which
robots are able to move vertically and horizontally:

grid
df

= L1,1 [[D(L1,2) |D(L2,1) ]] | L1,2 [[D(L1,1) |D(L1,3) |D(L2,2) ]]
| L1,3 [[D(L1,2) |D(L2,3) ]] | L2,1 [[D(L1,1) |D(L2,2) |D(L3,1) ]]
| L2,2 [[D(L2,1) |D(L1,2) |D(L2,3) |D(L3,2) ]]
| L2,3 [[D(L2,2) |D(L1,3) |D(L3,3) ]] | L3,1 [[D(L2,1) |D(L3,2) ]]
| L3,2 [[D(L3,1) |D(L2,2) |D(L3,3) ]] | L3,3 [[D(L3,2) |D(L2,3) ]]

We model sticks and robots using the two processes given in Figure 2. The TiMo
de�nitions for these two processes are given below. These de�nitions make use of
three channels to synchronise the stick pulling operation (see Figure 2): channel
s is used to check if a free stick needs pulling; channel a is used to check if a
robot needs assistance to complete the pulling up of a stick; and channel d is
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used to con�rm when a stick has been successfully pulled out.

stick
df

= s∆∞ ! then (a∆∞ ! then ((d∆∞ ! then stop else stop)
| (d∆∞ ! then stop else stop)) else stick) else stick

robot
df

= s∆0 ? then (d∆∞ ? then (m∆0 ? (l) then (go∆0 l then robot)
else robot) else robot) else (a∆0 ? then (d∆∞ ? then

(m∆0 ? (l) then (go∆0 l then robot) else robot) else robot) else
(m∆0 ? (l) then (go∆0 l then robot) else robot))

Given the above TiMo speci�cation SP we can de�ne a range of di�erent
systems. As an example, consider the system given below which involves three
robots and two sticks:

grid | L1,1, [[ robot ]] | L1,3, [[ robot ]] | L3,1, [[ robot ]] | L1,2 [[ stick ]] | L2,2 [[ stick ]]

5.2 Applying the Maude Framework

We now apply the techniques developed in Section 4 to translate the TiMo
speci�cation SP of the stick pulling problem into a Maude model Md(SP). To
begin we extend theMaude de�nitions to incorporate the locations and channels
that are used in SP. We then need to translate the three process de�nitions for
D(l), stick, and robot into appropriate Maude rules. As an example, consider the
following call rule used to model the de�nition of the stick process:

rl [call] : (AL[stick | P] | N) => (AL[S(out(s,inf,(out(a,inf,

((out(d,inf,stop,stop)) | (out(d,inf,stop,stop))),

stick)),stick)) | P] | N) .

We can now consider analysingMd(SP) usingMaude's built�in model check-
ing command search. However, as the model stands its use would be very re-
stricted due to the state space explosion problem that arises given the number
of locations available to be selected during each derivation step. To address this
problem we can go back to the de�nition of our rewriting strategy captured by
the step rule and update this strategy so that only locations containing robot
processes are considered. This helps to make analysis tractable and illustrates
the �exibility of Maude and its metaprogramming capabilities.

Consider the following search test that con�rms robots are able to collabo-
rate to pull up a stick:

search [1] (grid | (L(1,1)[robot]) | (L(2,2)[stick]) |

(L(3,3)[robot])) =>+ N1 such that not(areSticks(N1)) .

The test makes use of a function areSticks : Nets -> Bool which captures
the property of there being no sticks in a grid. This function is straightforward to
de�ne equationally and again this illustrates the �exibility a�orded by Maude.

As an example of a further test, consider the more complex test given below
which again con�rms the robots abilities to collaborate:
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search [1] (grid | (L(1,1)[robot]) | (L(1,3)[robot]) |

(L(1,2)[stick]) | (L(2,2)[stick]) | (L(3,1)[robot]))

=>+ N1 such that not(areSticks(N1)) .

A range of interesting analysis can be applied to the model using Maude
and its various analysis tools, such as the LTL model checker [24]. A detailed
analysis of the model (and its potential shortcomings) is beyond the scope of
this paper and will be considered in future work.

6 Concluding Remarks

Aiming to bridge the gap between the existing theoretical approach of process
calculi and forthcoming realistic programming languages for distributed sys-
tems, TiMowas introduced as a rather simple calculus. We can see TiMo as
a prototyping language for multi-agent systems, featuring mobility and local
interaction. Multi-agent systems typically consist of a large number of agents
which exhibit autonomic behaviour depending on their timeouts and actions.
The mobility of agents and interaction between the agents through communica-
tion may introduce new and sometimes unexpected behaviours. Components can
be highly heterogeneous, each operating at di�erent temporal scales and having
di�erent objectives. Verifying these systems is becoming increasingly necessary
because they are extremely complex and often used in various critical applica-
tion domains such as e-commerce and distributed collaborative systems. Thus,
it is important to have modelling techniques and tools which are able to describe
such systems, and to reason about their behaviour in both qualitative and quan-
titative terms. We see the work on TiMo as an important step towards this goal
and this highlights one of the many important contributions to this �eld made
by Maciej Koutny.

After the initial version of TiMo introduced in [9, 10], several variants of
TiMowere developed during the last years: a version with access permissions
given by a type system [18], a real-time version rTiMo [1], a probabilistic ex-
tension pTiMo [14], and a version with costs cTiMo .

Inspired by TiMo , a �exible software platform was presented in [12] to sup-
port the speci�cation of agents allowing timed migration in a distributed en-
vironment. A veri�cation tool called TiMo@PATwas developed by using an
extensible platform for model checkers [15]. A probabilistic temporal logic called
PLTM was introduced in [14] to verify properties of pTiMo processes making
explicit reference to speci�c locations, and using temporal constraints over lo-
cal clocks and multisets of actions. A formal relationship between rTiMo and
timed automata allows us to use the model checking capabilities provided by the
software tool Uppaal [2]. TiMowas used to describe a railway control system,
and then a new behavioural congruence over real-time systems (named strong
open time-bounded bisimulation) was used to check which behaviours are closer
to an optimal and safe behaviour [3]. In [17] it is de�ned a general framework
for reasoning about systems speci�ed in TiMo by using the Event-B modelling
method and the Rodin platform.
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In this paper we have extended existing work [13, 16] to develop a new seman-
tic translation from TiMo to Maude. The aim here was to provide support for
analysing TiMo speci�cations by allowing the range of interesting model check-
ing tools provided by Maude to be applied. We illustrated our approach with a
simple CAS robot swarm example based on the stick pulling problem. This case
study involved developing a new TiMo speci�cation of the stick pulling problem
and illustrated the analysis possible using Maude. In particular, it highlighted
the considerable �exibility provided by Maude and its metaprogramming capa-
bilities.
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Can We Ever Stop Them?

Jörg Desel

FernUniversität in Hagen, Germany
joerg.desel@fernuni-hagen.de

This short article is devoted to all Petri net researchers born in the late 1950s
(like myself), which are thus around their respective 60th birthday. In particular,
it is devoted to Maciej Koutny.

In industry, many people around 60 are already planning their retirement.
The situation in academia is different; most professors at this age seem to be
as productive as ever and ignore the benefits of retirement age. So the question
tackled in this contribution is not whether it is possible to keep them from work
immediately but to keep them from work eventually. But is there a switch which
turns people in a state such that they stop working eventually? In terms of Petri
nets, we can formulate this problem as follows:

Assume a Petri net and a transition t of this net. Given any reachable
marking m of the net, can we eventually stop the behavior of the net by
forbidding occurrences of t, or, equivalently, does any reachable marking
m enable an infinite occurrence sequence without occurrences of t?

Apparently, this question is also highly relevant for real applications of Petri
nets. For example, given a robot (or any kind of machine) modeled by a Petri
net, can some component modeled by a particular transition be used as a cut
out? As known from our computers, immediate stops are not always desirable,
but rather forced shut down processes.

The problem tackled in this article could be solved by any standard mecha-
nism involving temporal logics. There exist standard model checking procedures
for Petri nets and properties stated as a temporal logic formula. Instead, this
article provides a solution which is purely based on Petri net analysis techniques.

Throughout this paper we consider place/transition Petri nets without in-
hibitor arcs. As usual, we assume that the sets of places and transitions of a
place/transition net are finite.

Terminating Petri nets

To warm up, we first consider the question whether a place/transition Petri net
terminates eventually, i.e., whether all its occurrence sequences are finite.

Obviously, a bounded place/transition net terminates if and only if its reach-
ability graph has no cycles. In fact, if the reachability graph has a cycle, then
each occurrence sequence from the initial marking to any marking represented
by a vertex of the cycle can be extended infinitely, following the arcs of the cy-
cle (remember that each vertex of the reachability graph represents a reachable
marking). Conversely, a bounded place/transition net has only finitely many



reachable markings, because the set of places of the net is assumed to be finite.
Since each occurrence sequence corresponds to a directed path of the reachabil-
ity graph, each infinite occurrence sequence corresponds to a directed path that
passes through at least one vertex more than once; thus the reachability graph
has a cycle.

Unbounded Petri nets do not terminate anyway. To see this, consider the
construction of the reachability tree. Since the set of transitions is finite, each
vertex of this tree has finitely many immediate successors. By König’s lemma,
the tree has an infinite path, corresponding to an infinite occurrence sequence.

Hence, an obvious algorithm to check termination of a place/transition net
first checks boundedness, for example by the coverability graph construction.
In case the considered net is bounded, the algorithm constructs the reachabilty
graph and checks whether this graph has a cycle. Actually, this two-step approach
is not necessary, because the coverability graph of a bounded place/transition
net equals its reachability graph and cyclicity of this graph is implicitly checked
during the coverability graph construction. A perhaps more elegant algorithm1

first adds a place to the net which has all transitions of the net in its pre-set
and no transition in its post-set, and then checks boundedness of this place,
for example by construction of the coverability graph. Obviously, this additional
place is bounded if and only if the length of all occurrence sequences is bounded.
Since the set of transitions is finite, this is the case if and only if there is no
infinite occurrence sequence.

Termination after stopping a transition – the bounded case

We now come back to the question asked initially: Does a place/transition Petri
net terminate if a given transition t of the net is stopped eventually? In other
words: Is there an infinite occurrence sequence with only finitely many occur-
rences of t?

For bounded place/transition nets, there is again a very simple algorithmic
solution: Construct the reachability graph and check whether every cycle of this
graph contains at least one arc labeled by t. In fact, if there is a cycle without
t-labeled arc, then – as above – some infinite occurrence sequence starts with a
finite sequence to some vertex of this cycle (which might include occurrences of
t) and then runs along the cycle infinitely. Conversely, assume that each cycle
has at least one t-labeled arc. Each infinite occurrence sequence passes through
some vertex of the reachability graph infinitely often. All (infinitely many) sub-
sequences between two subsequent passes through that vertex correspond to a
cycle. By assumption all these subsequences contain an occurrence of t, whence
t occurs infinitely often in the sequence.

Algorithmically, we can delete all t-labeled arcs in the reachability graph
(which does not necessarily lead to a connected graph) and check for cycles.

1 communicated by Karsten Wolf
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Dito – the Unbounded Case

Finally, we consider the case that the considered place/transition net is un-
bounded. Does it eventually terminate provided a given transition t occurs only
finitely often? Unfortunately, the coverability graph does not bring immediate
help. Consider the simple example of a place/transition net with only one place,
which is initially unmarked, a single input transition i, and a single output tran-
sition o.

Fig. 1. A simple net and its coverability grap

We say that a transition t eventually stops a net if (and only if) every infi-
nite occurrence sequence contains infinitely many occurrences of t. In the above
example, transition i eventually stops the net, whereas transition o does not.
However, both transitions occur in the coverability graph in quite the same way,
namely as labels of arcs leading from the ω-marking labeled by ω to itself. These
are the only cycles of this coverability graph. While the ready coverability graph
does thus not lead to an algorithmic solution, we can solve the problem during
its construction, as shown below.

Remember that, during the (nondeterministic) construction of the coverabil-
ity graph, we compare new ω-markings with already constructed ω-markings.
An ω-marking is a marking of the places of a net where some places can have
the entry ω, meaning that these places can carry arbitrarily many tokens. More
precisely, when a new vertex of the coverability graph is constructed, the al-
gorithm compares the ω-marking m corresponding to this new vertex with the
ω-markings m′ corresponding to vertices which are on paths from the initial ver-
tex to the new one. If, for all places, the new marking m is identical to m′, then
the new vertex is identified with the vertex corresponding to m′. Otherwise, if
m(s) ≥ m′(s) for each place s (where ω > n for every integer n), then m is
modified as follows: For each place s with m(s) > m′(s) we set m(s) := ω, be-
cause the sequence from the vertex corresponding to m′ to the newly constructed
vertex can be repeated arbitrarily often, leading to an unbounded token growth
on the place s. In the above example, the marking reached by the occurrence of
transition i is greater than the initial marking for the only place; hence in the
coverability graph this place gets an ω-entry. Further occurrences of transition
i are possible, leading to the same ω-marking, because ω already means “arbi-
trarily many”. Notice, however, that transition i can occur infinitely often, no
matter if transition o occurs, whereas o cannot occur arbitrarily often without
i, and in particular there is no infinite occurrence sequence o o o . . ., a fact which
is not reflected by the coverability graph.
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Now we come back to the problem whether some transition t eventually stops
its net. To this end, we modify the coverability graph construction as follows.
When adding a new vertex and comparing ω-markings with previously reached
ω-markings, we also look at the occurrence sequences leading from the previously
reached ω-marking to the current one. If all such sequences contain at least one
t-transition, we proceed as in the original algorithm. Otherwise we consider the
occurrence sequences without t leading from a previously reached ω-marking m′

to the actual ω-marking m which satisfy m′(s) ≤ m(s) for each place. We define
the effect of an occurrence sequence to a place s as the difference between the
number of occurrences of output transitions in the sequence and the number of
occurrences of input transitions of the sequence. I.e., by the occurrence of the
sequence, the token count on s is decreased or increased by the effect of the
sequence to s. If m(s) 6= ω then the effect of the occurrence sequence to s must
not be negative by construction. However, if m(s) = ω, then the occurrence
sequence might actually decrease the number of tokens on s, as it happens in
our example by the short occurrence sequence o.

If we find a sequence (without t) from some suitable previously reached mark-
ing m′ to m with non-negative effect to all places s, then we stop the algorithm
with output no, i.e., the algorithm found out that transition t does not stop the
net. Otherwise we proceed as in the usual construction of the coverability graph.
If the construction algorithm reaches its regular end, i.e., if it never answered
no, then it delivers the output yes, thus identifying that t actually stops the net.

If we apply our modified algorithm to the above trivial example and ask
whether o stops the net, then we immediately identify the occurrence sequence

m0
i−→ m which neither contains o nor has a negative effect on any place (but

a positive effect on the only existing place). So the algorithm terminates with
output no. If we apply it with respect to transition i, then the only relevant
cycle is given by the arc labeled o, which is actually a loop. The short occur-
rence sequence o decreases the token count of the only existing place. So it has
a negative effect to this place. Therefore, the algorithm finally constructs the
complete coverability tree and ends with the output yes.

To prove the algorithm correct, we first observe that it proceeds like the usual
coverability graph construction algorithm, except that it might terminate earlier.
So it terminates eventually, as the unmodified coverability graph construction
algorithm terminates eventually.

If the algorithm terminates with ouput no, then there is an ω-marking in
the coverability graph constructed so far which enables an occurrence sequence
without occurrences of t and with non-negative effect to all places. Remember
that an ω-marking enables a finite occurrence sequence if the regular marking
constructed by replacing all ω-entries by the length of the sequence enables the
occurrence sequence (this replacement ensures that none of the transitions of the
sequence lacks tokens on places marked by ω). By construction of the coverability
graph, we can actually reach such a regular marking by pumping up the tokens
on all ω-marked places. Since the occurrence sequence has no negative effect to
any place, the marking reached by the sequence assigns at least as many tokens
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to each place as the marking enabling the sequence. Therefore, the occurrence
sequence can be repeated infinitely often. Thus the transition t does not stop
the net eventually.

Conversely, assume that a transition t does not stop the net eventually. We
proceed indirectly and assume that the algorithm stops with output yes, thus
constructing the full coverability graph. Since t does not stop the net eventually,
there exists a reachable marking m that enables an infinite occurrence sequence
without t. In this occurrence sequence, we reach markings m′ and m′′ (reached
after m′) such that m′′(s) ≥ m′(s) for each place s (this is the core of the proof
of finiteness of the coverability graph, based on Dickson’s Lemma). Let σ be the
occurrence sequence leading from m′ to m′′. Clearly, σ also does not contain t,
and it has a non-negative effect to all places. It is known that the ω-markings of
the coverability graph cover all reachable markings. Hence some ω-marking m′

ω

covers m′, i.e., m′
ω(s) ≥ m′(s) for each place s. During the construction of the

coverability graph the algorithm will find out that m′
ω enables σ, which leads

to another ω-marking m′′
ω covering m′′. However, comparing m′′

ω with m′
ω and

considering the occurrence sequence σ would lead to an earlier termination of
the algorithm with output no – a contradiction.

Conclusion

We have shown how to decide whether a single transition is able to stop an entire
net evetually. The proposed algorithm can easily be generalized to sets of transi-
tions (if we forbid all transitions of this set at some time, will the net eventually
stop?). Another obvious generalization refers to arc weights; the procedure works
for nets with arc weights with only very little changes.

Another tool for identifying transitions that stop a net is given by transi-
tion invariants, which are closely related to cyclic occurrence sequences, or by
transition sur-invariants, which are related to occurrence sequence with non-
negative effect to all places. Both types of invariants can be derived by linear
algebraic means. These techniques lead to much more efficient algorithms, but
unfortunately provide only sufficient criteria for termination problems.

Please notice that we want to stop nets eventually. Applied to human re-
searchers, this means that they should find an end in some years, not imme-
diately. In any case, it is important to find the right transition, i.e., the right
way to allow the researchers to concentrate on other beautiful things in live. In
the case of Maciej, it might be Martha’s job to find the right switch of Maciej,
corresponding to such a transition early enough – and vice versa.
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Evolution of the industry comes with the need of redefining the organization
and management of the entire value chain along the lifecycle of products. The
main goal is to improve flexibility in the production, for increasing the quality
of the final products while using fewer resources. The improvements expected in
the industry are supported by the recent advances in wireless sensor networks,
artificial intelligence, big data and cloud computing. Such advances allow Cyber-
Physical Systems (CPSs) to reduce the distance between digital computing and
the physical world. By letting a digital system to perceive the environment and
to actuate decisions (i.e. to ”control”), the concept of feedback can be ported at
many different levels of a value chain.

As an industry is a complex and heterogeneous eco-system, one of the main
challenges is to integrate different domains of information which are historically
seen as separated. For example, information related to business policies, market
demand and supply, productivity trends, just to name a few, has to be inte-
grated in a harmonious way with data sources of any kind (e.g. from data of
sensors to decisions of human operators). Concrete scenarios and models have
already been proposed under the name of Industry 4.0[1] or Digital Factory in
what follow. What emerges from these studies is that a digital factory is indeed
a complex system from many points of view. The complexity of the controller
responsible for a whole Digital Factory increases with the multiplicity of het-
erogeneous data sources and actuators. Experts from different fields have to
cooperate when developing the logic of the controller(s) and the relative inte-
gration with the systems or processes to be controlled. Moreover, there is the
need for a continuous refinement and evolution of all the digital systems within a
Digital Factory, including the logic of the controller and in related aspects (e.g.
integration, deployment). As a complication, in a CPS the physical computa-
tional resources used by the digital systems are typically distributed, and there
is the need to tolerate unexpected loads or failures which result from changes in
the environment. Finally, CPS and the controller are targets for cyber attacks
intended to leak information, compromise or destroy the Digital Factory.



The usage of a Service Oriented Approach has been proposed for realizing
CPSs[2]. Among the Service Oriented approaches, the microservice approach was
recently proposed for implementing CPSs [3] with the goal of solving limitations
of current architectures in the scenario of Digital Factory where complexity,
speed of evolution and required resources of applications is expected to increase
in the coming years.

Microservices[4] is one of the latest architectural trends in software engineer-
ing, promising to address several open issues in software development. A mi-
croservice architecture is suitable to realize complex, distributed architectures,
in which multiple teams of developers cooperate in all steps of software con-
struction, from integration, testing, releasing to deployment and infrastructure
management. This is reasonably in line with the requirements of a Digital Fac-
tory, where a complex, distributed application (in our case a controller - more
likely a set of controllers hierarchically organized) has to evolve while remain-
ing continuously available. Recently, has been proposed the integration of IoT
technologies with a microservice architecture [5] with the goal of solving limi-
tations of current architectures in the scenario of a Digital Factory. The IEC
61499 is an industrial standard proposing component-oriented models for devel-
oping distributed control systems. Given the modular nature of the microservices
approach, we consider possible the implementation of an architecture following
industrial standards such as the IEC 61499 into a microservice architecture.

Different microservices approach comes with different guidelines and pat-
terns, having as a common point that of carrying advantages for developing,
evolving and deploying complex applications. In this work we consider a Digi-
tal Factory adopting the Command Query Responsibility Segregation (CQRS)
pattern [6] to implement the control plane. A CQRS application, the controller
in our case, is split into two parts: command processing (i.e. inputs to the con-
troller) and query processing (i.e. outputs of the controller). A CQRS application
contains an Event Store, which can be used to determine the current and past
state of the system, i.e the state of the controller.

Our contribution is twofold. First, we propose an architecture for implement-
ing the controller as a set of containerized microservices that can be automati-
cally deployed and orchestrated on cloud platforms. Compared to a monolithic
design, our proposal has advantages when the controller is complex, constantly
evolving and requires many computational resources.

Then, we focus on how to detect and mitigate cyber attacks to the controller.
In our CQRS based controller, if the query or command services are compro-
mised, the control system could be compromised as well, with catastrophic con-
sequences for the Digital Factory.

The proposed solution consists of a detection and a mitigation mechanism.
The detection technique involves the usage of redundant replicas with a voting
scheme applied both to input and to the outputs of the controller. The mitigation
is implemented by destroying and restoring the compromised microservices from
their original image, together with a safe state taken from the Event Store. In
the paper, we describe the CQRS-based architecture of the controller enhanced
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with the detection and mitigation schema and we show, by means of simulation,
the effectiveness of the detection and mitigation mechanisms.
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Abstract. I revisit the Bohr-Einstein controversy of 1935. Bohr’s asser-
tion that there are no causes in atomic scale systems is, as a closer analy-
sis reveals, not in line with the Copenhagen interpretation since it would
contain a statement about reality. What Bohr should have written is that
there are no causes in mathematics, which is universally acknowledged.
The law of causality requires physical effects to be due to physical causes.
For this reason any theoretical model which replaces physical causes by
mathematical objects is creationism, that is, it creates physical objects
out of mathematical elements. I show that this is the case for most of
quantum mechanics.

1 A different kind of research

The article you are reading was initially published under a different title on the
internet archive [1]. It was the final assessment of quantum mechanics, distilled
itself from a book I had been writing in 2016 and 2017, showing that the theory
was flawed because it lacked physical causes for physical effects. Alex Yakovlew,
who knew the book and had read the article, thought it perfect for the Festschrift
at Maciej’s sixtieth birthday, who, after all, had extensively worked on causality.
As a Dean, I had worked extensively with Maciej, so this article is dedicated
to his birthday. It shows that the problem in modern theoretical physics is a
dysfunctional relationship with causality.

This article, which covers the last two years of my research, also did not
result from the usual working practices of a theoretical physicist. Such practices
typically involve the scribbling of mathematical symbols on a whiteboard or a
piece of paper, the rearranging and replacing of these symbols and their evolution
until a final set of symbols is reached which seems to make sense and can then
be put between the text lines in a scientific article.

This research evolved more or less out of a deep meditation on a few words
in Bohr’s original paper from 1935, where he tried to prove Einstein wrong, who
had accused quantum mechanics of being incomplete [2, 3]. The seven words in
question are ’renunciation of the classical ideal of causality’, and it took me
quite some time to make sense of them. Renunciation to me sounded ominous,
and it is perhaps no coincidence that an emissary of the Pope is a Nuntius,
which could explain my slight trepidation, since I was raised a Catholic. The



other two words which took a long time to settle in my thinking were ’classical’
and ’ideal’. It was not immediately clear to me what these two words had to
do with causality. In fact, the more I meditated on them, the less sense they
made. In my understanding, which had been philosophically trained on Kant,
Schopenhauer and Nietzsche, causality was due to the fact that events happened
in space and time and that one event could cause a subsequent one. What this
had to do with ’classical’, which I understand to mean, in music, the period from
about Haendel to Beethoven, was not obvious. If the ’classical’ posed problems, it
became even worse for the ’ideal’, because since when were causes conditioned by
something ’ideal’? Things happen, because something causes them, which seems
to be pretty much accepted across all disciplines in science and engineering. Why
this should pose a problem for atomic physics, remained a mystery.

That is, it remained a mystery, until I began looking for causes in atomic
physics and did not find any. The theory describing it only took you so far with
causes, and at this point it all became mathematics. Call me suspicious, but this
is exactly what a magician would do: he would lure you into a comfortable feeling
telling you how he progresses with his magic trick, until at some point the trick
is done and you don’t know how it happened. This was, more or less, the case
in all events in atomic physics I analysed. But as a consequence I did not, like
most of my colleagues did over the years, sigh and get on with my mathematical
calculations [4], but started to ask: Why are there no causes in atomic physics?
and What causes physical effects in atomic physics? It took me quite some time
to find simple answers to these two questions.

The answers, and the whole story how physics came to lose its causes are
written down in a popular science book, which is about to be published [5].
However, I thought that my colleagues, and those too busy to read a reasonably
priced book of 300 pages, might appreciate a free and much shorter executive
summary. This is what the rest of the article delivers.

2 Mathematics and other languages

There are two famous statements about the relationship of mathematics and
reality. The first is from Galileo Galilei, when he said that ”Nature is written
in the language of mathematics”[6]. His statement is based on the acceleration
of mass in gravity fields and the observation that acceleration is constant and
that the path a mass covers is proportional to the time interval squared. This, of
course, is described very accurately in the laws of classical mechanics, developed
by Newton after Galilei’s death. One can interpret the statement in two possible
ways. The first would be that mathematics is a language like any other. The
difference being that it is not organised along the laws of a particular gram-
mar, which govern languages, but according to the laws of logic, which govern
mathematics. In principle, however, there is no difference between mathematics
or any other language. The other interpretation would be that mathematics has
a special relationship with Nature. This interpretation, as will be seen, has led
to some confusion in the scientific community, as it often is taken to mean that
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mathematics somehow provides a closer match with reality than other languages
could.

Fortunately for scientists in the 21st century, not even mathematicians claim
that their mathematical objects are physical objects in real space, possibly with
one exception, see below. If any mathematician would make this claim, then she
would have to explain why, for example, nobody has ever seen a perfect triangle
float in space. So it is fairly safe to assume that mathematics is a particular form
of language.

This has been the topic of a heated debate in the middle ages which has,
at the beginning of the modern age, led to a clear solution. The debate in the
middle ages was between factions which were then called the ’realists’ and the
’nominalists’. Realists believed that the elements of language were real. So they
searched, quite understandably, for the original language, the one that would
reflect Nature closest, which they thought might have been the language Adam
and Eve used in paradise. In their view, elements of this original language are
real, and they exist in the real space of our everyday life. Realists traced their
belief back to the Greek philosopher Plato. Nominalists, on the other hand, did
not believe that language was real. For them the elements of a language were
a social construct and due to a common agreement about their exact meaning.
This faction can be traced back to William of Ockham, of Occam’s razor fame.

Nominalism is the common principle agreed by modern science in the 17th
century. Language, according to this agreement, is a social construct to enable
communication between humans and does not exist in reality. Mathematics,
according to this understanding, is also not part of reality.

This consensus has been violated by physics in the 20th century. Initially,
this was probably clearest expressed by Eugene Wigner when he said that: ”The
first point is that the enormous usefulness of mathematics in the natural sciences
is something bordering on the mysterious and there is no natural explanation
for it. Second, it is just this uncanny usefulness of mathematical concepts that
raises the question of the uniqueness of our physical theories”[7]. The two points
Wigner raised are very profound. Because it is indeed the question why ready-
made mathematical concepts like Riemann geometries, Hilbert spaces, Hermitian
matrices, Lie algebras and the like would be useful to describe reality in physics.

It will be seen in the following sections that the reason for this feature of
physics, in particular quantum mechanics, is that it is largely devoid of causality
and ascribes the ability to have physical effects to elements of the mathemati-
cal language. The belief that mathematical objects, which do not exist in real
space, can cause physical effects in the real world, is very similar to the belief
that a God, who does not exist in the real world, created this world. Philo-
sophically, there is no difference between a Bible-belt Christian, who wishes fire
and brimstones onto the infidels, and a University quantum theorist, who wishes
mathematical symbols to change reality: they are both, at heart, creationists.

Let me finish this section with a quote from MIT physicist Max Tegmark,
who seems to have completely lost the ability to differentiate between a language
describing Nature and Nature herself. Tegmark’s main contribution to the de-
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bate is the Mathematical Universe Hypothesis (MUH), which says that ”Our
external physical reality is a mathematical structure”[8]. Interestingly, his argu-
ment is based on the assumption that there exists an external physical reality
independent of us humans. The present article is based on exactly the same as-
sumption. Unfortunately, Tegmark’s hypothesis that the objects of mathematics
are in fact objects in the real world is exactly the same as the assumption of me-
dieval realists. This hypothesis does not agree with the nominalist view, which
is the basis of modern science. Linguists will probably also have a word to say
about such an idea.

The point to remember from this section is that language is a description
of Nature or reality, which in itself has no reality and depends on common
consent. Mathematics, it should also be remembered, is only one particular kind
of language.

3 The case against Bohr

To an unbiased observer, a mechanical engineer, say, or a sociologist, it must
seem strange that there exists a distinct difference between experiments and
theory in modern physics. While experiments at the atomic scale have improved
and the precision and abilities to manipulate systems reached dizzying heights
which really seem to allow us to create new materials and new structures from the
bottom up, theory seems to be stuck in a time warp, which always reverts back
to the 1930s. A historian would probably conclude that something happened
in the 1930s, which theoretical physics still has problems to overcome. It is
hard to overlook the similarities in the political sphere where, for example, the
members of the Orange Order in Northern Ireland still march on the 1st of
July every year to reassure themselves by a commemoration of the Battle of
the Boyne, which happened in 1690 [9]. The reason for this, I would suggest, is
the controversy between Einstein and Bohr, and the fact that this controversy
transformed theoretical physics from a tool to describe reality by mathematical
means to an ideology, which henceforth sought by every means possible to police
the opinion that there is no mathematical theory beyond quantum mechanics.
Here is, what happened.

We shall come to the case against wavefunctions in the next section, but wave-
functions, by about 1930, became a problem for the logical analysis of events at
the atomic scale. Einstein, with his colleagues Podolsky and Rosen, pointed this
out in an article in 1935 [2]. The following is a slightly simplified description of
the measurements and processes Einstein, Podolsky, and Rosen (EPR) consid-
ered. They assumed that two electrons are emitted from an atom in two opposite
directions at very high speed. They still retain their common wavefunction as
they fly along. Their wavefunction has one component, which is spin-up and one
component, which is spin-down. But since these two electrons still have a com-
mon wavefunction, we do not know, which electron is spin-up and which electron
is spin-down. To find out, we position magnets in the path of the electrons, at
equal distance from the atom, which measure their spin. Magnet A, along the
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right path at a very large distance from the atom emitting the electrons. And
there is magnet B, along the left path also at a very large distance. As magnet
A measures the spin of the electron, it is observed that the electron is pushed
upwards: this, says a physicist observing the result, is proof that the spin state
of the electron arrived at A is spin-up. But here comes the rub: since the two
electrons together have zero spin, the spin of the electron measured at magnet B
must be spin-down. The physicist at magnet A could either measure the spin or
not. If she does not, then her colleague measuring at B could obtain both results,
either spin-up or spin-down. If she does, then her colleague can only measure the
opposite spin to the one measured at A. So clearly, the measurement at magnet
A does change the measurement at magnet B. However, the two measurements
are close to simultaneous, as the two electrons have the same speed. So, there is
no time for any information from A to reach B in the available interval.

This, said EPR, was proof that either quantum mechanics violated the prin-
ciple, that nothing is faster than the speed of light, or that there was additional
information, which was not contained in the wavefunction and which made the
two measurements related.

This problem has now been solved within the model of extended electrons,
the solution was recently published [10]. The correct answer is that each electron
will carry a phase information, which is revealed at the moment of measurement
and which connects the two measurement events. The same is true for photons.
So wavefunctions do indeed contain additional information, their phase, which is
not considered a physical property in standard quantum mechanics, but never-
theless included in the mathematical description of the problem. The additional
information EPR referred to was there all along, but not considered as such.

Bohr, of course, did not know this when he answered that Einstein’s argu-
ments ”would hardly seem suited to affect the soundness of quantum-mechanical
description, which is based on a coherent mathematical formalism covering auto-
matically any procedure of measurement like that indicated” [3]. And, of course,
reality ”must be founded on a direct appeal to experiments and measurements”
[3]. These statements are the statements of a creationist. It is helpful to first
analyse the main components of the statement, and then translate the state-
ment into another language to see the problem.

From the viewpoint of a logical analysis, two terms are problematic in the first
sentence. These two terms are ”coherent” and ”automatic”. What they indicate,
without any formal proof, is that a mathematical construct exists, quantum
mechanics, which is a comprehensive description of reality (this is what coherent
implies), and that this construct inevitably leads to all possible measurements
one can think of (this is the meaning of the word automatically). Apart from
the quite stunning arrogance of the sentence, considering the development of
experimental methods since Bohr’s statement, which have nothing to do with
the experiments which could be undertaken in 1935 (the electron microscope,
for example, was only invented in 1936), this statement is not science, but close
to religion, as a translation into another language reveals.
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Assume that this is not the statement of a physicist, but a novelist, who
claims that her book is ”a coherent story of the world which covers automatically
every possible future, humans can experience.” If you ask yourself what sort of
book this would be then you reach the conclusion that it probably is not a
scientific textbook of any discipline, but rather the Holy Book of one of the
great religions, the Bible, or the Quran, for example. So Bohr claimed, to be
clear about this point, that a mathematical construct would, for all eternity, be
a correct description of all possible aspects of reality in physics. And then he
went even further.

”Indeed, the finite interaction between object and measuring agencies con-
ditioned by the very existence of the quantum of action entails - because of the
impossibility of controlling the reaction of the object on the measuring instru-
ments ... – the necessity of a final renunciation of the classical ideal of causality
and a radical revision of our attitude towards the problem of physical reality”
[3]. Let us forget for a moment that causality is and has been a fundamental
principle of all sciences for at least three hundred years. Because this is, where
Bohr falls foul even of his own Copenhagen interpretation. One of the key state-
ments of this interpretation is captured in the two sentences: ”It is wrong to
think that the task of physics is to find out how Nature is. Physics concerns
what we say about Nature” [11]. But if this is the case then a ”renunciation
of causality” is not possible, because it would explicitly say that there are no
causes in Nature. If this is not possible, then the question remains why there are
no causes in quantum mechanics. This will be the topic of the next two sections.

To sum up this section, Bohr’s reply to EPR is not only outdated today
because the EPR problem has been solved by a causal model in real space. It
also contains dodgy logic if compared to his own Copenhagen interpretation, is
based on creationism when it assumes that a mathematical construct generates
all aspects of reality, and contains assertions which are clearly not science, but
religion. I suggest we bury his statements in the history books and get on with
the science.

Einstein’s view, by contrast, that quantum mechanics is an incomplete theory
of atomic physics is vindicated. But the omission goes far beyond what even
Einstein thought. It does not concern single elements of reality, which are missing
in quantum mechanics, but a whole class of physical objects, which would allow
to refer events in real space to physical causes. We shall see, how this works
in practice in the next sections, but the final score sheet of the Bohr-Einstein
controversy then reads: Einstein one, Bohr nil.

4 The case against wavefunctions

One has to be very clear what wavefunctions are, and what they are not. They
are not, as Schrödinger thought initially, physical objects in real space like elec-
tromagnetic fields. This seems sometimes confusing, because the formalism looks
very similar to the formalism in Electrodynamics, in particular if the wavefunc-
tion is written as a function of location, like ψ (r). There is a simple way to

Causality’s Revenge 63



distinguish physical objects in space from mathematical objects, and the key
question to differentiate is: Does this object contain energy? Every electromag-
netic field contains energy, as does mass via the energy-mass relations. The
wavefunction, by contrast, does not contain energy. Therefore it is not a physi-
cal object in space, but a mathematical object. This is very clear in the abstract
formalism, where wavefunctions are objects in their own mathematical space,
Hilbert space.

There are two fundamental problems with wavefunctions. The first problem is
widely recognized in the community, and it has refused to go away, despite years
of hard work by a large number of theoretical physicist. The second problem,
which has not been recognized at all so far, is probably the much more important
one. These two problems, combined, make wavefunctions not only contradictory
entities, but elements of creationism.

The first problem is called the measurement problem and considered by physi-
cists who really think hard about their science one of the fundamental problems
in modern physics. The publications and various attempts to solve it are well
documented in the literature, and the number of articles trying to account for
it probably goes into the thousands. The problem is due to the fact that in
a measurement the wavefunction is thought to collapse to its measured state.
While this can be stated, it cannot be described consistently in the mathemati-
cal framework of quantum mechanics. There is, fundamentally, neither a cause,
nor a physical model which would describe how this happens. This problem has
led to increasingly weirder speculations about the relationship between the act
of measurement, and physical reality, the weirdest one probably the assumption
that every measurement creates a new universe. Physicists of this persuasion
no longer talk about reality or the universe, but a multiverse which, according
to some estimates, contains about 10100 universes. For an engineer this would
probably indicate that physicists have lost their mind and that they are halluci-
nating weirder and weirder theories to account for a problem that their science
seems incapable of solving. But the problem can actually be turned on its head
by two simple question: What if there is no collapse? How do I measure what I
measure without a collapse? My colleague Thomas Pope and I have developed a
model of spin measurements based on these two questions, and it turns out that
the problem can be solved with two simple assumptions: (1) The electron is an
extended object in space, and (2) a magnetic field rotates the spin of electrons,
which turns out to be a vector field. The solution has recently been published and
presented at various conferences in 2017 [10]. This solves the first problem, and
it shows that not the wavefunctions, but the densities are the crucial physical
variables leading to a solution.

The second problem, which so far has been completely ignored, is the follow-
ing little equation, which is due to Max Born [12] (I ignore the various physical
units that will usually be added):

ψ† (r)ψ (r) = ρ (r) (1)
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Let us be clear about the meaning of this equation. The two objects on the
left, the wavefunction and its dual, do not contain energy, they are objects in
mathematical space. The object on the right, the density of electrons, contains
energy, because electrons have mass, and it is an element not of mathematical
space, but of real space. So this equation says that one can take two elements
of mathematical space, multiply them, and one creates an object in real space
which contains energy. Every time, says the equation, a theoretical physicist
takes the square of the wavefunction, energy magically pops out of Hilbert space
and appears in real space. This is, without doubt, creationism in its purest form.

Now a traditionalist might try, at this point, to stall the analysis by claiming
that the density is not really a physical object, because, after all, it only shows
up in statistics. This might have been a valid argument in 1935, but it is no
longer relevant in 2018. There are two reasons for this change. The first is that
every year thirty thousand scientific papers are published which are based on
a theoretical method called density functional theory (DFT) [13]. In DFT the
only physical variable, which determines all physical properties of an atomic scale
system is the density of electrons. This firmly roots the density in real space and
as a continuous variable. The second reason is that density itself cannot be a
statistical property, because this assumption is in conflict with high-precision
experiments on metal surfaces, as shown in 2012 [14]. The electron density, not
the wavefunction, is the primary physical variable of atomic scale systems. And
it is a physical object in real space, not a mathematical object in Hilbert space.
So the conclusion remains: the equation describes an impossible relationship of
mathematical objects in Hilbert space and physical objects in real space. It is
creationism, not science.

The measurement problem, which also is a fundamental obstacle to under-
standing what happens in atomic scale systems and within the framework of
quantum mechanics, can be ignored for most applications of the theory, by fol-
lowing Mermin’s recipe to shut up and calculate. This problem, however, cannot
be ignored. Because it says, in a nutshell, that quantum mechanics is fundamen-
tally not a causal theory. Not because there are no causes in Nature, which is
what Bohr had tried to argue, but because at the point where one commonly
expects a cause in a theoretical framework, one gets a mathematical object in
Hilbert space.

Within the standard framework, and contrary to the framework of DFT,
there is no cause that would make the density attain a particular value. This
problem, it turns out, is not only unsolvable, it also makes quantum mechan-
ics unscientific. Creationism is not science, rather the opposite, whether this is
within the context of a religion, or within the context of mathematics.

5 The case against spin

The spin angular momentum, or spin as I will call it in this section, is probably
the most difficult concept introduced in quantum mechanics. The difficulty arises
from the fact that it cannot in any way be captured by an image in real space.
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The usual image, a vector which points up or down, which is used in many
scientific papers, does not do it justice, as spin is isotropic in the absence of a
measurement, therefore not a vector. The problem, in a nutshell, is the following.

In a Stern-Gerlach experiment silver atoms are detected after an inhomoge-
neous magnetic field at two distinct points: one point off centre in the direction
of higher field strength, one point in the direction of lower field strength[15].
The result indicates that the outermost electron of a silver atom has exactly two
possible magnetic dipoles, none of them due to the electron orbit. The original
experiments were done with silver atoms, but were later repeated with hydrogen
atoms with identical results. What actually happens to the electron in silver or
hydrogen has until recently been unknown and it poses quite an interesting log-
ical challenge. Assume that the electron’s magnetic dipole points in a particular
direction, and assume that it is random, then the experimental result must be
an extended blob. One could now assume, that the direction is not random, but
that one class of electrons has a vector which points up, another class has a
vector which points down. This would agree with the experiments.

But if the magnet, which determines the trajectory of the atoms, is turned by
a quarter rotation, one would measure the exact same result: two points where
the atoms impinge on the detection plate, now the points are offset left and right.
If the vectors have a particular direction, then every possible direction would
make the experimental results different for different rotations of the magnet. This
means the vector cannot have a particular direction. Since it is a fundamental
property of every vector that it points into a specific direction, a vector which
does not point into a specific direction is a contradiction: so whatever determines
the magnetic properties of a hydrogen electron is not a vector, but isotropic. So
the electron seems to have a magnetic dipole, which is not only not a vector,
but a magnetic dipole which only expresses itself as a vector if it is measured.
Both problems have remained profound difficulties for the understanding of the
electron until very recently.

The main problem becomes obvious if one asks a simple question: What
pushes the silver atom up (down)? The only answer to this question, which is
physically possible, is: A magnetic moment, which interacts with the inhomo-
geneous field of the magnet. But as spin is isotropic, it cannot be a magnetic
moment which is a vector. Therefore one has to ask, how an isotropic object
becomes a vector, and by what physical process? Described in this way it is
obvious that there is no physical process. Instead, there is a similar transforma-
tion from mathematical space to real space and from a mathematical object to
a physical one. Only in this case it does not involve, as it did for wavefunctions
and densities, the creation of energy from Hilbert space, but the creation of a
magnetic moment from Hilbert space. In the Pauli equation the relevant term
which accomplishes this creation is the so called Stern-Gerlach term [16] (the
last term on the right).

ih̄
∂

∂t
|ψ〉 =

(
(p− qA)

2

2m
− qφ

)
I|ψ〉 − qh̄

2m
σB|ψ〉 (2)
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Again, there is no physical cause for the magnetic moment to have a particu-
lar direction, there only is a mathematical object with the necessary properties,
in this case a Hermitian matrix of a two-dimensional Hilbert space, which ac-
complishes the transformation. It is, fundamentally, an act of vector-creation
from Hilbert space.

One can trace back the logical difficulty to account for these measurements to
a single property, tacitly assumed in all of quantum mechanics: the assumption
that electrons are point particles [17]. If the electron is a point, then its spin
cannot be a vector, because it would have to point into one specific direction. If,
however, the electron is an extended object, then spin can be a vector, or rather
a vector field. In this case it can also be an isotropic vector field, for example
pointing into the radial direction of a sphere. Then the question what pushes the
silver atom up or down, is easy to answer: the rotation of the vector field into the
direction of the magnetic field vector. Such a process automatically aligns the
spin direction with the direction of the external magnetic field, and it will lead
to trajectories which are influenced by the field gradient. The model has recently
been introduced and it has been shown that it is free of the usual paradoxes [10].

To sum up the result of this section we find that accounting for spin mea-
surements in quantum mechanics also entails an act of creation, the creation of
a vector from a Hermitian matrix in Hilbert space. Again, this is creationism
and not science.

6 The case against Bohm

On the face of it, the antagonism against Bohm’s reformulation of the Schrödinger
equation in the 1950s seems quite stunning [18]. Because all he really did, was
to rewrite the Schrödinger equation using a particular form of a wavefunction
ψ = R exp (iS/h̄), where both R and S are real-valued variables. This decouples
the real and the imaginary components of the Schrödinger equation. If one now
compares the real part of the equation with the Hamilton-Jacobi equation of
classical mechanics, one finds an additional potential, which is commonly called
the quantum potential Q [19]:

∂S

∂t
= −

[
|∇S|2

2m
+ V +Q

]
Q = − h̄2

2m

∇2R

R
(3)

It has the dimension of a potential like the electrostatic potential V . Contrary
to a conventional potential like V it does not depend on the physical environment
of an electron, but on the shape of its wavefunction via the second derivative
of the amplitude R. Note that at this point the equations Bohm derived are
not different from the original Schrödinger equation, because they have been
obtained by a general ansatz for the complex valued wavefunction ψ, and a
simple analysis of the real and imaginary parts of the ensuing equations. The
imaginary part can be linked to the continuity equation.

There is quite a large community of physicists who consider themselves
Bohmians, and it is indeed tempting to assume that all that makes quantum

Causality’s Revenge 67



mechanics different from, say, classical mechanics, is a special potential which
only shows up in atomic scale systems. Since this picture is, intuitively, much
more satisfying than simply following the agreed recipe and calculating things
without being able to picture them in the mind, it is hard to reject out of hand.
However, if one accepts that this potential is what makes quantum mechanics
different from our everyday environment, then one will have to accept the prop-
erties of the potential also as something which belongs to the quantum domain
and is not found in an everyday environment. This is, where things become
difficult intellectually.

The first problem arises, if one considers the elements which make up the
quantum potential Q. A potential, which changes the energy content of space
where it exists, is always a physical object in real space. This is, why Bohm
originally called his theory the ”causal” interpretation of quantum mechanics.
The point-like electron, he thought, would change its trajectory according to the
value of the potential. However, the components making up the potential are the
amplitude of the wavefunction and its derivative. The wavefunction is, as already
emphasized in previous sections, not an element of real space, but an element of
mathematical space, Hilbert space, and it does not contain any energy. So the
first problem is again a problem of creationism: the potential is created from
elements of mathematical space, energy magically pops out of Hilbert space and
into real space. This is not the only problem, though.

Because the relationship between the amplitude of the wavefunction and the
quantum potential means that this potential exists throughout the whole space,
where the wavefunction exists, and it will change immediately if, for example,
the physical environment changes at one point of the system. The wavefunction
then will not only change at this point but, via the second derivative and the
normalization contained in the quantum potential, it will change throughout
the system. Bohm’s quantum potential is also non-local. If one now thinks of
interactions between electrons via electromagnetic fields, then the electromag-
netic fields will only interact with electrons to the extent that they have time
to propagate to the point of interaction. The quantum potential, however, will
interact with an electron instantly.

So while on the one hand the image that a special potential is what makes
quantum mechanical systems different from other physical systems is intellectu-
ally satisfying, it is on the other hand hard to accept that in this case one will
have to give up causality, because this potential is created from mathematical
space and there is no physical mechanism which would allow me to understand
how this quantum potential actually operates in space. Bohm’s reformulation of
the Schrödinger equation leads to exactly the same problem as in the original
theory: there are no causes.

This could be the endpoint of the analysis and one could then conclude that
Bohm’s theory is probably not a way to regain causality in quantum mechanics.
But one could also go one step further. If it is accepted that Bohm’s theory
is non-local and a-causal, then one could ask what this means for the original
theory described by the Schrödinger equation. Formally, Bohm’s equations are
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not different from the original equation, because his ansatz for the wavefunction
is generally valid.

It is then hard to see how one set of equations makes a theory manifestly
non-local, while the logically equivalent set of equations does not have this defi-
ciency. So the question remains: Is wave mechanics itself non-local? Tentatively,
I would suggest that the answer to this question is yes. Then one has to un-
derstand where this non-locality would come into the original theory. The best
candidate, I think, for this is the fact that one obtains physical properties of
electrons, which are considered point particles in the conventional theory, only if
the operator equations are integrated over the whole space of the wavefunction.
So, for example, for the hydrogen electron this means an integration over infi-
nite space, since the wavefunction exists as an exponentially decaying function
over the whole space. I suggest that this procedure, the integration over infinite
space, makes wave mechanics as non-local as Bohm’s theory, where non-locality
is made explicit in the form of the quantum potential. It is understood that
non-locality also makes a theory a-causal. If this argument is correct, then what
Bohm did was not to invent a new theory which would allow us to better un-
derstand atomic scale systems, he rather revealed that there is no way one can
make quantum mechanics a framework based on causality.

7 Predictions and correlations

If there are no causes in quantum mechanics and if all physical effects are created
from mathematical objects, that is elements of the mathematical language, what
does this entail for the science described by quantum mechanics? A brief recourse
to history will make it clear.

During Galilei’s lifetime the conventional wisdom in astronomy was that the
solar planets move around the Earth on trajectories described by epicycles on
top of circles. The observations of Mars, for example, would show exactly such a
behaviour. Also in this case the physical cause for its motion was unknown. So
the mathematical model did not connect physical causes with physical effects, it
connected mathematical objects (circles) with physical effects. Logically, what
this theory describes is not a set of mathematically formulated predictions how
the planet moves, but only a correlation between an observation (the position
of the planet) and a mathematical model (circles). One part of the astronomical
data could have, even before Kepler’s observations, given away the fact that all
was not well with epicycles, and this part concerned the velocities of planets
along their trajectories, which were not constant. In atomic physics, the change
of the wavelength of electrons as they change their velocity is also a fact that
remained unexplained in quantum mechanics and could have alerted physicists
long ago that all was not well in theoretical physics.

Predictions can only be made, if a mathematical model relates a physical
cause to motion or other physical effects, and hence observations. Only Newton’s
theory of gravitation, which provided these causes forty years after Galilei’s
death, is capable of making these predictions.
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The same applies to quantum mechanics. The mathematical models do not
connect physical causes to physical effects, because there are no physical causes.
The theory is therefore in principle unable to make predictions. All it provides
are correlations between mathematical models and experimental observations.
Historically, it involved the invention of mathematical objects to account for
experiments. First, the invention of matrices in Heisenberg’s matrix mechanics,
then the invention of wavefunctions and spins in wavemechanics. Not one of these
objects is a physical object in real space. A similar case in point, to be analysed in
the future, will probably be provided by particle physics, which was forced to add
a plethora of new mathematical elements, called particles, as the experiments
progressed. Given that it is always possible to add new mathematical elements
to the description if a model is not in line with observations, there is also no way
to falsify such a theory. Quantum mechanics would, logically speaking, also fail
Popper’s test for a valid scientific theory.

Quantum mechanics, in short, is not science.

8 Conclusions

The inevitable conclusion from the analysis in the preceding sections is that a
major part of modern physics, quantum mechanics, is creationism, in principle
not falsifiable, and not science. This generates an interesting set of problems for
theoretical physicists. One way to deal with the problems is to ignore the findings
and to try to discredit the author of the paper. This is, what the establishment
in physics did rather successfully with David Bohm, and it is probably safe to
say that this will be the first reaction.

But will theoretical physicists be able to keep a straight face and the necessary
authoritative demeanor when they teach quantum mechanics 101 in the future?
Will they be able to stifle a snigger when they write down Born’s equation or
multiply a Pauli matrix with a field vector to obtain a magnetic moment? Not to
mention the awkward possibility that students might start to call their Physics
professors colloquially professors of Creationism, and rightly so. If this situation
is already quite difficult to handle for a real scientist, the second problem is even
worse. Because what will biologists think, who had to fight against creationism
ever since Charles Darwin published his book? One can predict that physics,
as a science, will lose much of the respect it currently enjoys in the scientific
community. This leads to the third problem, which is finding a way to make
physics a real science again. Here, the question is how much will have to be
changed, and how much of the current conventional wisdom will have to be
discarded for a future, strictly scientific, physics.

There is, unfortunately, no easy way out. The whole problem of creationism
should have been addressed eighty years ago and not swept under the carpet by
the faithful followers of Bohr. It should never have been allowed to fester and to
impact on all subsequent theory.

An interesting question, which historians might want to investigate, is how
much of the analysis in the current article had been understood by Bohr himself.
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And if he understood the consequences, how did he think that a lack of causes
could lead to a theory which describes physical effects in a scientific manner?
How did he think he could keep divine mathematical interventions at bay which,
as shown here, permeate the very foundations of the theoretical framework? My
suspicion is that, in the end, it might come down to nothing more than personal
arrogance, a lack of scientific humility, and a conviction to always be right.

For me the most frightening aspect of this analysis is what it says about us
physicists. If quantum mechanics, which is one of the corner stones of modern
physics, is actually not science but creationism, then how can we justify teaching
our students the same nonsense? What they signed up to, when they entered
University, was to get an education in a science discipline which gives them the
expertise to understand and to work with the reality they are living in. Teaching
them creationism, and calling it science, is irresponsible. So I would urge all of
my colleagues in theoretical physics to analyse their own field along the same
lines. Not by mindlessly heaping mathematical symbols onto a whiteboard and
then, at some point, magically finding physical objects, but by analysing whether
what their theory does is actually compatible with the laws of causality. If it is
not, it has no place in science. My feeling is that this will probably apply to
most of modern physics, not just quantum mechanics. Time, I would think, for
a big bonfire of theoretical tradition.
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Abstract. Output-determinacy is an important soundness notion in the
theory of non-deterministic asynchronous concurrent systems whose al-
phabet is partitioned into input and output actions. Intuitively, it postu-
lates that the set of enabled outputs of a system must be fully determined
by the visible history of its interactions with the environment, as other-
wise the specification is contradictory in the sense that it simultaneously
requires and forbids some output.

In the case of safe or k-bounded Petri nets checking output-determinacy
was known to be PSPACE-complete, but the complexity (and even de-
cidability) of this problem for general Petri nets was open. In this paper
we show that the problem of checking whether output-determinacy is
violated is decidable and equivalent to reachability in general Petri nets.

Keywords: Output-determinacy · Petri nets · Reachability · Computa-
tional complexity

1 Introduction

Labelled Petri nets (LPNs) with the alphabet (of transition labels) partitioned
into input and output actions are often used for specifying concurrent systems
(see, e.g., [2, 3, 7–9]). When a specification is deterministic (in the sense of au-
tomata and formal language theory), its semantics could be the set of its possi-
ble traces, i.e. its language. As the final implementation must be deterministic,
it may seem reasonable to confine oneself to deterministic specifications only.
However, often this turns out to be too restrictive in practice. There are several
situations which naturally give rise to non-deterministic specifications which still
can be implemented:

Silent transitions For convenience of modelling, the designers often use silent
transitions, which are not included into visible traces of the system. Such
transitions make the Petri net non-deterministic.

? Devoted to Prof Maciej Koutny on the occasion of his 60th birthday.



OR-causality When a safe LPN is used for modelling a situation where the
system has to respond to any of several possible stimuli in the same way,
non-determinism naturally arises. (OR-causality can also be modelled as a
non-safe (2-bounded) LPN without non-determinism [3, 9], but in practice
safe Petri nets are preferable as they are much easier to analyse.)

Hiding signals Non-determinism naturally arises when in a deterministic LPN
some of the signals are hidden (by turning some visible transitions into silent
ones) – hiding signals is essential in many applications, e.g. the decomposi-
tion algorithm of [2, 7, 8].

It is thus natural to consider a non-deterministic model for which we could
verify that there is a deterministic implementation.

We use the following formal model. An LPN N = (P, T, F, I, O, `,MN ) is a
structure comprising finite disjoint sets P, T of places and transitions, respec-
tively; the flow relation F ⊆ (P ×T )∪(T ×P ); disjoint sets I,O of input actions
and output actions, respectively; the labelling function ` : T → I ∪O∪{ε} map-
ping each transition either to an action or to the empty word ε – such transitions
are called silent ; and the initial marking MN ∈ NP (for N = {0, 1, 2, . . .}).

We use the usual notationM [σ〉 to denote that markingM enables a sequence
of transitions σ, and write M [σ〉M ′ if σ is finite and enabled by M , and firing
σ from M yields marking M ′. We lift this notation to labels as follows, for `
extended to sequences of transitions. For a sequence of actions ν we write M [ν〉〉
(resp. M [ν〉〉M ′) iff M [σ〉 (resp. M [σ〉M ′) for some sequence σ of transitions
such that `(σ) = ν. In particular, a label l is considered enabled by a marking
M , written M [l〉〉, if one can fire a finite sequence of silent transitions to directly
enable a transition labelled by l, i.e. we have M [σ〉M ′[t〉 where σ contains only
silent transitions and `(t) = l.

In our constructions we often use pairs of arcs (p, t) and (t, p) (i.e. (p, t) ∈ F
and (t, p) ∈ F ) for some place p and transition t. Such a pair will be called a
read arc and depicted by a line without arrowheads (between a place-circle and
a transition-box).

An LPN N specifies the behaviour of a system in the sense that the system
must provide all and only the specified outputs and that it must allow at least the
specified inputs. As a consequence, the system must be able to perform at least
all traces of N . In fact, N also describes assumptions about the environment the
system will interact with; namely, the environment will only produce the inputs
specified by N . A correct implementation of N may allow additional input events
(and traces), but these events and subsequent behaviour will never occur in the
envisaged environment. In other words, when the system is running in a proper
environment, only traces of N can occur.

The implementation may actually have fewer input signals than N , keeping
only those that are relevant for producing the required outputs. In this case,
the environment may provide irrelevant inputs, but the implementation simply
ignores them — and in this sense, they are always allowed.
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Fig. 1. The LPN on the left is not output-determinate; the result of determinisation
is shown on the right. The latter LPN, though implementable and having the same
language, is not a correct implementation of the original LPN: it can break the envi-
ronment by producing o when the environment does not expect it.

Intuitively, assuming a deterministic implementation and possibly non-deter-
ministic specification, the correctness of the implementation can be defined as
follows (see [2] for a formal definition):

– the implementation must be able to perform all traces of the specification,
maybe dropping some irrelevant input signals;

– after any trace, all the inputs allowed by the specification must be allowed
(or ignored) by the implementation;

– after any trace, the implementation must enable exactly the specified out-
puts.

A non-deterministic specification can perform the same trace in two differ-
ent ways, reaching different states (markings) M1 and M2. Assuming that the
only information available to the system is the execution history, i.e. the trace
performed, an implementation cannot determine whether its current state cor-
responds to state M1 or M2 of the specification. Hence, a deterministic imple-
mentation must behave consistently with the specification no matter in which
of these states the specification is.

The above definition of correctness requires that the implementation must
allow at least the inputs enabled by M1 and at least the inputs enabled by M2;
this is easy to achieve even if these sets of inputs differ – i.e. the implementation
may allow the union of these sets (or any superset thereof). However, the sit-
uation with outputs is different: The implementation must provide exactly the
outputs enabled by M1 and exactly the outputs enabled by M2. This is only
possible if M1 and M2 enable the same outputs.

This in particular implies that the language is not an adequate semantics
for non-deterministic specifications: M1 and M2 may enable different sets of
outputs, but the language cannot distinguish between such a system and its de-
terminised version, yet the former has no deterministic implementations whereas
the latter has (e.g. itself). For example, Fig. 1 illustrates a dangerous scenario
when determinisation hides an error.

One possibility would be to define semantics based on some notion of bisim-
ulation. However, it turns out that bisimulation is unnecessarily strong – it is
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possible for two non-bisimilar systems to have exactly the same deterministic im-
plementations. This has negative consequences for applications, e.g. some useful
transformations preserving the possible implementations would be rejected if
they do not yield a bisimilar system. For example, the decomposition algorithm
of [8, 7] used semantics based on a variant of bisimulation (called ‘angelic bisim-
ulation’), and the semantics based on the notion of output-determinacy helped
to improve it significantly [2].

In [2] a formal semantics of non-deterministic LPNs was proposed and jus-
tified. For this, the concept of output-determinacy (OD), which is a relaxation
of determinism, was introduced. In particular, it was shown that for OD LPNs
the language is a sufficient semantics, and this also holds in the case of dis-
tributed LPNs. Moreover, it was proved that an LPN cannot have deterministic
implementations unless it is OD.

Definition 1 (Output-Determinacy). An LPN N is called output-determin-
ate (OD) if MN [ν〉〉M1 and MN [ν〉〉M2 implies for every output o that M1[o〉〉
iff M2[o〉〉.

Therefore, OD is a useful correctness property that can be formally veri-
fied. Hence, the questions of decidability and computational complexity of this
verification problem for various PN classes becomes relevant.

2 The complexity of checking output-determinacy

In [2] it was shown that the coverability problem is easily reducible to OD
for safe/k-bounded/general PNs, which immediately yields the PSPACE lower
bound for safe and for k-bounded PNs, as well as the EXPSPACE lower bound
for general PNs. Moreover, for safe and k-bounded PNs an algorithm that runs
in polynomial space was proposed. Hence checking OD is PSPACE-complete for
safe and k-bounded PNs. However, the upper bound and even decidability of
this problem for general PNs were left open.

In this paper we show that finding a violation of OD for general Petri nets
is polynomially equivalent to checking Reachability. Hence:

– The problem is decidable.
– The EXPSPACE lower bound in [2] is likely not tight, as Reachability is

conjectured to be much harder.

We proceed by first establishing the improved lower bound, and then deriving
a matching upper bound. Below, we denote by cOD the complement of OD, i.e.
the problem of checking whether OD is violated.

2.1 The lower bound

We now show that Petri nets Reachability Problem (RP) is easily reducible
to cOD, i.e. cOD is RP-hard. For simplicity, we use the special case of Zero
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Fig. 2. Reduction from ZRP to OD.

Reachability Problem (ZRP), i.e. the reachability of the zero marking 0 = {0}P ,
that is known to be equivalent to RP [1].

Suppose one has to check whether the zero marking is reachable in a given
(unlabelled) PN. We build an LPN as follows: If the initial marking of the PN
is already 0, we return a fixed LPN violating OD. Otherwise we construct the
LPN as follows, see Fig. 2:

– Each transition in the PN is labelled with the same input action i.
– For each place of the PN, a new o-labelled transition is created and connected

to this place with a read arc; hence, o is always enabled in the resulting LPN
as long as the marking is not 0.

– A new isolated transition t̂ labelled with i is created; hence, i is always
enabled in the resulting LPN.

Lemma 1. Marking 0 is reachable in the original PN iff the constructed LPN
violates OD. Moreover, the resulting LPN is safe/k-bounded/general if the orig-
inal PN was safe/k-bounded/general.

Proof. If the initial marking MN of the PN is zero then the result is trivial, so
we assume it is not and consider two cases:

(1) Suppose the zero marking is reachable in the original net via some non-
empty execution σ, MN [σ〉0. The same execution can be performed in the con-
structed LPN yielding the trace terminating at the zero marking, MN [i|σ|〉〉0,
and by construction 0 does not enable o. Moreover, the LPN has another execu-
tion MN [t̂|σ|〉MN yielding the same trace i|σ| but finishing at the initial marking
that is not zero and thus enables o. Hence the LPN is not OD.

(2) Suppose the zero marking is not reachable in the PN, and hence in the
LPN. This means that every reachable marking of LPN enables o, and so OD
cannot be violated.
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Fig. 3. Replacing multiple o-labelled transitions by a single one. Intuitively, the o-
labelled transition is used as a sub-routine, with some silent transitions used to remove
the respective input tokens before performing o, and to produce the respective output
tokens after performing o.

The bound on the number of tokens follows from the fact that executing the
added transitions does not alter the current marking. ut

This result immediately implies that cOD is RP-hard (i.e., RP is polynomially
reducible to cOD) for the corresponding class of PNs (safe/k-bounded/general).

2.2 The upper bound

OD can be checked by considering each output o in isolation, converting the other
output labels to inputs: Indeed, OD holds iff each of these single-output LPNs
is OD. Furthermore, multiple o-labelled transitions can be replaced by a single
one using the transformation shown in Fig. 3. This transformation preserves the
enabledness of o and thus the OD property. Hence, below we assume that the
LPN has a single output o, and a single o-labelled transition to.

We follow the approach of [2] and compute the synchronous product of the
LPN with itself (we thus get two copies of the net that evolve independently,
except that any visible action in one copy can be only performed synchronously
with the same action in the other copy). Then any violation of the OD is wit-
nessed by the following trace of the product net: (MN ,MN )[ν〉〉(M1,M2), with
M1[to〉 (i.e. to is immediately enabled by M1) and ¬M2[o〉〉 in the original LPN.
Unfortunately, this property is difficult to decide for general PNs, since we must
verify that M2 does not enable o even via a very long sequence of silent tran-
sitions (on which we cannot bound the intermediate markings a priori). This is
not a problem for safe and k-bounded Petri nets, as their markings are bounded
and can be represented in polynomial space, but the decidability and complexity
in case of general PNs was left open in [2].
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We observe that the set Eno of markings of the LPN that enable o (perhaps,
via a sequence of silent transitions), i.e.

Eno
df
= {M ∈ NP |M [o〉〉 in the original LPN},

is upward closed, and so can be represented by the finite set of its minimal
elements E1, E2, . . . , Ek ∈ NP :

Eno =
k⋃

i=1

{M ∈ NP |M ≥ Ei}.

Furthermore, the natural numbers constituting vectors Ei are at most double-ex-
ponential in the size of the LPN. Indeed, consider the PN obtained from the LPN
by removing all the non-silent transitions. Then these vectors are the minimal
initial markings of this PN from which it is possible to cover the preset of to.
Due to Rackoff’s famous result [6], it is sufficient to consider firing sequences
of double-exponential length, and they can consume only double-exponential
number of tokens.

Here we need to consider the markings not enabling o (via silent transitions);
hence we are interested in the complement of Eno, i.e. in the set

Diso
df
= Eno = {M ∈ NP | ¬M [o〉〉 in the original LPN}.

Hence Diso is a downward closed set, and it can be represented by the finite set
of its maximal elements D1, D2, . . . , Dk′ in the standard extension of NP to the
set (N ∪ {ω})P of generalised markings; i.e.

Diso =
k′⋃

i=1

{M ∈ NP |M ≤ Di}.

One can observe that the finite (i.e. non-ω) numbers in vectors Di are smaller
than the largest number occurring in vectors Ej . (Suppose some Di contains
x ∈ N that is greater than or equal to the largest number in vectors Ej . For
every Ej we have Di 6≥ Ej , i.e. some component of Di is smaller than the
corresponding component of Ej , which cannot be the component with x. But
then D′

i arising from Di by incrementing x also satisfies D′
i 6≥ Ej for all Ej ,

which contradicts the maximality of Di.)

Hence the non-ω elements of Di are at most double-exponential in the size
of the LPN, and so any Di can be represented in exponential space using (e.g.)
binary encoding of natural numbers, with a special code for ω.

We now define a non-deterministic algorithm that uses Reachability as an
oracle and solves cOD. All operations except Reachability can be performed in
exponential space; since Reachability is EXPSPACE-hard, its complexity will
dominate the overall complexity of the algorithm. The algorithm takes an LPN
with single output o and a single o-labelled transition to and proceeds as follows.
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Fig. 4. Reduction from OD to RP.

– Non-deterministically generate a generalised marking M with either ω or at
most double-exponential number of tokens per place (thus M can be stored
in exponential space).

– Build a PN by removing all the non-silent transitions from the LPN, and
set M as its initial marking while also removing the places corresponding to
the ω-components of M . If the set of places corresponding to the preset of
to (without the removed ones) is coverable in this PN then reject. (If the
algorithm gets past this reject statement, then any finite marking M ′ ≤ M
is in Diso. Moreover, in any finite M ′ ∈ Diso we can possibly turn some com-
ponents to ω and get a generalised M that satisfies the double-exponential
restriction and is not rejected; this follows due to the bound on the size of
maximal elements in D1, . . . , Dk′ derived above.)

– Build the instance of Reachability as follows (see Fig. 4):
• Construct the product of the LPN with itself.
• For each place in the first sub-net of the product, create a ‘drain’ tran-

sition consuming tokens from this place.
• For each place in the second sub-net of the product that corresponds to

an ω component of M , create a ‘drain’ transition consuming tokens from
this place.

• The marking to be reached puts a single token on each place correspond-
ing to the preset of to in the first subnet, no tokens on the other places
of the first subnet, and marking M on the places of the second subnet,
with no tokens on the places corresponding to the ω components of M .

– If the constructed instance of Reachability is positive (as told by the oracle)
then accept else reject.

Lemma 2. The original LPN violates OD iff the above algorithm can accept the
LPN.
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Proof. (1) Suppose the above algorithm has an accepting run; we fix one. Let M
be the respective generalised marking that passed the test (of non-coverability
of the preset of o). We consider an execution in the constructed PN that demon-
strates the positive answer of Reachability; it yields the marking with tokens on
the preset of to and no tokens elsewhere in the first subnet, and some tokens in
the second subnet forming a finite marking M ′ ≤ M . Removing all the ‘drain’
transitions from this execution still yields a valid execution of the PN, as these
transitions can only remove tokens. This modified execution is an execution of
the product net, still marks all the places in the preset of to in the first sub-
net, and in the second subnet yields some finite marking M ′′ that may have
some extra tokens on places corresponding to the ω components of M ; hence
M ′ ≤ M ′′ ≤ M . The execution can thus be projected to two executions of the
original LPN with the same visible trace, where one execution directly enables
to and the other ends in a marking M ′′ ∈ Diso (thus not enabling o even via a
sequence of silent transitions); this constitutes a violation of OD.

(2) Suppose the LPN violates OD. Hence there are two executions with the
same trace, one of them directly enabling to and the other ending in a finite
marking M ′ not enabling o even via a sequence of silent transitions, i.e. M ′ ∈
Diso; thus M ′ ≤ Di for some maximal element Di of the extension of Diso.
Let M be the marking that puts no tokens on places corresponding to the ω-
entries of Di, and coinciding with M ′ on other places. These two executions
yield an execution of the product net leading to a marking enabling to in the
first subnet and coinciding with M ′ in the second subnet of the product. By
executing the ‘drain’ transitions as necessary, one can ensure that the marking
of the first subnet has a single token on each of the places in the preset of to
and no tokens elsewhere and the marking of the second subnet coincides with
M — this marking corresponds to the one whose reachability is checked by
the algorithm. Hence the algorithm can accept by first guessing M (that fits
in exponential space due to the bound on the maximal non-ω elements of the
extension of Diso) and then solving Reachability for the constructed reachable
marking. ut

A problem with the above construction is that the input to the Reachability
sub-routine is large, asM might need exponential space (in the size of the original
LPN) to be represented.

However, this problem can be solved by shifting the computation performed
by the above algorithm into the constructed PN, thus polynomially reducing a
cOD instance to a small instance of Reachability (in fact, to an instance of ZRP).
A crucial ingredient is handled by Lipton’s construction [4] (strengthened in [5])
enabling to simulate an exp-space-bounded automaton by a net of polynomial
size. One can thus construct a polynomial-size PN (w.r.t. the size of the original
LPN) which has the following behaviour (see Fig. 5):

– By a (polynomial-size) “Lipton module” it first non-deterministically gener-
ates a marking M where, moreover, each place p also gets its complementary

place p′ marked so that the sum of tokens in p and p′ is 22
pol(n)

for a suitable
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Fig. 5. Reduction from OD to ZRP.

polynomial pol (where n is the size of the original LPN). The polynomial
pol is chosen so that the finite components in the maximal elements Di of

the extension of Diso are smaller than 22
pol(n)

; such polynomial pol follows

from Rackoff’s results [6]. We can view the value 22
pol(n)

as ω. In fact, the
module creates two copies of M , one copy (with complementary places) for
the following test that M ∈ Diso, and the other copy for later comparing
with the marking reached in the second part of the product net.

– Now another “Lipton module” checks that M ∈ Diso, i.e., the module has
a possibility to get a token on a designated ACCEPT place precisely when
M ∈ Diso. This module is again of polynomial size (it simulates checking if

M can cover the preset of to within 22
pol(n)

moves).

– (If there is a token on ACCEPT, then) an execution of the product net
follows, reaching some marking (M1,M2).

– We want M1 to enable o while M2 to belong to Diso. The former condition
can be handled by the drain transitions and asking that only one token is
left in each place in the preset of to (in the final marking of the constructed
Reachability instance). The other condition is established by comparing M2

with (the stored copy of) M . This is achieved by special transitions consum-
ing tokens from places of M2 and corresponding places of M synchronously,
asking that zero is reached for all of them. The only issue are “ω-places” in

M , i.e. those having 22
pol(n)

tokens. We first let such places (checked by a
“Lipton module”) to be adjusted anyhow by special transitions.
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By adding several transitions and places and providing the possibility to
drain any left over tokens from the “Lipton modules” we construct an instance
of ZRP where the reachability of 0 marking guarantees that:

– the generation of M was successful, i.e. ACCEPT is marked;
– the marking reached in the second subnet equals to M (or to adjusted M

which also belongs to Diso)
– the preset of to is marked.

Furthermore, guessing the output o for which OD is violated can also be
implemented in the constructed PN in a straightforward way. Hence, we have a
polynomial reduction from cOD to ZRP.

3 Conclusion

We have affirmatively answered the question of the decidability of Output-De-
terminacy in general Petri nets, and sketched the proof to determine its com-
plexity: the complement of Output-Determinacy is polynomially interreducible
with Reachability (or ZRP).
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1 Beginnings

I have met Maciej somehow around 1979/80, when he took my undergraduate course
‘Introduction to Switching and Automata Theory’. The course was based on then pop-
ular textbook by M. A. Harrison, with the same title, which was also known for having
plenty of very difficult problems as exercises. In the middle of term, I gave one of these
problems to the students as optional homework. The next class was almost a week later
and only Maciej said that he had a solution. His solution was very clever, much more
elegant and shorter than the one I had, and he presented it in such nonchalant way, as
he did in less that twenty minutes just before the class. I was very impressed as it took
me some substantial time to produce my inferior and longer solution. Only about fifteen
years later, when we were friends and research collaborators, he admitted that during
this almost a week between classes, practically the only thing he thought of, was to try
to solve this problem. But his presentation suggested otherwise.

Both him and, then his girlfriend, Marta Pietkiewicz, become interested in my re-
search, Marta did Master Thesis under my supervision, Maciej did his Master Thesis
under supervision of Antoni Mazurkiewicz and later PhD under my supervision.

Nevertheless I do not have any common paper with Maciej related to his PhD thesis.
In fact I have no common paper related to their theses with any of my former Polish
PhD and Masters students. I also have no common paper related to my PhD thesis with
Antoni Mazurkiewicz, my PhD supervisor. In seventies and at least first half of eighties
last century having papers with students, for most mathematicians and theoretical com-
puter scientists, were considered a breaking of some well established code of honour.
The code of honour of Polish School of Mathematics was still very observed, and most
of people from theoretical computer science graduated mathematics. According to this
code of honour, having papers with students (with rare well justified exceptions) was
considered dishonourable. Sounds weird today but this was true then.

It was only in Canada, where to my great surprise, I have learned that having com-
mon papers with students is not only a virtue but almost a necessity for a successful
grant application or promotion process. Since swimming against the current is seldom
successful in long term, right now I have plenty papers with my graduate students, but
our first common paper with Maciej was written few years after his PhD, and it dealt
with the problem of maximal concurrency [13].



2 Maximal Concurrency and Optimal Simulations/Executions

Since 1986 I have published with Maciej a few dozens of papers on different subjects,
the most known are our results on relational structure semantics of concurrent systems,
which started with [7] and the most representative papers on this subject are still prob-
ably [11] and [12]. Nevertheless our first period of collaboration, roughly from 1985
to 1991 was devoted to maximally concurrent and optimal executions (simulations) of
concurrent systems under step sequence observational semantics paradigm [4–6, 8, 9,
13], and additional assumption that concurrent behaviours are entirely specified by par-
tial orders.

Among various semantics of executions in non-sequential systems, we can distin-
guish three widely accepted approaches. The first one, standard in Petri net based mod-
els [17], COSY paths expressions [10, 14], Asynchronous Automata [21] and many
others [11], may intuitively be expressed as: ‘execute as possible’. This encompasses
the whole range of possibly concurrent evolutions; from the sequential ones to the max-
imally concurrent ones through all the intermediate case, any possible execution is al-
lowed. For example, assuming that observational semantics is defined in terms of step
sequences, if the events a,b,c are independent, the following step sequences are con-
sidered as equivalent: {a,b,c}, {a,b}{c}, {a,c}{b}, {b,c}{a}, {a}{b,c}, {b}{a,c},
{c}{a,b}, {a}{b}{c}, {b}{a}{c}, {a}{c}{b}, {c}{a}{b}, {b}{c}{a} and {c}{b}{a}.

The second one can be called ‘execute as possible, but in sequence’, is called inter-
leaving semantics and is widely used in all kinds of Process Algebras [1]. In this case
for three independent events a,b,c, we have sequences: abc, bac, acb, cab, bca, cba.

The third one is usually expressed as ‘execute as much as possible in parallel’ or
‘execute as quick as possible’. In this case we require that processes should not be
lazy, and at each step of computation, the set of events executed must be a maximal
non-conflict set. This greedy semantics is often used for some kind of Timed Petri
Nets [20], some temporal logic applications [3], it is often easier to implement and has
many nice algorithmic properties [18]. For our three independent events a,b,c, it will
be represented by just one step {a,b,c}.

Our first common paper [13] (with Peter Lauer and Raymond Devillers as the re-
maining co-authors) was a successful attempt to answer the question: “When is the
semantics ‘execute as much as possible in parallel’ equivalent to the semantics ‘exe-
cute as possible’?”. Various necessary and sufficient conditions for this property were
provided and proved. We used COSY Path Expressions (first proposed by Peter Lauer
and R. H. Campbell in [14], fully presented in [10]) to represent concurrent systems,
and Vector Firing Sequences (proposed by Mike Shields in [19]) to represent concur-
rent behaviours, however the results can easily be translated into Elementary Petri Nets
[16] and Mazurkiewicz Traces [15] extended to step sequences (cf. [4, 8]).

Employing maximal concurrency is an attractive idea, both conceptually and from
the point of view of implementation. Unfortunately, as pointed out in [13], there are
cases in which the greedy maximally concurrent execution is not sufficiently expres-
sive. To show this case we take the net from Figure 1. The maximally concurrent exe-
cution can find only one deadlocked marking of the net, by following the step sequence
{a,b}{d}. The other deadlocked marking, which might be reached by following the
step sequence {b}{c}, is left undetected.

2
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The process of verification of dynamic properties of non-sequential systems often
involves some kind of reasoning about the complete state-space of the system, e.g. prov-
ing deadlock-freeness requires showing that it is not possible to reach a state in which no
transition is enabled. Reasoning about the complete state-space of non-sequential sys-
tems has one very serious drawback, which is a combinatorial explosion of state-space.
Even a simple concurrent system can generate many hundreds or thousands of states.
To cope with this problem a number of sophisticated techniques have been developed,
for example induction, reduced stat-space analysis, etc.

In [4] and [5] a possibility of defining a fully expressive reachability relation on
the system’s executions which would be a ‘small’ subset of the complete reachability
relation. Such reduced reachability relation was called the optimal simulation (it was
later renamed to optimal execution in [10]). Conceptually, the optimal simulation can
be considered as a generalized version of maximal concurrency and, in some, but not
so infrequent, cases it is just the maximal concurrency [4, 5]. The concept of canonical
step sequence, a simple extension of canonical sequence for Mazurkiewicz traces [2, 13]
plays crucial role. Figure 1 shows both the full reachability graph of a simple elementary
net [16] and the reachability graph of the optimal simulation. The latter is smaller, but
because in this case only two transitions a and b can be fired concurrently, the difference
in size is not significant. However, in the case of net in Figure 2, the reachability graph
of the optimal simulation is isomorphic to that in Figure 1, while (as one may easily
check) the full reachability graph would hardly fit on a single page.

Fig. 1: Full reachability graph versus reachability graph of optimal simulation. Incom-
pleteness of maximally concurrent semantics - the right deadlocked marking, after the
step sequence {b}{c} is not detected.

Optimal simulation enables reasoning about a number of dynamic properties of
concurrent systems, and at the same time requires some minimal computational effort.
In [4, 5], the optimal simulation had been defined in a very general step sequence setting
which made it applicable to different models of concurrency, such as Petri nets, various
process algebras or automata-based models.

3
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Fig. 2: A net with small reachability graph of optimal simulation and huge (not shown)
full reachability graph.

The reachability graphs of finite state systema ca be regarded as finite representa-
tions of reachability relations. Since the optimal simulation provides the same informa-
tion about relevant dynamic properties of the system as the full reachability relation [4,
5], the reachability graph of optimal simulation (i.e. it finite representation) and the full
reachability graph may be considered equivalent. The optimal simulation is always a
subset of full reachability, but of course it does not mean that the reachability graph of
optimal simulation is always much smaller than the full reachability graph. However,
in the case of concurrent systems exhibiting high degree of concurrency (i.e. those with
many sequential components), the reachability graph of optimal simulation is much
smaller that the full reachability graph. Thus it is advantageous to use optimal simula-
tion as a tool to reduce the size of reachability graphs of concurrent systems.

Unfortunately, as opposed to the full reachability graph, in the general case it is not
clear how to generate the reachability graph for optimal simulation. In some sense this
is a negative side-effect of the generality of optimal simulation.

In [6] and [8], we have shown how the reachability graph for optimal simulation
can be constructed for Elementary Petri Nets that can be decomposed onto finite state
machines, and in [9] for concurrent systems that can be represented by asynchronous
automata of [21].

The approach presented in [4–6, 8, 9, 13] was based on the assumption that concur-
rent behaviours (histories) are modeled by casual partial orders. We represented those
partial orders by certain equivalence classes of step sequences, just generalizing the
notion of Mazurkiewicz traces [15]. The relational structures and ‘not later than’ phe-
nomenon, introduced in [7] and first time discussed in detail in [11, 12] are not consid-
ered in these papers.

The major methodological difference between our approach based on optimal sim-
ulation to minimize reachability graphs and virtually almost all others is that we do not
try to minimize (or even deal with) the full reachability graph. All what we were trying
to do was to buld a reachability graph which represents optimal simulation relation (a
subset of full reachability). We then made a claim, based on the general properties of

4
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optimal simulation, that in majority of cases, such a graph is much smaller than the
original full reachability graph.

I believe the concept of optimal simulation (or execution) and its usefulness was
and still is a little bit unappreciated. The main reason could be that we never built
any software that supported optimal simulation and never applied the ideas of optimal
simulation to real concurrent systems as for example security protocols. We were than
both relatively young recherches and neither of us had sufficient knowledge, experience
and connections for successful huge grant application, that was needed for producing
good experimental software.

I also believe that the problem of using optimal simulation/execution is still not
closed and still has many potential applications. It may be worth to go back to it in
some future time.
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A Tribute to Maciej Koutny’s  

Exceptional Scientific Leadership 

Kurt Jensen 

1 University of Aarhus, Denmark 

kjensen@cs.au.dk 

Maciej Koutny has been – and still is – a very active and very 

influential member of the International Petri Net Society. He has 

participated in most of the nearly forty annual Petri Net Confer-

ences. Nine times, from 1996 to 2010, he was member of the 

programme committees – one as Chair and two as Workshop & 

Tutorial Chair. Furthermore, Maciej also organized the confer-

ence on three or four occasions. 

Maciej served as a member of the International Petri net Steer-

ing Committee in nearly twenty years until he became the Chair 

in 2013 – at which time he also became the Editor-in-Chief of 

the LNCS Transactions on Petri Nets and Other Models of Con-

currency. In 2010 Maciej was also one of the scientific directors 

of the Advanced Course on Petri Nets and for many years, he has been a regular lecturer at 

the Petri Advanced Courses and the Petri Net Tutorials. 

In addition to this, Maciej has been active in several related scientific communities – in 

particular the one around the Application of Concurrency to System Design conferences. 

Hence, Maciej is without any doubt one of the handful of persons who have been most 

influential with respect to securing the success of the Petri Net community. We should all be 

extremely grateful to Maciej for the enormous work he has carried out for the International 

Petri Net community. 

Maciej is known and highly respected as a very knowledgeable and solid scientist. Over a 

span of thirty years, he has published numerous papers of which nearly one hundred have ten 

or more citations. This is a quite impressive number for a person working in his research area. 

Maciej is always easy to communicate with and he is friendly towards everyone – old 

friends as well as newcomers in the research society. Moreover, he is one of the most reliable 

persons I have worked with – always on time and with excellent quality. 

I have had the privilege to work with Maciej over a period of more than twenty years – 

during which we became close friends. This has always been a pleasure, and I sincerely hope 

that Maciej will continue his successful leadership of the International Petri Net community 

for many years to come. 

Dear Maciej. Thank you very much for the time we have known each other and worked 

together. 



A tale of high-level features in the
Petri Box Calculus

Hanna Klaudel1, Franck Pommereau1, and Elisabeth Pelz2

1 University of Paris-Saclay, University of Évry
2 University of Paris-East-Créteil

Abstract. Once upon a time the Petri Box Calculus was invented. Let
us tell you our tale of the introduction of high-level features in this
remarkable formalism that gave us a research topic for our whole research
career.

The Petri Box Calculus [1] is a formalism that combines Petri nets and
process algebras, which have been an idea that can be traced back to the early
70’s. A team started to build on this topic with two eu-funded research projects
demon and caliban. It resulted in a formal framework (see also [2]) in which
Petri nets can be composed like terms in a process algebras. This approach yields
standard Petri nets that can be analysed automatically through the numerous
methods and tools.

Our tale begins with the publication of the Petri Box Calculus (PBC) in 1992,
it tells our story of introducing high-level features in the PBC and the steps it
took to progressively improve these features until we were fully pleased with
them. This is a personal story, and we apology for the many works we have left
apart. Consequently, this tale has no end yet and much remains to be written. . .

The whole story takes place on this timeline:

SNAKES toolkit [13]2015

high-level

low-level

[7]
1992

[3]
1995

PBC
1992

[9]
1999

PNA
2001

[10]2000

[4]2002

[5]2004

[12]2007

[11]2009

+data

+hl buffers

+priorities

-data in the

control flow

-priorities

+pids



The first step was a giant’s step, it was made by somebody that’s about 5ft
tall, and it reached probably too far away as we will see in the sequel. In 1992,
closely after the publication of PBC, A-nets [7] were introduced and defined a
variant of PBC in which places could contain arbitrary values from arbitrary
algebraic data types. This was later ported to the more practical domain of
coloured Petri nets by introducing M-nets in 1995 [3]. M-nets were further ex-
tended in 2000 by introducing preemption, allowing to suspend/resume/abort
arbitrary sub-nets [10]. This was obtained through the introduction of priorities
between transitions, which was conceptually nice but led very far away from any
hope of a reasonable or efficient implementation of the framework. . .

In the mean time, asynchronous communication through buffer places were
added, first to PBC in 1999 [9], then to M-nets in 2002[4]. While this is not a
feature that is directly related to high or low-level aspects, it paved the way to
a compromise between the hairy generality of M-nets and the data-bareness of
PBC. Indeed, it draws a clear distinction between buffer places that are resources
and control-flow places that can remain low-level. This idea led in 2004 [5] to a
formalism that can be seen as PBC extended with high-level buffer places, and
preserving all the original PBC operations.

At this point, we had a practical formalism that was at the same time ex-
pressive enough to model complex systems, and disciplined enough to allow
its implementation. This coincides with the starting of the development of the
snakes toolkit [13]. Still, the preemption features were missing. They could be
introduced again, without transitions priorities, in 2007 [12] by forbidding nested
parallelism and by considering two-colours control-flow where black tokens • im-
plemented the standard PBC control-flow and white tokens ◦ implemented the
preemption control-flow.

The idea of pushing parallelism to the top-level exists in CSP [6] and is
similar to the multi-threaded programming paradigm. But, we still lacked the
ability to create new processes dynamically, which threads have and CSP does
not. This feature was introduced in 2009 [11] by porting into the PBC family
the ideas from [8]. Each data or control-flow token is now tagged with a process
identifier. This allows the concurrent execution of many instances of a single
Petri net with no undesired interference (communication between processes is
possible). This solution is remarkably versatile as it proposes unique features:
i) process identifiers are rich data structures that allow to trace every process’
history; ii) state-space is reduced against process identifiers (more accurate that
just a symmetry reduction); and iii) usual notions of threads and processes are
unified. For the last feature, that allows the abortion of a working thread, there
is no programming language able to implement it at the level of threads.

Research is still active in the domain, for instance, we are presently working
on a new PBC variant with operations that are very different from the original
control-flow ones, with the aim of developing directly with Petri nets the acting
system of autonomous robots.

Looking forward, we feel very lucky to have chosen to embark the PBC ship
and get inspiration and research topics for the rest of our life.
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Partially Ordering Koutny’s Traces

Jetty Kleijn and Paul Smit

Leiden, The Netherlands

Abstract. Motivated by the remarkable event of the 60th birthday of
Maciej Koutny, this illustrated paper considers various traces of syn-
chronising events involving Maciej. It does not claim to be complete, but
provides a partially ordered survey of important features of a longtime
collaboration between Newcastle and Leiden.
Keywords Research, Collaboration, Friendship, Travel, Synthesis

1 Introduction

In this survey paper, we describe synchronisations between specific processes
executed by local agents in Newcastle and Leiden. The underlying mechanism is
based on voluntary and eager cooperation. In almost three decades, this has led
to an intricate combination of theory and applications based on the sharing of
events and interests of all sorts.

Now is a good time to trace and order what has been achieved and what
can still be done. In the past 30 years, founding father Maciej Koutny managed
to double his age. Indeed, as Victor Khomenko put it in his invitation mail, a
remarkable event. Apparently also a festive event in which many agents take
part. Here we will identify various types of events in which Maciej (often with
his spouse Marta) interacted with the authors (also a couple). Depending on the
type and the relations between these types, some would be ordered, while others
took place in parallel.

The paper is organised as follows. After explaining how it all began, we
first focus in Section 3 on main events involving both Newcastle and Leiden.
We identify different types of events, including ‘work’, ‘friends’, and ‘travel’. In
Section 4, focus is on their enabling conditions. In the concluding section, we
summarise and briefly consider how to proceed from here.

It must be noted here that we do not give explicit references, but rather
provide photos to support the claims made. More information can be obtained
by approaching Maciej directly and verifying with him what is written below.

2 Basics or How It All Began

As already mentioned in the Introduction, the cooperation between Newcastle
and Leiden has existed for almost 30 years. It was initiated in 1989 at the
first meeting of DEMON (DEsign Methods based On Nets) an ESPRIT Basic
Research Action, a European project coordinated by Eike Best. This meeting



took place in Bonn as a satellite event of the 10th Petri Net Conference. It was an
excellent setting to get acquainted with and connect to many people of different
places with various interests in a common field of research: concurrent systems
and in particular those based on the principles of Petri Net theory.

Hildesheim 1993

There were several people from Lei-
den, among whom Grzegorz Rozen-
berg and Jetty; and also a team from
Newcastle with Maciej. DEMON had
different working groups and Newcas-
tle and Leiden collaborated among
others in one concerned with Ab-
stract Models. One year later, in 1990,
the Petri Net Conference was held in
Paris, again with a meeting of DE-
MON. Here Maciej and Paul met for
the first time. Still, the oldest picture
of our collaboration we could find, is
only from 1993. It was taken at CON-
CUR in Hildesheim.

By 1997, Maciej, together with Eike and Raymond Devillers, was about to finish
their book Petri Net Algebra, one of the outcomes of DEMON and its successor
CALIBAN, CAusal calcuLI BAsed On Nets. At the meeting of the Program
Committee of that year’s Petri Net Conference in Toulouse, we compared our
notes on local traces and comtraces and got intrigued by the question how to
relate the features of multiple tokens and inhibitor arcs in a causality semantics.
(A feature from the past: real-life PC meetings with real-time discussions, and
opportunities for interaction.) This led to the submission of a proposal later that
year for a project on Local Comtraces. The application was successful, we got
the grant and the first synchronisation across the Channel was a fact.

Maciej could not attend the Petri Net Conference in Toulouse, because his
daughter had to study for her GCSE exams while Marta had a paper to present
at the conference. Thus Jetty and Marta met for the first time in Toulouse.

Early 1998, Jetty went to England as the start of our first Newcastle-Leiden
project. She lived close to the university, but there was ample opportunity to
visit the Koutnys at their home just out of Newcastle and to go together on
weekend excursions in the countryside. This stay of several weeks laid the basis
for numerous research papers, quite a few also with Marta, and many excursions
and travels with the four of us.

3 Main Events

We are now ready to identify the main events underlying the cooperation between
Newcastle and Leiden. In the context of this section, an event is an occurrence of
an action. Each action may be executed a number of times, but its occurrences
are always linearly ordered. Two events representing different actions (e.g., when
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they are labeled as ‘work’ and ‘travel’, respectively) are not necessarily ordered
and may even take place simultaneously.

Work
The events here categorised as ‘work’ are occurrences of the action ‘research’ (an
abbreviation of ‘doing research together’). Obviously, we could refine this action
and consider processes consisting of ‘thinking’, ‘meeting’, ‘discussing’, ‘writing’
etc, but that is not necessary for the purpose of this paper. Note that instead
of ‘work’, also the word ‘fun’ would have been appropriate to capture doing
research together. As will become clear further on, this would however have led
to an overloading of ‘fun’.

Over the years Maciej and Jetty have co-authored approximately 50 papers
and the count is still on. The first journal paper took a lot of effort. Before we
could start on the local comtraces, we first had to investigate and systematise
what it actually was that we were after and what needed to be defined and
proven. Using the general framework then established, it was possible to investi-
gate many different classes of nets and semantical models. After some time, our
research area widened and we found additional co-authors, like Marta, Grzegorz,
 Lukasz Mikulski, and Ryszard Janicki. So, it happened that Jetty was recognised
as an honorary Pole; and it took not long before also Paul was affected, even to
the extent that he has started to appreciate beetroot.

Signing of the contract for The Book

In addition to ‘research’,
there is also a distinguished
action that belongs to ‘work’
and is referred to as ‘The
Book’. This is a collabora-
tive effort between Newcas-
tle (Maciej), Leiden (Jetty),
Toruń ( Lukasz), and Hamil-
ton (Ryszard). It grew out of
our semantics/trace research
and it is still growing ... So,
obviously, a lot of research
went into the book which also
led to new papers, but an
important difference between
‘research’ and ‘The Book’ is that the latter is a one-time-only event.

Moving
A perhaps surprising action that took place on both sides of the Channel was
‘moving’. There was no perfect synchronisation here, but almost. In 2003 Maciej
and Marta moved to a house in Newcastle proper, perhaps inspired by our set-
tling in the city centre of Leiden the year before. Moreover, both houses were old
and dilapidated (making ‘moving’ quite different from ‘fun’) and for something
like a year we mostly discussed house renovation. In 2003, when we took our
children for an English holiday we also visited Maciej and Marta in the remains
of their house. It then seemed that ‘moving’ was an action that should not be
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repeated, but times change and it may become enabled again for both couples
when the preconditions are favourable.

Friends
‘Friends’ stands for actions that amount to sharing the important resources
of family, friends, and colleagues (note that, also here, ‘fun’ would have been
applicable). Sharing of such resources does not lead to conflicts, but rather to a
perfect tuning of a common context.

Maciej at 50

As may be concluded already from the above,
over time we have been introduced to many
members of each other’s families and friends
(some of whom were also colleagues, like Alex
Yakovlev and his wife Masha). Family (chil-
dren, parents, siblings) and friends from all
backgrounds could be encountered on differ-
ent occasions, at their homes, for dinners, dur-
ing holidays, and festivities (like for our Silver
Wedding). A very special occasion was the cel-
ebration of Maciej’s 50th birthday in Poland1

for which he invited old and new friends. We
were delighted to be able to attend and meet
so many people important to Maciej. Also
present were Hanna and Witek Klaudel whom
we did not really know personally at the time.

Travel
Working intensively together from different countries implies that one has to
travel every now and then. And indeed there have been many working visits
from Maciej and Jetty to Leiden and Newcastle. Moreover, Jetty is a fellow in
Newcastle and Maciej has been a Pascal professor in Leiden. In addition there
are the frequent conference visits (and trips to Bilthoven).

Maciej in Leiden with Grzegorz

If that were all, we could have in-
cluded this kind of events under
‘work’. What makes ‘travel’ so spe-
cial however (and even more ‘fun’),
are the additional journeys of an ex-
ploratory character, often to far away
places. We have been traveling like
this with Maciej and Marta almost ev-
ery year since 2008. In that year the
Petri Net Conference was in Xi’an. We
had never been to China, but Maciej
and Marta had. They were so enthusi-
astic that we decided to stay a bit and
try to get an impression. We formed a

1 How come he now suddenly turns 60? It seems like yesterday ..
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group with them and Elisabeth Pelz, who also had some China experience. We
decided on an itinerary and means of transportation and had a wonderful time
altogether. The next year, there was an opportunity to visit Iran and with the
four of us, we travelled from place to place and saw amazing things. In 2011,
we had a round trip through the West of Turkey, where we also visited the
well-known mathematical village of Sirince.

Near Sirince, the mathematical village In Khiva with Al-Khwarizmi

Traveling to exotic places became a tradition. In 2010 Hanna and Witek joined
the club and we travelled from Shanghai to explore yet another part of China.
Going home became a bit problematic due to the eruption of the Icelandic vul-
cano, but in the end we had quite a jolly flight to Europe. With this group we
have been again to China, to Japan and to Uzbekistan where we visited Khiva,
the birthplace of Al-Khwarizmi. In addition we made smaller trips in the neigh-
bourhood (France, UK, Italy, the Netherlands). So, ‘travel’ has become a crucial
ingredient of the ongoing interactions between Newcastle and Leiden. It operates
like a clockwork, we each have our role with Maciej being the moneyman aka
the tax collector.
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4 Enabling Conditions

As the reader is probably aware, actions — in order to occur — have to be
triggered or at least become enabled (meaning that their preconditions have to
be fulfilled). This principle is the basis for every causality semantics and we will
apply it also here. In this section we describe some necessary preconditions for
the actions categorised above. This should contribute to our understanding of
the causalities in the complicated interactions between the different agents.

Triggering events
For the occurrence of the actions studied here, it is of paramount importance
that someone takes the initiative. Often it is Maciej who initiates shared actions
like ‘research’ and ‘The Book’. He is generous with his ideas and works hard,
often with many different people at the same time. He seems to have an infinite
amount of energy and to never sleep. His mails can come in any day of the week,
at any time, and from any place.

Mailing from Yazd Chair in Hamburg

Maciej gets things done, fast and in an efficient way. He is the chairman of the
steering committee for the Petri Net Conferences and the director of research of
the School of Computing at Newcastle University. Nevertheless, he always tries to
avoid bureaucracy as much as possible and to focus on what is really important.
Anybody who has ever seen his office, remembers jealously the emptiness of his
desk.

To further perfect his style, Maciej tries to learn the trade from great leaders.
He studies their histories looking for crumbles of wisdom. Maciej is however
NOT the initiator of the ‘travel’ events that really matter. He is the moneyman,
capable of keeping track of even the most complicated transactions (between
euros, pounds, and yuans, yens, rials, or sums), but it is Marta who is the
driving force together with Paul. They are the true leaders (with some good,
relaxing influence exercised by Hanna).
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Mao Tammerlane Paul and Marta

Food
Another important aspect of events are the resources they need to consume to
be able to occur. This literally holds for all actions in which Maciej is involved.
A stomach filled with good food is an absolute prerequisite for him to get any-
thing done. Maciej has a love-hate relationship with food. As Marta pointed out:
Maciej smiles at his food. Every now and then however, there has been a bit
too much of the good life and Maciej being Maciej has a drastic solution: the
cabbage diet. For about a week he lives on cabbage, smiles less, but paves the
way for more pleasant encounters.

Maciej and Friend A dining Philosopher

Maciej is a good cook, a wonderful host and knows how to get splendid food
in the most remote places. All this greatly contributes to the synchronisation
required for ‘work’, ‘travel’, and ‘friends’. In general, Maciej loves the good things
of life and likes to share them sometimes while singing great Polish songs.
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5 Conclusion

In this paper we have followed some of the traces of our longtime professional
and personal friendship with Maciej Koutny. It is impossible to be complete and
to capture every aspect and describe every relevant event in this relatively short
survey. Therefore we could present no more than a partial order of important
features to fulfil our aim of giving the reader at least an impression of this
striking synthesis of work, friendship and travel. Hopefully, it has become clear
how Maciej with Marta on his side, has made great contributions to the quality
of our lives, that we cherish the memories and that we hope to create many more
in the years to come.

Gratulacje, Drogi Przyjacielu, i Sto Lat!

An important question now is ‘what can be done still once the milestone of
60 years has been passed?’ From our own experience, we can tell that being < 60
or ≥ 60 really does not make all that much difference. We strongly advise to go
on with all fun-raising activities like research, travel, friends, and family, with
having grandchildren as a great new highlight.
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A Brief Story of The Partnership

�ukasz Mikulski
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Toru«, Chopina 12/18, Poland
lukasz.mikulski@mat.umk.pl

�Remember, remember the �fth of November�. It was November 5th, when I
have exchanged with Maciej last mails before my �rst research visit to New-
castle University (several months earlier I was attending Petri Nets conference
in Newcastle). Two days later I was already in Northumbria and met Maciej in
Claremont Tower. After only a few meetings we establish the common language
and get to know each other's interests. The outcome was almost immediate and
during three weeks of my �rst visit in Newcastle we obtained advanced draft of
our �rst common paper � �Hasse diagrams of combined traces� � together with
several ideas and plans for future. The paper was ready in January, submitted
and accepted for ACSD'12.

The submission process overlapped with our second research meeting, when
Maciej came to Toru« as Visiting Professor. We had a lot of inspiring conver-
sations, very intensive weeks of seminars when Maciej and whole FoLCo group
(including Kamila Barylska, Marcin Pi¡tkowski, Edward Ochma«ski† and me)
presented their recent results. In the meantime, I was working on my second
paper related to combined traces. Thanks to priceless comments done by Ma-
ciej, the paper �Algebraic Structure of Combined Traces� was good enough to be
accepted for CONCUR'12. For me this was something incredible � new research
topic, new friend, and two papers accepted for quite recognizable conferences in
less than four months. But the magic only begins...

After the conference period (namely summer) I got back to Newcastle. This
time for much longer, as I obtained a half-year postdoc scholarship and I became
o�cially a visiting researcher in Newcastle University. The winter was fantastic.
I started with the review of very early draft of the book (also known as THE
BOOK) that Maciej has been writing with Jetty Kleijn and Ryszard Janicki. It
turned out that my doubts related to the generalisation of combined traces were
reasonable. The rede�nition of this model became one of the main challenges
for the postdoc. And we succeeded! The de�nition of generalized traces was
simpli�ed by introducing �sequentialization� relation and founding on their base
traces equivalence. The equations present in the de�nition became simple and
elegant. Everything indicated that we got it!

Moreover, in order to obtain a generalization, the set of axioms su�cient for
structures underlying combined traces was �rstly extended by �indivisible steps
synchronization�. That directly solved the counterexamples related to my ear-
lier doubts. It remained to check whether the obtained model is indeed sound.



The attempt to prove the suitable version of Szpilrajn theorem (which narrowly
bonds sets of equivalent observations and the structure of their invariants) re-
vealed one more missing axiom � due to cross structure of the property and our
roots related to Toru« called by us �teutonic axiom�. And we hit the spot once
more! When everything is de�ned properly, all the elegant properties and their
proofs are only the matter of time. As a result, we solved the problem that was
remained open in an old paper written by Maciej and Ryszard � �Structure of
concurrency�. Moreover, I have joined the editorial board of THE BOOK and
wrote with Maciej, Jetty i Ryszard several papers discussing various issues re-
lated to the newly de�ned objects. We have related inhibitor bounded Petri nets
with mutexes to step traces and their invariant structures, provided many useful
analysis techniques and tools or classify step alphabets with some applications
for their synthesis, to give examples not exhausting the topic.

The long and fruitful period of my collaboration with Maciej during this time
was not limited to the trace theory. It turned out that together with his wife
Marta Pietkiewicz-Koutny, he was involved in a project that aim to propose a
useful mathematical framework for globally asynchronous, locally synchronous
systems. Taking the opportunity, I jumped into this project on the stage when
the �rst algorithm was already written. Together with Maciej and Marta, we
re�ned the mathematical part of the algorithm and extend underlying concur-
rency taxonomy. This line of research systematized local view to persistence and
formally introduced its second facet � called nonviolence. After some incremental
corrections and extensions made during our meetings in Newcastle and Toru«,
the �nal taxonomy was presented in 2017 in the form of paper �An extension
of the taxonomy of persistent and nonviolent steps� published in Information
Sciences with �Gold Open Access�.

In 2016, together with New Year's greetings, Maciej surprised me asking,
whether I am interested in reversible computations. The reason was his oppor-
tunity to visit Toru« and discuss with me their paradigms in the view of Petri
nets. He correctly predicted that there is no need to repeat such propositions
twice to me. And in February we met for a two-week Short-Term Scienti�c Mis-
sion in Toru«. Like usually in the collaboration with Maciej, the results came
out of the blue. We proposed the framework and together with the rest of FoLCo
team prepared a paper for RC'16. This way we also have some material to present
in the meeting of COST Action that funded Maciej's scienti�c mission already
in March 2016. We managed to prove that even the question whether adding a
strict reverse to a single transition in Petri net changes its behaviour (enlarges
the set of reachable markings) is undecidable. After some time (and supported
later by Evgeny Erofeev) we conducted some tests getting opposite result in the
case of bounded nets. The decidability of considered question was not surprising,
but it appears that after delicate relaxing of the aim (namely by allowing to split
reverses) we are always able to revert whole system.

The topic of reversible computations in view of Petri nets became our main
common research direction for the following two years. Together with David de
Frutos Escrig we focused on possibility of reversing bounded systems without

A Brief Story of The Partnership 103



splitting (with the paper �An e�cient characterization of Petri net solvable bi-
nary words� presented in ATPN'18) as well as reversing steps and multisteps,
and we had three common Short Term Scienti�c Missions (two in Newcastle and
one in Madrid), the fourth STSM is planned in Toru«. This research direction
proposed by Maciej opened up a possibility to met and cooperate with Ivan
Lanese (Bolonia) and Anna Philippou (Nicosia).

Finally, we reached another topic of our common interests � Reaction Sys-
tems. During the STSM in Madrid in 2017 we had an opportunity to utilize
shared evenings and conduct discussions in casual atmosphere. We made some
informal proofs related to previous common research (like minimality of our
axiom system for invariant order structures) and started the discussion on Reac-
tion Systems. It materialized as a common paper (written together with Grze-
gorz Rozenberg and Jetty Kleijn) � �Reaction Systems, Transition Systems, and
Equivalences�. Maciej presented its insights during the First International Work-
shop on Reaction Systems and we plan to lift our collaboration in this �eld to
more formalized level.

The invitation to write such informal paper to celebrate Maciej's 60th birth-
day is for me the priceless opportunity to summarise and appreciate all the
income that I got from our collaboration. How his patience and incredible abil-
ity to match right people with right challenges allowed me to develop and became
an independent researcher in the �eld of Concurrency Theory. I am extremely
thankful for all the time that he devoted to our conversations. I am �nding our
meetings similar to fairy tales � there is a story, some adversities and di�culties
(which only underlines that the obtained results are far from trivial), but �-
nally, sometimes with a little help from newly met friends, there is always happy
ending! During the past seven years of collaboration we have written a lot of
common papers (seventeen of them are indexed by DBLP). I am really glad that
the November 2011 took place and I am looking for more such �Novembers� in
the future!
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Abstract. This paper makes two observations. The first one may be
surprising but is probably useless. The second one may someday help
solve a real problem but is somewhat tedious. The reader is encouraged
to take note of the former and make use of the latter.
The first observation is that concurrency is wrongly blamed for the
dreadful state explosion problem. In fact, choice is a more explosive sub-
stance that should be handled with great care. Avoid mixing concurrency
and choice; but if you must, read on.
The second observation is that the old Divide and Conquer strategy can
be used to effectively deal with the mix of concurrency and choice. To
conquer concurrency, slash it into fine diamonds. To conquer choice, wield
the laws of thought. As a concrete demonstration, this paper presents a
compact encoding of the Concurrent Kleene Algebra using Conditional
Partial Order Graphs, where the explosion is avoided by dividing con-
currency from choice and using partial orders and Boolean algebra, re-
spectively, for their compact representation.

1 Introduction: Concurrency and Choice

Concurrent systems, which comprise multiple components that can operate and
interact simultaneously, are notoriously difficult to design, control and reason
about. The complexity of concurrent systems grows exponentially with the num-
ber of constituent components, and one way of coping with the complexity is to
employ formal models for describing the behaviour of concurrent systems.

State graphs have been used for formal description of behaviour for many
decades. However, state graphs of concurrent systems are not compact enough
due to the state space explosion problem [1], which is illustrated in Fig. 1: as
the number of concurrent events in a system increases by one, the state graph
describing possible orders of their occurrence doubles in size: the state graph of
a system with n concurrent events will therefore have 2n states.

More surprisingly, state space explosion may also occur in fully sequential
systems if they contain a lot of choices. In fact, as illustrated by Fig. 2, the
explosion due to choice is not bounded by O(2n), but can reach Θ(n2n) in some
cases. The state graphs in Fig. 2 model systems that, given an input choice of
one of 2n−1 possible behaviours, generate the corresponding birmutations on a
set of n events S = {e1, e2, · · · , en}, as defined below.

? This paper is dedicated to Prof Maciej Koutny on the occasion of his 60th birthday.
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Fig. 1. State space explosion due to concurrency: 2n states for n events.
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Fig. 2. State space explosion due to choice: (n+ 3)2n−2 + 1 states for n events.

Definition 1 (Birmutations). The set of birmutations Bn comprises 2n−1

event sequences that are chosen out of n! permutations on n events. The chosen
subset is recursively defined as follows:

– There is one birmutation on the singleton set S = {e1}: the sequence e1.
That is, B1 = {e1}.

– When n > 1, Bn is obtained by inserting en either at the beginning or at
the end of all birmutations Bn−1. That is, Bn = (en ◦Bn−1) ∪ (Bn−1 ◦ en),
where ◦ denotes concatenation of an event to all sequences in a given set.

Birmutations B1···4 are given below in the lexicographic order. We use {a, b, c, d}
to denote events instead of ei for clarity.

– B1 = {a}.
– B2 = {ab, ba}.
– B3 = {abc, bac, cab, cba}.
– B4 = {abcd, bacd, cabd, cbad, dabc, dbac, dcab, dcba}.

A simple state graph representation of a system generating birmutations Bn
would explicitly enumerate all 2n−1 sequences, resulting in a state graph of size
1 + (n + 1)2n−1, where the leading 1 corresponds to the initial choice state,
and n + 1 states are used to model the generation of a sequence of n events.
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This representation is clearly not the most compact one, because many of the
2n−1 sequences have common suffices which can be merged, thereby reducing
the size of the state graph. For example, sequences abcd and bacd have the same
suffix cd and can therefore be merged after the prefixes ab and ba. However, it
turns out that by merging common suffices one cannot achieve any asymptotic
improvement: the resulting state graph will still contain Θ(n2n) states.

More precisely, let Tn denote the smallest size of the state graph describing
birmutations Bn. Then Tn satisfies the following recurrence:

Tn = 2Tn−1 + 2n−2 − 1.

Note that sequences from the set L = Bn−1 ◦ en have no common suffices with
those from the set R = en ◦Bn−1, and their state graphs are therefore disjoint,
apart from the initial state – hence the term 2Tn−1 − 1. All sequences from the
set L have the common suffix en, which is merged; all sequences from the set
R have common prefix en, which cannot be merged, resulting in the term 2n−2.
The base case T1 = 3, as well as the cases T2 = 6 and T3 = 13 are illustrated in
Fig. 2. By solving the recurrence we obtain Tn = (n+ 3)2n−2 + 1 = Θ(n2n).

As state graphs grow, humans (and at some point machines too) lose the abil-
ity to comprehend them, which motivates computer scientists to search for more
compact models, such as partial orders [2], event structures [3], Petri nets [4],
structured occurrence nets [5], numerous process algebras [6], conditional partial
order graphs [7][8] and many others.

To deal with concurrency, a common approach is to dissect state graphs
into diamonds, i.e. sets of independent events, and represent these diamonds
compactly using partial orders. To deal with choices, one can employ Boolean
algebra [9] to compactly describe the conditions for generating particular events.
In this paper we demonstrate how these two approaches can be combined to
compactly describe systems with a mix of concurrency and choice.

2 Concurrent Kleene Algebra

Concurrent Kleene Algebra (CKA) was introduced by Hoare et al. [10] as a
unifying theory axiomatising the fundamental concepts of choice, sequential and
concurrent composition, and iteration. Many models of CKA have been studied
to date, e.g., see [11]. In this paper we show that the Conditional Partial Order
Graph (CPOG) formalism [7][8] is a compact model of CKA.

In this section we briefly recap basic CKA definitions [10]. We start by in-
troducing three common constants:

– Bottom ⊥ is a contradictory specification, which permits no behaviour and
can be equated to the predicate false.

– Skip 1 describes doing nothing. Note, that this is different from ⊥; indeed,
specification 1 is implementable (by doing nothing), while ⊥ is impossible to
implement (by its definition).
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– Top > is the opposite of bottom in the sense that it permits any behaviour;
it can be equated to the predicate true. Any behaviour, including doing
nothing, is an admittable implementation of >.

The algebra provides a rich collection of composition operators, the most impor-
tant of which are listed below.

– Sequential composition (p; q) describes the execution of both p and q, where p
finishes before q starts. Sequential composition is associative, has 1 as unit
and ⊥ as zero.

– Concurrent composition (p|q) describes the execution of both p and q, where p
and q can start and finish together (but not required to do so). During the
execution p and q are allowed to communicate with each other and with the
environment. This operator is both associative and commutative, has 1 as
unit and ⊥ as zero.

– Choice (p∪ q) describes the execution of either p or q. Choice is associative,
commutative and idempotent, has ⊥ as unit and > as zero. The operator is
also distributive by both sequential and concurrent composition:

p; (q ∪ r) = (p; q) ∪ (p; r) p|(q ∪ r) = (p|q) ∪ (p|r).
The notion of refinement, which is central for formal design and verification
methods, is defined as a reflexive and transitive relation p ⇒ q, which holds
iff p’s behaviour is included in that of q. This can be equivalently expressed
using the choice operator:

p⇒ q iff p ∪ q = q.

The refinement ordering has ⊥ as the minimum (empty) behaviour and > is
the maximum (any) behaviour and ⊥ ⇒ > (compare this to logical implication,
where false⇒ true).

An important law combining the above concepts is the exchange law, which
is the most general form of so-called concurrency reduction that is often used
when implementing a concurrent system using interleaving:

(p|q); (p′|q′) ⇒ (p; p′)|(q; q′).
An interesting consequence of the exchange law is

p; q ∪ q; p ⇒ p|q,
that is, one possible way to implement a concurrent composition is by combining
choice with sequential composition.

In this work we focus on the set of operations and laws defined above. We
refer the reader to [10][11], where a much broader exposition can be found.

3 Sets of Maximal Partial Orders

In this section we demonstrate that a set of maximal partial orders is a model
of CKA, which is our first step towards compact models introduced in §4.
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3.1 CKA without choice

Consider a partial order P = (E,≺), where E ⊆ E , ≺ ⊆ E × E, and E is a
universe of events that can occur in all possible behaviours. We can define some
elements of CKA as follows:

– Skip 1 is the empty partial order:

1
df
= (∅, ∅).

– Sequential composition of P1 = (E1,≺1) and P2 = (E2,≺2) is

P1;P2
df
= (E1 ∪ E2,≺1 ∪ ≺2 ∪ E1 × E2).

In words, assuming E1 ∩E2 = ∅ we schedule all events of P1 to occur before
all events of P2.

– Concurrent composition of P1 = (E1,≺1) and P2 = (E2,≺2) is

P1|P2
df
= (E1 ∪ E2,≺1 ∪ ≺2).

In words, assuming E1 ∩ E2 = ∅ events of P1 occur concurrently to events
of P2. (It is sometimes useful to consider the case when E1∩E2 6= ∅, where the
above formulation synchronises common events, thus making communication
between P1 and P2 possible.)

– Refinement P1 ⇒ P2 of P1 = (E1,≺1) and P2 = (E2,≺2) is

P1 ⇒ P2
df
= E1 = E2 ∧ ≺2 ⊆≺1,

which means that P1 permits less concurrency than P2.

Theorem 1. Both ; and | as defined above are associative and have 1 as unit;
furthermore, | is commutative, and the exchange law holds.

Proof. Follows from Theorem 3.5 of [11]: (p,s,c) is replaced by (E,≺,(E×E)\≺).

Similarly to the trace model [11], the partial order model of CKA is not powerful
enough for handling the choice operator. The next subsection shows that sets of
partial orders are sufficiently powerful.

3.2 Modelling choice

Consider a set of partial orders S = {P1, P2, ...}, where all constituent partial
orders Pk = (Ek,≺k) are defined on the universe of events E , that is Ek ⊆ E ,
and the set S is downward closed, i.e., if P ∈ S and P ′ ⇒ P then P ′ ∈ S. This
construction is inspired by [11]. The downward closure operation will henceforth
be denoted as dc.

We can now lift previously defined operations on partial orders to sets of
partial orders, as well as introduce the missing elements of CKA, namely ⊥, >
and the choice operator:
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– Bottom ⊥ is the empty set of partial orders:

⊥ df
= ∅.

– Skip 1 is the singleton set containing the empty partial order:

1
df
= {(∅, ∅)}.

– Top > is the set containing all possible partial orders that can be defined in
universe E .

– Sequential composition of S1 and S2 is

S1;S2
df
= dc ({ P1;P2 | P1 ∈ S1, P2 ∈ S2}) ,

where P1;P2 is sequential composition of partial orders defined previously.
– Concurrent composition of S1 and S2 is

S1|S2
df
= dc ({ P1|P2 | P1 ∈ S1, P2 ∈ S2}) ,

where P1|P2 is concurrent composition of partial orders defined previously.
– Choice between S1 and S2 is simply S1 ∪S2, where ∪ is the usual set union.
– Refinement can now be defined via choice as in Section 2:

S1 ⇒ S2
df
= S1 ∪ S2 = S2,

which can be further simplified to the set inclusion relation:

S1 ⇒ S2
df
= S1 ⊆ S2.

Theorem 2. Sets of downward closed partial orders is a model for CKA.

Proof. (Sketch.) Here we only prove the distributivity properties of ∪ and the
exchange law.

(1) We prove that choice ∪ is distributive by ; by using the definition of ;
splitting set q∪r into sets q and r, and using the properties of downward closure,
as shown in Fig. 3. The proof of choice distributivity by | is analogous.

(2) The exchange law is proved thanks to its linearity, which allows lifting the
law from partial orders to downward closed sets of partial orders as explained
in §3.2 and Appendix B of [11]. The rest of the laws can be verified analogously.

3.3 Reduction to maximal partial orders

As explained in the previous subsection, sets of downward closed partial orders is
a model of CKA. An explicit representation of such sets, however, is very ineffi-
cient and cannot be directly used for verification or synthesis; indeed, 6.6 trillion
different partial orders can be defined on just 10 events!
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p; (q ∪ r) = (by definition of ;)
dc ({ a; b | a ∈ p, b ∈ q ∪ r }) = (splitting set q ∪ r into q and r)

dc ({ a; b | a ∈ p, b ∈ q } ∪ { a; b | a ∈ p, b ∈ r }) = (downward closure)
dc ({ a; b | a ∈ p, b ∈ q }) ∪ dc ({ a; b | a ∈ p, b ∈ r }) (by definition of ;)

(p; q) ∪ (p; r).

Fig. 3. Proof sketch for Theorem 2.

The first step towards compact CKA models is to notice that it is sufficient to
keep only maximal partial orders and drop the requirement of downward closure.
A partial order P is maximal with respect to set S, if there is no partial order
P ′ ∈ S such that P 6= P ′ and P ⇒ P ′. Indeed, keeping only maximal partial
orders does not lead to any loss of information, because all omitted partial orders
can be restored by downward closure of the remaining maximal ones.

The above is a significant improvement; however, the number of maximal
partial orders is still exponential. The next section discusses two approaches
that can be used for compact representation of sets of partial orders.

4 Conditional Partial Order Graphs

A CPOG is a directed graph (V,E), whose vertices V and arcs E ⊆ V × V are
labelled with Boolean functions, or conditions, φ : V ∪ E → ({0, 1}X → {0, 1}),
where {0, 1}X → {0, 1} is a Boolean function on a set of Boolean variables X.

Fig. 4 (the top left box) shows an example of a CPOG H containing 4 vertices
V = {a, b, c, d}, 6 arcs and 2 variables X = {x, y}. Vertex d is labelled with
condition x+ y (i.e. ‘x OR y’), arcs (b, c) and (c, b) are labelled with conditions
x and y, respectively. All other vertices and arcs have trivial conditions 1 (trivial
conditions are not shown for clarity); we call such vertices and arcs unconditional.

There are 2|X| possible assignments of variables X, called codes. Each code
induces a subgraph of the CPOG, whereby all the vertices and arcs, whose
conditions evaluate to 0 are removed. For example, by assigning x = y = 0
one obtains graph H00 shown in the bottom right box in Fig. 4; vertex d and
arcs (b, c) and (c, b) have been removed from the graph, because their conditions
are equal to 0 when x = y = 0. Different codes can produce different graphs,
therefore a CPOG with |X| variables can potentially specify a family of 2|X|

graphs. Fig. 4 shows two other members of the family specified by CPOG H:
H01 and H10, corresponding to codes 01 and 10, respectively, which differ only
in the direction of the arc between vertices b and c. Codes will be denoted in a
bold font, e.g. x = 01, to distinguish them from vertices and variables.

It is often useful to focus only on a subset C ⊆ {0, 1}X of codes, which are
meaningful in some sense. For example, code 11 applied to CPOG H in Fig. 4
produces a graph with a loop between vertices b and c, which is undesirable if arcs
are interpreted as causality. A Boolean restriction function ρ : {0, 1}X → {0, 1}
can be used to compactly specify the set C = {x | ρ(x) = 1} and its complement
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Fig. 4. A CPOG and the associated family of graphs

DC = {x | ρ(x) = 0}, which are often referred to as the care and don’t care
sets [12]. By setting ρ = xy one can disallow the code x = 11 as ρ(11) = 0,
thereby restricting the family of graphs specified by CPOG H to three members
only, which are all shown in Fig. 4.

The size |H| of a CPOG H = (V,E,X, φ, ρ) is defined as:

|H| = |V |+ |E|+ |X|+
∣∣∣∣∣
⋃

z∈V ∪E
φ(z) ∪ ρ

∣∣∣∣∣ ,

where |{f1, f2, . . . , fn}| stands for the size of the smallest circuit [13] that com-
putes all Boolean functions in the set {f1, f2, . . . , fn}.

A CPOG H = (V,E,X, φ, ρ) is well-formed if every allowed code x produces
an acyclic graph Hx. By computing the transitive closure H∗x one can obtain
a strict partial order, an irreflexive and transitive relation on the set of events
corresponding to vertices of Hx.

We can therefore interpret a well-formed CPOG as a specification of a family
of partial orders. We use the term family instead of the more general term set to
emphasise the fact that partial orders are encoded, that is each partial order H∗x is
paired with the corresponding code x. For example, the CPOG shown in Fig. 4
specifies the family comprising the partial order H∗00, where event a precedes
concurrent events b and c, and two total orders H∗01 and H∗10 corresponding to
sequences acbd and abcd, respectively.
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It has been demonstrated in [14][15] that CPOGs are a compact model for
representing families of partial orders. In particular, they can be exponentially
more compact than labelled event structures [3] and Petri net unfoldings [16].
Furthermore, for some applications CPOGs provide more comprehensible models
than other widely used formalisms, such as finite state machines and Petri nets,
as has been shown in [7] and [17].

4.1 CPOGs as a compact model for CKA

CPOGs are capable of representing arbitrary sets of partial orders compactly
and can therefore be considered a compact CKA model. Below we establish a
correspondence between CPOG and CKA constructs. Bear in mind that a CPOG
is a quintuple H = (V,E,X, ρ, φ).

– Bottom ⊥ is the empty set of partial orders, which can be obtained by setting
the restriction function ρ to false:

⊥ df
= (∅, ∅, ∅, 0, ∅).

– Skip 1 is the singleton set containing the empty partial order, which should
be permitted by setting ρ = true:

1
df
= (∅, ∅, ∅, 1, ∅).

– Top> is the set containing all partial orders that can be defined in universe E :

> df
= (E , E × E , X, 1, φ),

where X contains a variable vz for each vertex and arc z in the graph, and
φ(z) = vz. In words, top > is described by a most general CPOG that
has different single-literal conditions on every graph element, which allows
to obtain any possible subgraph from it by setting variables vz accordingly.
This definition demonstrate compactness of CPOGs: the size of the definition
is quadratic in E , yet it describes an exponential number of different partial
orders that can be defined on the events in E .

– Sequential composition of CPOGs Hk = (Vk, Ek, Xk, ρk, φk) for k ∈ {1, 2} is

H1;H2
df
= (V1 ∪ V2, E1 ∪ E2 ∪ E1 × E2, X1 ∪X2, ρ1 ∧ ρ2, φseq),

where φseq can be defined as follows:

φseq(v) =

{
φ1(v) if v ∈ V1,
φ2(v) if v ∈ V2.

φseq(u→ v) =





φ1(u→ v) if u→ v ∈ E1,

φ2(u→ v) if u→ v ∈ E2,

1 if u ∈ V1, v ∈ V2,
0 otherwise.

We assume that V1 ∩ V2 = ∅ as before, and X1 ∩X2 = ∅ (the latter may be
relaxed in case we want to allow H1 and H2 to synchronise on their choices).
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Fig. 5. CPOG models for birmutations B1, B2 and B3.

– Concurrent composition of CPOGs is

H1|H2
df
= (V1 ∪ V2, E1 ∪ E2, X1 ∪X2, ρ1 ∧ ρ2, φpar),

where φpar can be defined as follows:

φpar(v) =

{
φ1(v) if v ∈ V1,
φ2(v) if v ∈ V2.

φpar(u→ v) =





φ1(u→ v) if u→ v ∈ E1,

φ2(u→ v) if u→ v ∈ E2,

0 otherwise.

We assume that V1 ∩ V2 = ∅ as before (unless we want to allow H1 and H2

to synchronise on their events), and X1 ∩X2 = ∅ (unless we want to allow
H1 and H2 to synchronise on their choices).

– Choice between H1 = (V1, E1, X1, ρ1, φ1) and H2 = (V2, E2, X2, ρ2, φ2) is

H1 ∪H2
df
= (V1 ∪ V2, E1 ∪ E2, X1 ∪X2, ρ1 ⊕ ρ2, φpar),

where X1 ∩X2 = ∅ (this requirement can be relaxed if ρ1 ∧ ρ2 = 0, that is
H1 and H2 do not share any codes).

– RefinementH1 ⇒ H2 forH1 = (V1, E1, X1, ρ1, φ1) andH2 = (V2, E2, X2, ρ2, φ2)
can be defined as

H1 ⇒ H2
df
=

∧
v∈V1

ρ1φ1(v)⇒ ρ2φ2(v)
∧∧

u→v∈E2
ρ2φ2(u→ v)⇒ ρ1φ1(u→ v).

In words, if an event v appears in H1 it must also appear in H2, and if there
is a dependency constraint u→ v in H2 then it must also exist in H1.

The above completes the correspondence between CPOGs and CKA. Impor-
tantly, the defined constructs are very compact: they are either linear (parallel
composition, choice, refinement) or quadratic (sequential composition, due to
quadratic explosion of newly added arcs E1×E2; see [17], where this issue is re-
solved by using dummy vertices), despite potentially operating on exponentially
large families of partial orders.

Fig. 5 shows compact CPOG models for birmutations: Bn is described by a
CPOG with n vertices, n2−n arcs, and n− 1 variables X = {x1, x2, · · · , xn−1},
such that each birmutation corresponds to one possible code. For example, the
code of the birmutation cab ∈ B3 is (x1, x2) = 01. The construction is a direct
translation of the recursive case Bn = (en◦Bn−1)∪(Bn−1◦en) from Definition 1.
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5 Final Remarks

The paper has demonstrated that choice can lead to larger state space explosion
compared to concurrency, and showed how to avoid the state explosion by com-
bining partial orders with Boolean algebra. As a concrete example, the paper
described how CPOGs can be used as compact CKA models with potential ap-
plications in verification and synthesis of CKA specifications. Partial automation
has already been implemented and reported in [14][17]. The future work includes
validation of the approach on real-life case studies.

Algebra of Parameterised Graphs [17] provided an algebraic characterisation
for CPOGs; the algebra satisfies the CKA laws defined in Section 2, thereby
providing an alternative demonstration that CPOGs are a model for CKA.

CPOGs have been used in a number of applications, in particular for compact
representation of processor instruction sets [7], synthesis of on-chip communica-
tion controllers [18], and in process mining [19], where they have shown superior
performance compared to conventional approaches due to their compactness. We
conjecture that CPOGs may be a generally useful CKA model that can lead to
efficient verification and synthesis algorithms.
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Memorable Occurrences 

Brian Randell 

School of Computing, Newcastle University, Newcastle upon Tyne, UK 

Brian.Randell@ncl.ac.uk 

My first interaction with Maciej Koutny was rather one-sided, and indeed unknown to me at 

the time! This occurrence arose from a project that I initiated at Newcastle University in 

1977, on the construction and exploitation of an experimental highly parallel real time control 

system. The project involved a recently-purchased large collection of hardware that incorpo-

rated a half-a-dozen mobile actuators which were to be controlled by a minicomputer and 

several microcomputers. The movements of the actuators were strictly constrained, and the 

whereabouts of the actuators relative to their constraints could be monitored with the aid of 

fifty or so fixed sensors. I should mention that uninformed spectators tended to view, and 

refer to, this experimental highly parallel real time digital control system as a model railway 

or train set, in which the movement constraints (which they termed “track sections”, which 

were thirty-two in number) were also the means of delivering power to, and hence causing 

movement of, selected actuators (or “trains”), between sensors (“stations”). It was as far as I 

know the first such computer-controlled model railway, at least in any computer science de-

partment, anywhere. (The idea for it came from a computer-controlled model railway I’d 

seen at Toronto University while on sabbatical there – but this was a much simpler system, 

that merely demonstrated the speed control of just a single engine.) 

This was long before the availability of model railways embodying a microprocessor in 

each engine that could be controlled by signals sent along the rails. But we realised that just 

a single computer selectively controlling the power supply to each of the set of electrically-

isolated track sections, so that a number of “dumb” trains (we acquired six) could be directed 

to travel independently, would provide a challenging concurrent real time programming en-

vironment. In this environment each train (actually just an engine – we didn’t bother with 

passenger carriages or goods wagons) was in effect an independent process, and one of the 

most obvious interesting problems was how to control these “processes” so as to prevent 

them from crashing into each other! In fact, potential collisions between the trains were fairly 

easily prevented, at the cost of occasional partial or complete system deadlocks.  

The problem of how to avoid such deadlocks, while facilitating multiple concurrent train 

movements along pre-defined journeys, was one that Phil Merlin, a visiting colleague, and I 

investigated and solved, fully and fairly quickly (albeit somewhat informally), using the con-

cepts of occurrence nets, the acyclic directed graph formalism, allied to Petri Nets, with 

which he was already familiar [HOLT1968]. (Phil was a brilliant young researcher from IBM 

Research and the Technion, Haifa, who was to die tragically young, just two years later. His 

memory is honoured to this day at the Technion by the Annual Dr. Philip M. Merlin Memo-

rial Lecture and Prize Award.) We documented our solution in a brief technical note, and left 

it at that. 

A number of other people elsewhere took up the study of what came to be called “The 

Merlin-Randell train control problem”. It was only years later that I learnt that Maciej Koutny 

had taken this problem as the subject of his PhD research, and that I saw – I’m afraid I cannot 

say I read – his impressively lengthy thesis O Problemie Pociago ́w Merlina-Randella 

[KOUT1984A]. 



A year later, Maciej became a Research Associate at Newcastle, where his research career 

– subsequently first as a Lecturer, then Reader, and since 2000 as a Professor of Computing 

Science and head of Newcastle’s theoretical computing group – has flourished ever since.  

For a while he continued his study of the Merlin-Randell problem — in [KOUT1985] he 

provided perhaps the best informal statement of the problem in the following terms:  

“There is a finite set of trains and a layout. The layout is represented by an 

undirected graph, the nodes of which represent places where trains can re-

side (stations), the arcs of which represent possible moves. Each station can 

hold only one train. Each train has a program to follow consisting of a di-

rected path through the graph. The train can leave a station when the station 

it is immediately to travel to is empty. The problem is to find a synchronisation 

among train movements which allows parallel movements where possible and 

enables each journey to be completed.”  

This problem of finding such sets of synchronised train movements, which was in essence 

that of calculating a suitable occurrence net, remained in vogue for quite a while, much like 

the “Dining Philosophers Problem” before it; I took no part in this research, but I did spend 

quite a bit of time on various issues to do with controlling the train set, though my main 

concern remained that of system dependability.  

 

Newcastle’s First Train Set 

Newcastle’s research on dependability started in 1970, and initially concerned the problem 

of tolerating residual accidental design faults in simple sequential programs. (I had formed 

the then unfashionable view that current work on proving programs correct would not suffice 

for large complex programs, and could perhaps be usefully complemented by work on soft-

ware fault tolerance.) From this, we had soon moved on to considering the problems of hard-

ware and malicious faults, not just software faults, in concurrent programs, and then in dis-

tributed computing systems.  

Phil Merlin enthusiastically joined in on this research while he was with us, and worked 

with me on a particular (backward) error recovery problem, i.e. the task of restoring a dis-

tributed system to a previous state which it is believed or hoped preceded the occurrence of 

any existing errors. Our work was based on the use of what we called “Occurrence Graphs”, 
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which we described as similar to occurrence nets, differing mainly in that we viewed an oc-

currence graph as a dynamic structure that was “generated” as the system that it was model-

ling was executed, and which contained certain additional information indicating which prior 

states have been archived and so were restorable.  

We tackled the problems arising from concurrency in their full generality, so as to deal 

with the possibility of there being multiple concurrent faults, some even occurring during 

error recovery. The solution we produced was a decentralized recovery mechanism that we 

entitled the “chase protocol”. We assumed that each node of a distributed system would hold 

a record of the part of the occurrence graph that related to its contribution to the overall 

system behaviour. Then each node would execute a protocol that had the effect of causing 

error recovery commands to “chase” through the dynamically-growing occurrence graph so 

as to overtake ongoing error propagations, and the nodes to co-operate in identifying a con-

sistent set of restorable states [MERL1978]. 

My third involvement with occurrence nets was in collaboration with Eike Best, whilst he 

was one of Peter Lauer’s PhD students, in Maciej’s research group at Newcastle. This re-

sulted in the development of a formal model of atomicity [BEST1981]. One of our starting 

points was David Lomet’s work on “Atomic Actions” [LOME1977]. This work was under-

taken during David’s sabbatical at Newcastle from the IBM Research Center at Yorktown 

Heights, and involved extending the recovery block concept [HORN1974]. (This involved 

the use of a “recovery cache” to provide programs with a means of undoing all of the effects 

of a recovery block after an error had been detected, in order that an alternative program 

strategy could be attempted.)  

“Atomic actions are similar to procedures . . . And in an isolated setting, they behave just 

like procedures. When concurrent activity is present, the body of an atomic action continues 

to behave as it did in isolation, while an ordinary procedure, if it accesses shared state, may 

behave very differently” [LOME1977].  

Thus atomic actions allowed the recovery block concept to work in the presence of con-

currently executing activities. (They can be viewed as the programming language equivalent 

to the transaction concept, an idea that the database community was also developing at this 

time [LOME2011].) 

Eike Best and I pursued this idea of an atomic action as a programming concept, rather 

than a “hardware feature” or a “synchronisation method”, and inspired by [MERL1978] were 

led to propose a formal model for atomic actions based on what we termed structured occur-

rence graphs. Using an occurrence net to represent a program’s activities, the dynamic struc-

ture arising from any single programmer-defined atomic action can be collapsed to a single 

event. Multiple co-existing such collapsings can be performed, as long as the graph remains 

cycle-free. The concept of structured occurrence graphs involves the imposition of a nested 

structure of possible collapsings, i.e. of atomic actions, on a conventional occurrence graph. 

Being nested, one can be sure that multiple co-existing collapsings of any the so-identified 

sub-graphs would not introduce any cycles into the graph. 

My most recent interactions with Maciej again have centred on occurrence nets. A very 

fruitful, indeed memorable, collaboration ensued when Maciej saw how I was using little 

occurrence net diagrams to explore whether and how such nets could be used to model the 

activity of an evolving system. I was actually reconsidering, yet again, the fundamental de-

pendability concepts and definitions that I and colleagues have developed over many years, 

and whose most complete description is in [AVIZ2004].  

I had belatedly realised that our notions about ‘fault/error/failure chains’ did not cope well 

with situations in which the set of components (i.e. sub-systems) in a system of systems was 
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for whatever reason changing. Examples include a large hardware system which suffers com-

ponent break-downs, reconfigurations and replacements, a large distributed system whose 

software is continually updated (or patched), a multi-organisational computer system whose 

human operators undergo regular re-training, or a typical large bureaucracy. However, the 

little example I often used in my initial thought experiments was that of the confusion that 

could be caused to someone struggling to create a WORD document when unaware of the 

fact that the WORD system being used was itself suffering a succession of faults and up-

dates!)  

I was trying to use occurrence nets to represent both the activities of such a system, and 

of whatever was causing it to evolve. I was sketching diagrams that involved multiple inter-

related occurrence nets, the relationship I initially tried to formulate being that of “is a be-

haviour of”. The idea was that one occurrence net would portray the activity of the system 

that was in fact evolving, and another net would portray the activity of the entity (system) 

that was controlling this evolution. States portrayed in this second (in fact more abstract) net 

corresponded to the different versions of the evolving system, and were related to the relevant 

sections of the evolving system’s occurrence net. Maciej saw my diagrams, and said “That 

looks interesting – can I join in?” Needless to say, I warmly welcomed this suggestion! 

This led to a much-needed clarification, and a belated formalization, of the concept of 

behaviour relations, and to our defining a number of other relations between occurrence nets 

in order to produce what we called “Structured Occurrence Nets” (SONs), as a means of 

describing the activities of an evolving system and aiding the analysis of its failures. The 

other types of relations that we defined enabled the activities of separate sub-systems to be 

distinguished from each other, and provided various means of abstraction, both temporal and 

spatial, that aided the representation and analysis of complex systems. In total what we had 

developed was a very general formal notation for representing and investigating complex 

causalities, a notation that significantly extended the expressive power and practicality of 

occurrence nets. 

These ideas have been documented in a number of papers, e.g. [RAND2007], 

[KOUT2009], [RAND2011], and Maciej has led an EPSRC-sponsored research project with 

the rather contrived title and acronym “UNderstanding Complex eVolution through struc-

tured behaviours (UNCOVER)”. This project extended the initial definitions of SONs with 

new features related to alternate behaviours and timing information [BHAT2016], and im-

plemented all the basic functionalities in a protoype tool called SONCraft [LIRA2018]. This 

tool, which was designed and implemented by Bowen Li, provides a user-friendly graphical 

interface which facilitates model entry, supports interactive visual simulation, and enables 

the use of a set of analytical tools, e.g. for reachability analysis. (SONCraft is based on Work-

craft, a framework for interpreted graph models, a product of Newcastle’s joint EEE/CS 

Asynchronous Systems Laboratory – see http://workcraft.org/, which provides download 

links for SONCraft.)  

The original motivation for SONs and for building SONCraft was the problem of analyz-

ing the causes of failures in complex computer systems. But in fact the SON ideas, and the 

SONCraft tool are as indicated above very general in nature, and essentially just about the 

representation of causality. Indeed one of the application areas we found ourselves concen-

trating on was in fact criminal investigation. This involved our viewing criminals or criminal 

gangs as ‘systems’, and their crimes as ‘failures’! Our view is that portrayals of the criminal 

activities that result in crimes, i.e. of the observed or inferred causality links between crimi-

nals’ various actions, are potentially useful both for identifying the criminals, and for por-

traying and explaining the evidence-based reasoning that will later be needed to convict them.  
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The UNCOVER project has thus had numerous very useful interactions with a number of 

police and other investigative agencies, and tool suppliers to these agencies. As a result, ra-

ther pleasingly, support has recently been obtained from Innovate UK for a two-year 

“Knowledge Transfer Project” that will enable the collaborative incorporation by the Bristol-

based company Clue Computing Co. of SONcraft-like facilities into their CLUE investiga-

tion support system. 

In fact our work together on SONs has been the most memorable of the various occur-

rences I have described here of my very fruitful interactions with Maciej over the years. What 

is particularly pleasing is that it is still continuing, as we explore the possible ramifications 

of what we have come to call “structured causality”. 
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It is difficult for me to get used to the fact that Maciej turns 60 years old in September. He 

was always a young kid for me and then, all of a sudden, one of my favorite kids becomes 

60 years old! 

I do not remember exactly when I met Maciej for the first time, but this must have hap-

pened during one of the Petri Nets conferences in the 1980's. 

I like to think that I had some influence on his scientific development and academic career. 

His early research on Petri nets was perhaps influenced by my work on step semantics, ele-

mentary net systems, and theory of traces. Then, he and his wife Marta got very involved in 

research on the synthesis of concurrent systems based on the theory of regions developed by 

Andrzej Ehrenfeucht and myself. 

Gradually a cooperation developed between Maciej (and Marta) and my group in Leiden. 

In particular, Jetty Kleijn, my special daughter, developed a close scientific cooperation with 

Maciej and Marta, and in fact (to my delight) they became very close family friends. 

I have also succeeded in infecting Maciej with an enthusiasm for problems related to in-

formation processing in biology and consequently we (including Jetty) have collaborated 

quite intensely on reaction systems, a novel model of interactive computation inspired by the 

functioning of the living cell, developed by Andrzej Ehrenfeucht and myself about 10 years 

ago. As a result of many years of collaboration, we have developed a close relationship on 

both professional and personal levels. 

It is a pleasure to collaborate scientifically with Maciej. He is a very gifted researcher, 

really engaged in formulating and solving interesting problems. He is also very efficient and 

very reliable - these features are also very important in organizational tasks. It is no surprise 

that he is such an excellent Chair of the Steering Committee for the well established Interna-

tional Conference on Applications and Theory of Petri Nets and Concurrency. Having in-

vested so much energy and enthusiasm in building up this community, it is very nice and 

reassuring for me to know it is in very good hands. 

On a personal level, Maciej is a very nice friend to have. We have visited each other many 

times. He is always a very good host and I feel very comfortable (also from the health point 

of view) and very welcome whenever I visit him in Newcastle. He is a real food connoisseur 

and an excellent cook. I always enjoy the dinners he prepares as well as his guided culinary 

"escapades" in Newcastle to sample excellent foods of various origin (Chinese, Iranian, Brit-

ish, …), including the famous Newcastle fish and chips. My stays in Newcastle are always 

very pleasant and invigorating with the special benefit of being able to enjoy the company of 

Marta - Maciej is really lucky to get such a joyful and interesting life partner. 

The question arises whether meeting Maciej, and subsequently developing a special pro-

fessional and personal relationship, was accidental or was it predestined? This question is 

clearly important for the magician in me, but it seems to be difficult to answer. Here are some 

relevant facts.  

- We both come from Poland.  



- Even though I am from Warsaw, while Maciej spent his childhood in Torun, we share 

an Alma Matter, viz., Warsaw University of Technology. Maciej started his studies 

there long after I left Poland. 

- When Maciej moved from Torun to Warsaw, he got a room in a student house, which 

was located just about 200 meters from the house where I was living in Warsaw. 

 

As my famous son says "coincidences do not exist", and so I tend to believe that meeting 

Maciej was predestined, a very nice predestination indeed.  

 

 

Dear Maciej: 

 

Congratulations on your 60th birthday and best wishes for good health, productivity, sat-

isfaction, and joy (your grandchildren will take care of this) for many years to come. Thank 

you for your friendship. 

 

Big Birthday Hugs, also from Maja, 

Grzegorz Rozenberg 

Bilthoven, August 2018 

 

 

Acknowledgement: I am grateful to Paul Smit for giving me a permission to use the 

wonderful picture above, which was taken by him. 
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Reversibility, Event Structures and Petri Nets

Irek Ulidowski

Department of Informatics, University of Leicester, England

I came to know about Maciej in the nineties as a brilliant researcher from
the University of Newcastle upon Tyne, a co-author with Ryszard Janicki of
several seminal papers on non-interleaving models of concurrency [6, 5]. We met
I think in State College, Pennsylvania at the 11th International Conference on
Concurrency Theory CONCUR 2000. Maciej had a paper with Victor Khomenko
on LP deadlock checking using partial order dependencies [7], and I presented
a joint work with Shoji Yuen on process calculi for eager bisimulation in [15].
I thought Maciej was a very friendly and quite knowledgeable in all aspects
of computer science and life in general. What I also remember well is that we
enjoyed a local speciality of alligator meat at one of the evening meals.

Next time we attended CONCUR together was in 2011 in Aachen, Germany,
where our proposal to host the 23rd edition of CONCUR in Newcastle upon
Tyne in 2012 was approved. Naturally, we were delighted with the decision, and
it was clear to me that Maciej’s standing in the concurrency community and his
skills as well as the allure of Newcastle and Durham were the deciding factors
that persuaded the Steering Committee of CONCUR to bring the conference
to England (for only the second time ever). Apart from celebrating our good
fortune, we discussed among others my interest in the modelling of reversible
computation in process calculi, the topic that I started to work on in 2004.
Maciej told me about the rôle of reversibility in traditional Petri nets research
(during a coach trip to Maastricht for a social event dinner). It was a peripheral
topic in Petri nets research, and we thought that the same held about other
areas of research, like program inversion, debugging, circuit design, semantics of
concurrency. Wouldn’t it be interesting we thought to involve all those scientists
from different fields of computer science who are interested in reversibility into
an international network to discuss, research and apply reversibility?

A year later at CONCUR in Newcastle, I was working on extending event
structures with reversibility to model both the causal-consistent reversibility
[4, 10, 8] and the so-called out-of-causal order reversibility [13], which is present
in many bio-chemical reactions. There was not much opportunity for research in
Newcastle because Maciej and I were busy with running the conference. However
taxi rides from Spital Tongues to Newcastle Hilton, the venue of CONCUR 2012,
allowed ample time to think. What was started in Newcastle in 2012 resulted in
several papers. Iain Phillips and I showed how to reverse prime and asymmetric
event structures so that different forms of reversibility can be modelled [11, 12].
Jointly with Shoji, Iain and I proposed the enabling with prevention relation
that extends general event structures with reversibility [14].

I finally enticed Maciej to the topic of reversibility a few years after CON-
CUR 2012. I applied for a COST Action grant titled “Reversible Computation:



extending the horizons of computing” in 2014. COST Action grants aim to sup-
port networking, training, meetings and one to one research visits, and our idea
was to use COST Action funds to develop, promote and popularise reversible
computation research in Europe. When the grant was awarded and the COST
Action IC1405 was established in the spring of 2015, Maciej became one of the
members of the Management Committee of the Action. In collaboration with
 Lukasz Mikulski from Nicolas Copernicus University in Toruń (Poland) Maciej
started working on reversibility in Petri nets. Soon afterwords, Kamila Baryl-
ska and Marcin Pia̧tkowski from Toruń joined the research and they published a
number of papers including [2, 3], where they consider a number of ways that the
reverse versions of transitions can be added to Petri nets, and how adding such
reverse transitions impacts on their behaviour. This work within the framework
of the Action IC1405 led also to cooperation with Anna Philippou and Kyriaki
Psara from the University of Cyprus who also became interested in reversibility
in Petri nets [9]. They have recently carried out joint work with Anna Gogolińska
on the modelling of reversing computation in coloured Petri nets [1]. Thanks to
Maciej’s involvement and encouragement, and the support of IC1405, there is
now a group of young researchers who work on reversibility in Petri nets. As
for me, I am still aiming to join this research effort and transfer some of the
reversible event structures techniques to Petri nets.

I appreciate very much Maciej’s friendship, advice and generosity, and hope
that we continue in this way for some time to come.
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Maciej Koutny 60: Congratulations!

Wil M.P. van der Aalst

Process and Data Science (PADS), RWTH Aachen University, Germany.
wvdaalst@pads.rwth-aachen.de

Abstract. This Festschrift celebrates Maciej Koutny’s 60th birthday in Septem-
ber 2018. I’m very happy to contribute to this wonderful event and I would like to
congratulate Maciej and thank him for his scientific achievements, service to the
community, and friendship. In this brief contribution, I reflect on his career from
two angles: (1) research in Newcastle and (2) service to the Petri net community.

1 Petri Net Research in Newcastle

Thirty-three years ago (i.e., in 1985) Maciej Koutny joined the Computing Laboratory
of the University of Newcastle upon Tyne to work as a Research Associate. He was the
key person to turn Newcastle into stronghold for Petri net research. In 1986, Maciej
became a lecturer and later got a readership position. Since 2000, Maciej Koutny is a
Professor of Computing Science in the School of Computing at Newcastle University.
Maciej belongs to a generation of smart scientists that moved from eastern Europe
(Poland, Russia, Roemania, etc.) to western Europe.

Maciej worked on concurrency and formal methods, often using Petri nets as a
representation. He was one of the key persons in the development of Petri net algebra,
opacity of transition systems, priorities in nets, net unfoldings, box algebra, and framed
temporal logic programming. He greatly contributed to a better understanding of the
relationship between temporal logics, Petri nets, and process algebras and studied Petri
net based behavioural models of membrane systems.

DBLP shows about 100 conference and workshop papers and around 80 journal pa-
pers covering the areas mentioned above. Maciej collaborated with many scientists all
over the globe, these include Jetty Kleijn, Ryszard Janicki, Marta Pietkiewicz-Koutny,
Lukasz Mikulski, Raymond Devillers, Victor Khomenko, Hanna Klaudel, Alex Yakovlev,
Eike Best, Grzegorz Rozenberg, and many others.

2 Supporting and Leading the Petri Net Community

Next to his research efforts, Maciej played and still plays an important role in the Petri
net community. He is the chair of the Steering Committee of the International Confer-
ences on Application and Theory of Petri Nets and Concurrency. He followed in the
footsteps of Kurt Jensen and Grzegorz Rozenberg. He is also the editor-in-chief of the
LNCS Transactions on Petri Nets and Other Models of Concurrency (ToPNoC). He
chaired ICATPN’01, ACSD’08, CHINA’08, MeCBIC’10 and CONCUR’12 and was



co-director of the 5th Advanced Course on Petri Nets held in 2010. In 2001 the Petri
net conference took place in Newcastle.

In 2011, the Petri net conference was planned to take place in Kanazawa, Japan.
However, due to Tohoku earthquake and tsunami, and the tragic events that followed,
the conference had to be relocated. Maciej decided to bring the conference to Newcastle
upon Tyne for a second time and organized a wonderful event despite the short time to
prepare. This shows great leadership and commitment to the community.

I would like to thank Maciej for his great work in supporting and leading our won-
derful Petri net community and I’m looking forward to host the next Petri net conference
in Aachen in June 2019.
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Abstract. The essay reflects on my most memorable experiences in studying causality and concur-

rency in the realm of electronic hardware. It covers thirty years of my friendship and collaboration 

with Maciej Koutny. This bond helped us build an important synergy at the cognitive and methodo-

logical level and create a unique academic environment enabling young researchers to tackle theoreti-

cal and practical problems in one of the most intriguing fields of computer science and engineering, 

the area of concurrency theory and asynchronous systems design. For me personally, Maciej has 

made strong impact on my understanding of semantics of concurrency and discovering the intricacies 

of the relationship between different models of concurrency that laid foundation to design methods 

and tools for asynchronous digital hardware. The paper concludes with the discussion of what actual-

ly Causality is, is it about representation (purely cognitive notion), or has it a physical meaning? My 

view it has place in both!    

Keywords: Asynchronous Systems, Causality, Concurrency, Energy current, Petri nets, Signal 

Transition Graphs, Theory of Regions 

1 Instead of introduction 

When I joined the group of Professor Victor Varshavsky in 1980 as a PhD student (‘aspir-

ant’ in Russian), I had very little idea about concurrency. However, the group used term 

“parallel asynchronous processes”, actually meaning concurrent processes by them. In 

order to have a good feel what such processes are actually in real systems, I had a two 

prong attack at the literature. One side was understanding concurrency by reading about 

operating systems and various mechanisms used in them, such as semaphores and monitors. 

The other was modelling and designing the so-called Muller circuits, i.e. circuits whose 

behaviour didn’t depend on delays. My first mentors here were Dr Leonid Rosenblum and 

Dr Vyacheslav Marakhovsky, as well as two other Varshavsky’s aspirants Alex Taubin and 

Mike Kishinevsky, who had joined the group before me. 

Muller’s theory of asynchronous or better say speed-independent circuits was a 

great vehicle in learning the fine grain concurrency effects, such as arbitration, non-

persistency and synchronisation. Understanding the dynamic behaviour of those circuits 

was like going through the baptism of concurrency.   

Another good training vehicle was modelling communication protocols, and trying 

to reduce the model of a protocol between two objects to absolute minimum, keeping only 

the essential aspects of the inter-object interaction while hiding all the internal actions of 

the objects. 

So, these three ingredients, parallel programs (in operating systems), protocols and 

asynchronous logic circuits formed me as a researcher in concurrent systems, and that 

brought me to my PhD level at the end of 1982. Of course, the beloved Petri nets were the 

key modelling formalism and they equipped me with the necessary understanding of the 



relationship between structure and behaviour, static and dynamics, of concurrency models, 

let alone the wonderful axes of correspondence between Petri nets and asynchronous 

circuits.    

 

Fig. 1. We weren’t even 30 then! (left to right: Maciej Koutny, Luigi Mancini, Wouter Batelaan, Alex 

Yakovlev, Thomas Dongman Lee and Paul Ezhilchelvan, Newcastle Summer 1985) 

Two years later I managed to land in Heathrow as a postdoc, funded by the Higher 

Education Ministry of the USSR and The British Council, and on the 17th October 1984 I 

first time arrived in Newcastle to what was then the Computing Laboratory (led by Prof 

Harry Whitfield).  That was the place where I had met Prof Brian Randell, and heard about 

atomic actions in designing distributed systems, about various types of concurrent systems 

and languages to program them. I had also met with Prof David Kinniment, whose name 

was known to me as a pioneer in metastability, synchronisers and arbiters. At the end of 

1984, a young research associate arrived from Warsaw to work with Brian on the formalisa-

tion of the problem defined as the Merlin-Randell protocol. After a couple of silent pass-

ings by each other, we started to talk. And that’s how I first met with Maciej. I liked him 

from the start. We were close in age, in height, and Maciej had a very ‘scientific beard’, 

which to me was a good sign. I used to have had beard myself before but the Soviet Educa-

tion Ministry instructors told me that I should look tidier when I go to Britain and so I had 

shaved it before that. 

That was the start of our great friendship with Maciej. We used to spend hours 

walking on the coast in Tynemouth or in Newcastle’s parks, talking about everything in 

life. Poland was the first country I had visited abroad as a student (1976), and so I had lots 

of warm memories of that time. Maciej, on the other hand, had already visited USSR 

before, too. We could talk about our impressions of each other’s country. Also, as it hap-

pened both our families we far away from us – and here again was a similarity, let alone 

that Maciej’s daugher Ola and my son Greg were borne in the same year of 1981.  In 

August 1985 I had to go back to Leningrad while Maciej was of course staying in Newcas-
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tle and later that year he was joined by Marta and Ola, but that was after I had already gone 

back to the USSR. We exchanged Christmas cards and yearly updates after that, little did 

we know then that our roads will meet again soon! 

2 Asynchronous circuit theory 

Working in Varshavsky’s group was both a challenge and great fun. One could design 

circuits for some real applications such as, for example, a token-ring communication chan-

nel for an on-board multi-computer system with fault-tolerance levels achieved due to the 

effect of self-checking properties of asynchronous logic. At the same time, there was an 

encouragement to study theory of asynchronous circuits to fully understand and capture, 

formally, such notions as hazards and deadlocks in these circuits. Varshavsky associated 

asynchronous circuits with parallel programs and concurrent processes – this was a very 

useful analogy. There was always a team of people with whom to discuss concurrency. 

Petri nets were often in the centre of these debates. 

One requirement, however, that Varshavsky imposed on us was that the formal-

isms had to be used in close relation with two main problems in asynchronous circuit 

design process, one of analysis and the other of synthesis. Analysis concerned taking an 

asynchronous circuit description and verifying whether its behaviour contained potential 

hazards, deadlocks and arbitration conditions. Synthesis was concerned with the way how 

one could derive the logic circuit netlist (i.e. a system of Boolean equations of the circuit 

gates) from an initial behavioural specification of the circuit.  

Analysis in those days was approached as the process of generating the set of 

reachable states in the so-called Muller model of the circuit. Informally, the Muller model 

considered a circuit to be a network of logic elements. Each element was a combination of a 

functional block (described by a Boolean function) with zero delay and a delay element, 

whose delay was finite but unbounded. Due to this description of an element, it was possi-

ble to separate the notion of excitation of the output signal of the element (when the value 

of its Boolean function was different from the value of the output of its delay element) and 

the notion of firing the signal, i.e. changing its value to the opposite one, say from 0 to 1, or 

from 1 to 0. An interesting property of Muller circuits was that of semi-modularity. The 

circuit was semi-modular if it would never reach a state in which an element would be 

excited say in its value 0 (we wrote it with an asterisk 0*) and not change to 1. Thus, the 

circuit with a transition from state where some signal was labelled 0* to the state with a 

stable 0, would be called non-semi-modular. This behaviour raised an immediate analogy 

with a notion of non-persistence in Petri nets. To detect non-semi-modularity in a circuit we 

had to go through all reachable states. 

The reachable state space, for the whole circuit, could of course grow fast due to 

the amount of concurrency in the circuit. So, the team was concerned with finding efficient 

ways to tackle the state space explosion problem. Alexander Taubin’s PhD was largely 

focused on analysis. Together with Mike Kishinevsky, they developed a method of analysis 

based on Boolean characteristic functions of the reachable state space as well as character-

istic functions of some properties such as semi-modularity of the circuit. At some point, 

Yury Mamrukov joined the group with a bunch of fresh ideas on how to implement these 

methods by his highly efficient ways of representing characteristic functions in bracketed 

form, which was well before the world learned about BDDs!  And moreover, he could pack 

large state vectors in a small number of memory words, so that his software, written in PL 

(if my memory doesn’t let me down!), could easily cope with the state spaces of the scale 
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of 2^50 or more. We rarely could produce circuits (manually) bigger than 50 signals. So, 

overall, Varshavsky and Marakhovsky, who were the main circuit generators, were quite 

happy with analysis … but for some time.  

In terms of automating synthesis, things were lagging behind, although the meth-

ods and theory was gradually developed. Kishinevsky had developed in his PhD thesis 

some new methods for synthesis of distributive circuits using NAND only gates, and semi-

modular circuits using NAND and NOR gates, with limited fan-in and fan-out. Those were 

theoretically important results, even though they didn’t lead to particularly efficient practi-

cal designs. The main ways of synthesis were the following: (i) manual gate-level design 

with subsequent analysis of semi-modularity, (ii) direct translation of Petri nets to circuits 

using so called David cells, (iii) formally justified (yet still unautomated procedures) of 

synthesis from state graphs (aka Muller diagrams) and, (iv) some initial (again, unautomat-

ed yet) procedures of synthesis from signal graphs (later called STGs by T.-A. Chu). The 

latter was the area where I contributed with my PhD thesis with application to the design of 

controllers for protocols and interfaces, such as UNIBUS, VME Bus etc. Those were 

relatively small control circuits. Larger controllers, such as those for the above-mentioned 

token-ring communication channel for our industrial partners developing on-board comput-

ers, were designed using direct translation of Petri nets into David cell circuits.   

As things progressed into VLSI in the latter half of the 1980s, more computational 

power emerged. There was no longer a need for Mamrukov’s renting night hours at the 

Computer Centre of Gostinny Dvor (the biggest department store in Leningrad). People 

could use IBM PCs! 

3 Models with true concurrency 

We needed models and tools to handle synthesis and analysis more efficiently and, ideally, 

interactively.  The road to efficiency was seen in avoiding an explicit exploration of states 

for concurrent events produced by interleaving of these events. Namely, if two events A 

and B were concurrently enabled in the circuit, the reachability analysis explored both 

traces A;B and B;A, thereby producing four states forming a so-called diamond. As the 

number of concurrent events (and hence signals) grew as n, the state space exploded as 

O(2^n). Something different had to be used for analysis and synthesis of highly concurrent 

models – we all sought to liberate ourselves from the tyranny of interleaving! Leonid 

Rosenblum and I had already pioneered Signal Graphs in our paper at Turin’s Workshop on 

Timed Petri nets, July 1985. Interestingly, Tam-Anh Chu from MIT had his first paper on 

STGs published a bit later, in November 1985. We had no idea about each other’s work 

until a few years after that.   

That was the time when the model of Change Diagrams emerged. It didn’t have a Petri 

net underneath, though it retained the important aspect of modelling true concurrency in the 

form of partial orders. Change diagrams captured both forms of causal dependency or 

precedence, namely strong (AND) causality and weak (OR) causality. The fact that OR 

causality could be captured in Change Diagrams in an explicit form was very useful be-

cause logic circuits, build of gates with NAND, NOR, AND-OR-INVERT functions, 

ultimately could exhibit both of those forms of precedence. However, one somewhat esoter-

ic feature of Change Diagrams was a bit unwieldy and non-intuitive. Firstly, they required 

use of negative marking, namely tokens were borrowed from the input arcs which were not 

active for the OR-causal vertices. Secondly, because Change Diagrams weren’t meant to 

model processes with choice, they had so-called disengageable arcs, in order to capture the 
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initialisation of a choice-free process. I wasn’t happy about those features which I had 

thought would be difficult to promote to practitioners in the future. Nevertheless, Alex 

Taubin, Mike Kishinevsky and Alex Kondratyev managed to bring Change Diagrams to the 

level of excellent software tools TRANAL and TRASYN, that were developed within the 

suite of tools under Varshavsky’s co-operative TRASSA – these were the first self-timed 

CAD tools in the world that could be run on a PC. A nice book was later published by John 

Wiley & Sons, which I had a pleasure to translate into English (when I was already in 

Newcastle), and which described all the theory and algorithms behind analysis and synthe-

sis methods for Change Diagrams. The book was equipped with a CD containing these 

tools. Some people from the Asynchronous design community around the world used these 

tools, but they didn’t get far, possibly partly because of those unintuitive aspects of Change 

Diagrams.  

 

Fig. 2. No place for interleaving!? (left to right: Alex Yakovlev, Leonid Rosenblum, Marta Koutny, 

Maria Yakovlev, Maciej Koutny; place: Pizzeria Francesca, Newcastle 2000) 

For me, it was fairly clear that use of Petri nets was essential, both for the reasons 

of their wider acceptance by research community and also because I was really curious 

about certain relationships between Petri nets and state-based models. From the late 1980s I 

teased myself with the following problems: (a) what classes of Petri nets corresponded to 

the classes of distributive, semi-modular and speed-independent circuits (strictly speaking, 

lattices on cumulative states in terms of Muller theory), and in particular what were the 

conditions of Petri net transition labelling; and (b) what type of concurrency relations 

between events would lead to state-models with distributivity and semi-modularity.  I 

managed to solve those problems around 1990 as I was leaving Russia and spent a year in 

Wales, after which I came back to Newcastle as a lecturer. 

The solution to the first problem was that the class of safe and persistent nets with 

an injective labelling corresponded to distributive lattices, while k-bounded and persistent 

nets to semi-modular lattices. As for the second problem, the correspondence was reached 
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at the level of binary concurrency relations which could always be generalised to n-ary 

relations for distributive lattices. For example, if we had three actions, A, B and C, which 

were mutually pairwise concurrent, i.e. CONC={(A,B),(B,C),(A,C)}, then for a distributive 

process we could also generalise CONC relation to a 3-way concurrency tuple (A,B,C), 

whereas for a semi-modular yet non-distributive process the 3-way relation didn’t hold. 

This was an interesting result which somehow led to the notion of resource-constrained 

behaviours. For example, in a non-distributive case, although actions could have been 

executed in parallel without any data dependency, if we had only two processors, we could 

not execute all three of them in parallel.  

These results were later published in my papers of the early 1990s when I was in 

Newcastle. I also managed then to clarify and remove some modelling restrictions in Tam-

Ahn Chu’s STGs, and present a general unified STG model with the appropriate characteri-

sations and relationships with state-based models and trace-theoretic models of delay-

insensitive circuits (of the Dutch school at TU Eindhoven). In this work a great help came 

from my friend Luciano Lavagno, who was then finalising his PhD thesis at UC Berkeley 

under the supervision of Prof Alberto Sangiovanni-Vincentelli.   

Later, together with Kishinevsky, Kondratyev and Lavagno we solved another in-

teresting problem, namely that of how to unify Change Diagrams and Petri nets. We man-

aged to identify the classes of Petri nets exactly matching Change Diagrams at the level of 

bijective labelling. We also showed that it was possible to unify and generalise these mod-

els by Causal Logic Nets, which finally raised the modelling power to that of Turing Ma-

chine and allowed the modelling of non-commutative state transition behaviour in a purely 

causal form. Some crucial proofs were done by Marta Koutny, who was then my PhD 

student! Marta co-authored our key paper on modelling OR-causality in Formal Methods in 

System Design. In all those developments I was also very happy to discuss ideas with 

Maciej, who gave his word of wisdom what concerned the semantics of concurrency and 

notions of steps in all our inter-modelling characterisations. 

In those 1990s, in search of escape from semantical interleaving, a big push was 

also made on Petri net unfoldings. Firstly, it was through our work with my first PhD 

student at Newcastle Alex Semenov, with whom we developed many algorithms for the 

unfoldings of Petri nets, STGs, timed Petri nets, and Petri nets with read arcs. Semenov 

developed first unfolding-based software tools for verification and synthesis of asynchro-

nous circuits – called PUNT. All this work was nicely reported in his thesis, which was 

successfully passed in front of Maciej, who acted as internal examiner, and Prof Steve 

Furber, who was external examiner. Unfortunately, this unfolding research was interrupted 

in 1997 when Alex Semenov decided to leave academia for work in the City of London. 

But, to our luck, this interruption wasn’t for that long, as in 1999 Maciej accepted Victor 

Khomenko as his PhD student to work on unfoldings, and I gladly joined their team. Victor 

brought unfolding methods and tools based on them to another level of sophistication and 

computational power (in particular, an interesting result was obtained for merged processes 

which effectively compressed the branching process to a compact structurally cyclic, but 

semantically acyclic graph), and after a few years, new methods and tools for verification 

and synthesis of asynchronous logic appeared, which used unfoldings and SAT solvers. 

They were PUNF (a parallel unfolder) and MPSAT (unfolding-based verification and 

synthesis engine). Up till now they are being advanced and used within our Workcraft tool 

suite. Thus, true concurrency was elevated from its pure theoretical attraction to the level of 

a working instrument! 
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4 Synthesis of Petri nets and Petrify 

Let’s now get back to the year of 1994. That year was very important for the whole com-

munity of people surrounding me in promoting Petri nets as a key modelling language 

underlying asynchronous control logic design. Why? In that year, after the previous two 

years of establishing close collaboration with Kishinevsky, Kondratyev and Lavagno on the 

investigation of STGs as a theoretical and practical underpinning for asynchronous circuit 

design, all of us started to closely interact with Jordi Cortadella, a young professor from 

UPC in Barcelona. June 1994 was the time when Luciano and I visited Jordi before going 

to the Petri nets annual conference held in Zaragoza, where I presented our work on OR-

causality models. In the same year, Mike Kishinevsky was a visiting EPSRC fellow in my 

group in Newcastle and in August 1994 we went to Windermere (Lake District) to partici-

pate in the first Amulet workshop organised by Prof Steve Furber. Prior to that trip we had 

an interesting chat with Maciej, who had for the first time mentioned to us the fact of an 

interesting theoretical characterisation of behavioural models of concurrent systems – 

Theory of Regions. He pointed us to the work of Nielsen, Rozenberg and Thiagarajian of 

1992 (NPT92) on Elementary Transition Systems. ‘Infected’ with this fascinating read, we 

went to Windermere. While we interacted at length with the whole of Furber’s group, 

‘infecting’ them with the use of STGs in designing controllers for pipelines in the first 

Amulet processor (the PhD dissertation of Nigel Paver was very useful then!), our minds 

were captivated by this idea of Regions. It was so elegant and beautiful – Mike and I spent 

hours walking around our hotel at night discussing what would be its use in our more 

practical setting of asynchronous circuit design automation. Our first idea was that, with 

Regions we could take the model of a circuit in states, obtained for example, through the 

reachability analysis, and convert it into the model with true concurrency – say for the 

purposes of visualisation. A circuit with a state graph with thousand vertices could be 

shown nicely in a Petri net graph with some fifty vertices! Shortly after we got back from 

Windermere, we tried to formalise the synthesis of Petri nets and STGs from the state 

graphs through the notion of regions, by re-defining the key state and event separation 

axioms of the region theory in terms of excitation closure. That first draft was immediately 

sent to Jordi Cortadella, Alex Kondratyev and Luciano Lavagno. A very hot discussion of 

what can be done with all this new theory followed, and all of us had agreed that the visual-

isation was a good anecdote to promote it!  Jordi, with his remarkable talent of making 

things happen in real and very fast, had managed, within a couple of weeks (!), to develop 

practical algorithms of constructing regions in the BDD framework.  And that was virtually 

the birth of a new tool called Petrify. It is hard for me to remember who exactly came up 

with this funny name but we all loved it – as we were all petrified by its elegance! 

So, the truly historic tool Petrify was born somewhere around September 1994. Maciej’s 

suggestion to look at Regions and the NPT92 paper was monumental! 

Shortly after, I managed to have solved an interesting challenge posed by Charlie Molnar 

to the asynchronous community, which was to design control logic for a counterflow 

pipeline processor (CFPP). Molnar’s description of the control consisted of a 5-state dia-

gram which intertwined concurrency and arbitrating choice in a very smart and compact 

interleaving. The puzzle was as to how to unravel that interleaving? Some solutions ap-

peared in the community, but all of them departed from the original state graph into other 

interleaving-based models such as CSP and process algebra. I managed to find a way of 

performing an equivalent (very close to isomorphism) transformation on this state graph – 

by splitting a state and inserting a dummy event. And bingo, that gave me a way to cover 
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the 6-state graph with regions, and hence synthesize an equivalent Petri net, involving 

produce and consume arcs, as well as read-arcs. The rest was a piece of cake with my 

techniques for refining and converting the Petri net to an STG and then synthesise it to a 

control circuit. This CFPP example of using Regions and Petrify in synergy, not only for 

visualisation but circuit synthesis, had convinced me that we were on the right track (a 

paper was published in Formal Methods in System Design).  

Then followed a sequence of developments in Petrify of various features, more related to 

asynchronous control logic synthesis, such as solving state coding problem,  logic decom-

position for hazard-free technology mapping, introduction of relative timing for timing 

optimisation, and numerous model conversions between state and event based representa-

tions. The paper of 1997 (Japan’s IEICE Transactions on Information and Systems) about 

Petrify is one of the top-cited papers for all of us. Around 2000, Petrify and STGs, under-

pinning it, became a de facto standard technology in asynchronous circuit synthesis. People 

in academia and industry had used it with enthusiasm. In 2002 we published a book on 

STG based synthesis in Springer. In the same year we were nominated as finalists of the 

European Descartes Prize!   

Meanwhile, the years 1999-2000, were significant for our Newcastle team, and largely 

thanks to our work on Unfoldings and Regions. In 2000, Marta defended her PhD thesis 

(with Dr Philippe Darondeau as external examiner) – which was largely about Regions.  

The thesis title was “Relating formal models of concurrency for the modelling of asynchro-

nous digital hardware”. Its particular, emphasis was on the class of semi-elementary transi-

tion systems and elementary net systems with inhibitor arcs (ENI-systems). The use of 

steps, a-priori and a-posteriori semantics in Marta’s research helped me to understand better 

some intricacies of the modelling of concurrency in systems with inhibitors. The other 

important fact about that period was that in those days Maciej and I founded and actively 

promoted Asynchronous Systems Lab (ASL) and our ASL seminar, which had later gone 

through two decades of its successful run. ASL seminar series helped many of our RAs and 

PhDs to familiarise themselves with the fine grains of concurrency theory and its use in 

better understanding the behaviour of asynchronous circuits and systems. Causality and its 

various forms were essential in this process. These foundations helped building a new 

generation of theories of Petri net synthesis and tools for modelling electronic systems. 

Examples of such a wonderful synergy of theory and applications were methods and tools 

for visualisation of asynchronous circuits models, particularly in the PhD work of Victor 

Khomenko and Agnes Madalinski, synthesis of nets with policies in our work with Philippe 

Darondeau, modelling of GALS systems in the PhD work of Sohini Dasgupta and Johnson 

Fernandes.  

Our constant interactions in the ASL community had led to other impressive results. 

They included methods and tools for direct mapping of Petri nets and STGs (recall David 

cells!), in the PhD work of Danil Sokolov, with active involvement of Dr Alex Bystrov 

who worked as an RA on a series of crucial EPSRC grants. Two EPSRC-sponsored and 

highly productive visits of Dr Nikolay Starodoubtsev to Newcastle had led to methods of 

synthesis of asynchronous control logic in negative gates and wire delay-insensitivity, all 

through finding elaborate ways of refining causality in STGs. This later helped our PhD 

student Yu Li to develop his method of refining STGs to lift the isochronic fork timing 

assumptions to much weaker timing assumptions. Work on Asynchronous Communication 

Mechanisms (aka ACMs), with active involvement of Dr Fei Xia and Dr Ian Clark, and our 

collaboration with Prof Tony Davies (from Kings College London) and Dr Hugo Simpson 

and Eric Campbell (from MBDA), helped Delong Shang, in his PhD work, to turn design 

methods for ACMs to real silicon chips. For example, our HADIC chip, fabricated in 
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0.6micron CMOS process in 2000, was the first harbinger in the series of chip tape-outs in 

the group, which were all strongly coupled to our research on causality and concurrency.        

5 Tools, tools, tools: Interpreted Graph Models and Workcraft  

In the late 1990s, I started to actively interact with Dr Oleg Mayevsky, my friend and 

former colleague from Varshavsky group. Oleg was an associate professor at the Kyrgyz-

Slavic Russian University (KRSU), located in Bishkek, the capital of Kyrgyzstan, a rela-

tively small country in Central Asia (a former Soviet republic). Thanks to the energy of 

Oleg’s head of department Prof Gennady Desyatkov and Dr Chris Phillips, who acted as 

coordinator of EU-funded TEMPUS project between Newcastle and KRSU, aimed at 

developing a Master curriculum in Computer Science in KRSU, we had an excellent revival 

of the research collaboration with Oleg. The first result of this collaboration was the 

EPSRC-funded PhD work of Danil Sokolov between 2001 and 2004, which was linked to 

the EPSRC BESST project on asynchronous control logic synthesis from Petri nets. 

 

Fig. 3. ASL is conquering the Great Wall with Concurrency and Causality (Maciej, Marta, Ola, Maria 

and Alex; trip to China, 2006) 

Around 2002, thanks to the ASL funding, we had Oleg Mayevsky at Newcastle as a sen-

ior RA for six months, and productive work with David Kinniment, Gordon Russell, Alex 

Bystrov and myself on time measurement and time-to-digital converters (a famous Time 

Amplifier was invented then!). Subsequently, in 2005, when I had another vacant PhD 

studentship from EPSRC, linked to a project on networks on chip, I was fortunate to be 

introduced by Mayevsky and Desyatkov to Andrey Mokhov, who was finishing his MSc 

degree at KRSU and had just been amongst the finalists of the World Programming Con-

test. The arrival of Andrey in Newcastle in September 2005 had given a massive boost in 

our ASL team as he was able to inject his great potential and enthusiasm into the group. In 

his research he took the model of partial orders and added there conditionals to capture 
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choice, produce an entirely new model Conditional Partial Order Graphs (CPOGs), which 

enabled a whole range of new developments, from the models of communication channels 

based on phase encoding (PhD of Enzo d’Alessandro), to control of microarchitecture in 

CPUs (PhD of Max Rykunov), and to more general graph algebraic approaches (promoted 

by Andrey himself) in wide variety of applications, requiring compact modelling of multi-

tudes of scenarios.  

With Andrey’s PhD on CPOGs completed in 2009, and PhD work of another KRSU 

alumni, Ivan Poliakov, who started work on unifying our graph based models, such as Petri 

nets, Circuit Petri nets, STGs, CPOGs and data-flow structure under the new tool set called 

Workcraft. Ivan’s work was linked to the EPSRC-funded project SEDATE, which launched 

our collaboration with the Manchester CAD group led by Dr Doug Edwards. The aim of the 

project was to develop methods and tools for synthesis of asynchronous data-paths. In this 

work we actively promoted our approach to modelling strong (AND) and weak (OR) 

causality, previously used for control models such as STGs to static data-flow structures 

(SDFS). Here, it was possible to relate these causality paradigms with the data-path notions 

of full acknowledgement and early propagation, respectively. Notions of forward data 

tokens and anti-tokens, expressed in the work of others, were unified by our Petri net based 

interpretations. Danil and Andrey were closely working with Ivan, as well as we had fruit-

ful interactions with our PhD student Zhou Yu and Will Toms (from Manchester). Accom-

panied by the PhD work of Julian Murphy and Ashur Rafiev (also from KRSU), on exploit-

ing causality and concurrency in circuits for cryptographic applications, this gave the group 

a great pathway to impact – in which we worked with Atmel Smart card ICs, where our 

tools (largely thanks to Danil’s efforts) were used in mid 2000s. 

The significance of the transition to the toolset of Workcraft, around 2007, is hard to 

overestimate. Our previous tools were all command-driven and based on textual representa-

tion of state and event based models, where the key format was that of a “dot-g” (we often 

pronounced it ‘dodgy’!) file. Workcraft stipulated that the tools had to be linked to an 

interactive GUI-based framework, to which other problem-oriented tools, such as Petrify 

and MPSAT, could be connected as backends or plugins. That view, promoted in Ivan’s 

thesis, and later driven by the developments of new tools by PhD students Arseniy Ale-

kseyev (again, from KRSU!), and Stas Golubcovs, coordinated by Danil Sokolov, has 

resulted in a powerful CAD environment, which has by now, the year 2018, given rise to 

the new evolution step thanks to the efforts of Danil, Victor and Andrey. 

All this work is now at an entirely new level of maturity and no wonder it has been no-

ticed again (after our prior experience with Atmel) by industry. In 2014, we launched a 

fruitful collaboration with Dialog Semiconductor, a company specialising in developing IP 

solutions for electronic power management and communications. This is the area of ana-

logue-mixed-signal (AMS) electronics, in which the significant role is played by islands of 

embedded digital logic. We gave this logic the name of ‘little digital’ on the analogy of the 

digital logic that was of modest complexity in the era before VLSI design. Then in the 50s 

and 60s, that digital design was largely clock-free, i.e. asynchronous. Normally AMS 

designers would design such logic by hand and then include its components into the overall 

process of painstaking simulations – which would last for days if not weeks. With a bit of 

destiny turn, in 2013, I was approached by Dr David Lloyd, from Dialog, who used to be a 

member of the Amulet group in Manchester and was interested in asynchronous design. 

David wanted to try our Petrify tool in designing control logic for power regulators. We 

started active collaboration which was partly initially sponsored by EPSRC in the A4A 

(Async for Analog) grant. The prospect of automating the design of little digital was very 

attractive.  
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At the moment this industrial take-up is strong and what’s important, today we are teach-

ing practical engineers to think in terms of causality and concurrency, and they can imme-

diately see these concepts in action – all through the Workcraft tools – they can run exten-

sive simulations, they can verify circuits and their specifications, they can synthesise and 

decompose their circuits, and they can visualise the behaviour the models using such 

representations as waveforms. For example, Jonny Beaumont’s recent PhD work was about 

Concepts – these are elementary building blocks of the designer’s knowledge about the 

asynchronous circuit behaviour. They are captured and can be converted to synthesisable 

specifications.  

I have not mentioned many other developments within Workcraft in which Petri nets 

play the behaviour-interpreting role to capture the semantics of the specific instrumental 

models. These include the models of structured occurrence nets (SONs), which have been 

actively investigated by Maciej, Brian Randell and their ex-PhD student Bowen Li and 

applied in the application domain of crime investigations, models of the communication 

fabrics of xMAS for networks on chip and GALS systems, developed by Dr Frank Burns, 

models of instruction set architectures, developed in the PhD theses Alessandro De Gen-

naro and Georgy Lukianov, and other models.  We are also advancing STGs into new 

applications for AMS through PhD work of Vladimir Dubikhin, who combines our Work-

craft tool with the analogue verification methods based on Labelled Petri nets and tool 

LEMA of Prof Chris Myers (University of Utah) to produce a new design flow for AMS 

with asynchronous control (behaviour mining and model generation are the core of his 

method). Further to that, work of Sergey Mileiko is aimed on applying STG based methods 

to design controllers for Switched Capacitor Converters, in collaboration with Alex Kush-

nerov (graduate of Ben-Gurion University and now working at Intel, Israel). 

 

 

Fig. 4. Tools, only tools, nothing but tools (our REF-2014 Impact showcase; Newcastle 2015)  

All these models have distinct elements of Maciej’s fundamental notions of the seman-

tics of concurrency and causal representations based on graphs, showing causality through 

the relations of precedence, control and data dependency, timing relations.  
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6 What is actually Causality?  

So far, I have been addressing the notion of causality in the framework of event-based 

models, namely Petri nets. The relationship between events (transitions or their occurrenc-

es) in Petri nets is based on temporal aspect, i.e. event A precedes event B. This precedence 

relation is captured by an arc in a graph, and it is sometimes important to show the dynam-

ics of this relation using the notion of an explicit condition (place) which can have a token 

or not have it. The idea of a token is important to be able to interpret the behaviour in the 

form of states of the system (token marking). If a condition between two events A and B is 

marked with a token the causal dependence is active, meaning that the event A has occurred 

and may lead to the occurrence of B at any moment, possibly conditioned by other causes 

of B incident on transition B.  

The notion of causality based on precedence is probably best captured by models such as 

occurrence nets or event structures, which are acyclic and show the causal relationships 

purely in the form of directed arcs.  

People studying causality in different forms and application domains may give it other 

interpretations and emphasis, which may not be directly linked to the temporal aspect. 

However, very often the temporal aspect, or the notion of precedence, is implied there. For 

example, the work of Professor Judea Pearl on causality modelling is more of the probabil-

istic nature, where causation between facts can be implied by some forms of high likeli-

hood or probability of something to be true based on the fact of something else being true. 

This form of causation associated with knowledge or facts thereof can often be cast on the 

timeline. Therefore, Pearl’s models can be translated to say SONs or event structures. In 

similar vein, of more cognitive nature, one can see the works of other researchers of causal-

ity, such for example as Steven Sloman (see next section). 

My interest in causality is nowadays extending from cognitive to physical nature. I have 

recently become interested in electromagnetism and its relation to causality. Here one 

important element is the idea of energy flow, i.e. the transfer of energy in space and in time 

and its effects on the matter. An example of a physical causal system could be a system 

consisting of energy storage, such as a capacitor, and a load, a switching circuit whose 

power signal is connected to the capacitor. Here clearly we cannot obtain any switching 

behaviour if the voltage level on the capacitor is not sufficient to overcome the threshold 

voltage of the switching device in the load.  

Further thoughts in physical direction bring me to the connections between types of logi-

cal (AND, OR) causality at the event level and notions of integration, differentiation and 

proportionality, typically used in automatic control. Indeed, think about PID control and 

relations between cause(s) and effect(s). Fig. 5 illustrates this connection. AND causality is 

linked to the integration paradigm, which is a positive hysteresis – we accumulate enough 

of the increasing causes before we see the effect in the rising edge of the signal. Similarly, 

we need to accumulate the decreasing causes before the falling edge of the effect. OR 

causality is linked to the differentiation paradigm, which is a negative hysteresis – we react 

to the effects early, for both the rising edge and the falling edge. The third case, of combi-

national dependence, has no hysteresis at all – it corresponds to the proportional paradigm. 
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Fig. 5. Relationship between types of causality and PID control 

 

Fig. 6. Example of causality and PID forms for the case of two causes x and y and effect z. 

All these paradigms can be implemented using logic circuits such as C-element (Inte-

grate), inclusive OR (differentiate) and combinational OR (proportional) as illustrated in 

Fig. 6.  

So, what is Causality after all (or better say before all!)? This question is probably 

equivalent to what is Time? 

Steven Sloman in his book on Causal Models (published by Oxford University Press, 

2005) refers to Bertrand Russell, who argued in his famous article “On the notion of cause” 

(1913) that “invariant laws aren’t causal at all but rather mathematical”. Sloman then 

writes: “Perhaps the world is nothing but a flow of energy … Perhaps, everything we 

misconstrue as cause and effect is just energy flow directed by mathematical relations that 

have determined the course of history and will determine our destiny in a long chain of 

events linked by the structure of energy in time and space.” He then makes a sort of dis-

claimer that his book “isn’t about metaphysics. It’s about representation”. 

That’s exactly the Gordian knot of the question of what Causality is. I agree with Sloman 

in that Causality has place in representation and hence plays a key instrumental role in 

cognitive science – that’s what we have been exploring with Maciej in our research in 

concurrency. However, I tend to disagree that Causality has no physical meaning. Even if 

the world is modulated by the flow of energy, as Oliver Heaviside called “energy current” 
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in his Electrical Papers (Vol.2, pp.91-95), this is physics and it has causal meaning. Not all 

“invariant laws” aren’t causal! If we go back to the work of Galileo and Newton, we can 

find important geometric proportionality between energy and momentum (associated with 

mass) via a spatiotemporal coefficient that is velocity. It is important that this proportionali-

ty is geometric – this makes relation between energy as cause and momentum as effect 

physical! As formulated by Heaviside for electromagnetism, we have this proportionality 

between energy current (aka Poynting vector) and electromagnetic fields mediated by the 

velocity of light, and this is also causal. There are of course some relationships in physics 

which are, quite mistakenly, interpreted as causal, which are in fact purely algebraic – such 

for example as the relationship between electric and magnetic field. In other words, when 

one looks at equations in physics one has to distinguish geometric (physical) proportionali-

ty from algebraic (mathematical). Some philosophy researchers, e.g. Ed Dellian, even put 

the names of the great scientists at this boundary – Newton at the former and Leibniz at the 

latter.     

In my opinion, the physical world in which everything is governed by the energy current 

does not stop being Causal. Causality is not only representational – it is fundamental! On 

this highly optimistic point I should perhaps stop.  

7 Instead of conclusion 

The last word here will however have to be with classic philosophers … 

  

PROPOSITION 28 in Part I of Spinoza's Ethics says: "Every individual, or each thing 

which is finite and has a determined existence, is not able to exist or to be determined to act 

unless it is determined to exist and act by another cause which is also finite and which has a 

determined existence: and again, this further cause is not able to exist or to be determined to 

act unless it is determined to exist and act by another which is again finite and has a deter-

mined existence, and so on to infinity.'" 

 

Happy Birthday, Dear Maciej!!! 
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Abstract. Running information security technologies and policies in
cloud computing systems will create negative impact to business orga-
nizations. Chief information security officers, as potential users, need a
solution to analyze the cost and benefit of implementing information se-
curity technologies and policies in cloud computing systems. Petri nets
can be used to analyze the workflow security in cloud computing systems,
diagnose possible malicious behavior, and analyze invisible executions
and failures in such systems.
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1 Introduction

The importance of cloud computing is increasing due to the ever-increasing de-
mand for internet services and communications. However, the large number of
services and data stored in the clouds creates security risks due to the dynamic
movement of data, connected devices, and users among various cloud environ-
ments. Information security technologies and policies are developed to keep the
data and information secure in the systems. However, the implementation of
these technologies and policies in cloud computing systems will create negative
impact to the business organizations. For example, increasing the complexity
of services in the system will increase the rate of failure. Therefore, it is im-
portant to evaluate the cost and benefit of implementing information security
technologies and policies in cloud computing systems.

2 Cloud Computing Security

In 1995, Bill Gates wrote a memo entitled “The internet tidal wave” which de-
scribed how the internet was going to forever change the landscape of computing
[1]. He indicated that the rich foundation of the internet will unleash a services
wave of applications available instantly over the internet to millions of users.
Services designed to scale to hundreds of millions will change the nature and
cost of software solutions. Now all his predictions became reality.

Cloud computing is a type of internet-based computing which provides shared
computing resources and data to computers and other devices on demand.



Instead of building individual information technology infrastructures to host
databases or software, a third party can host them in its large server clouds.

Cloud computing platforms are designed to automatically replicate data
across a worldwide infrastructure. Therefore, the cloud providers can dynam-
ically engage more resources, such as, servers and storage, as your site needs
them. However, security is the most significant barrier to widespread adoption
of cloud computing.

Firstly, although cloud computing services are relatively new, data breaches
in all forms have existed for years [2]. Over 50 percent of the IT and security
professionals believed their organization’s security measures to protect data on
cloud services are low [2]. Data breaching was three times more likely to occur
for businesses that utilize the cloud than those that do not [2].

Secondly, the cloud’s unprecedented storage capacity has allowed both hack-
ers and authorized users to easily host and spread malware, illegal software, and
other digital properties [2]. Consequently, this practice affects both the cloud
service providers and their clients [2].

Thirdly, application programming interfaces give companies the ability to
customize features of their cloud services to fit business needs; however, this
practice can potentially leave exploitable security risks [2]. The vulnerability of
application programming interfaces lies in the communication that takes place
among applications [2]. A simple example is YouTube, where developers have
the ability to integrate YouTube videos into their sites or applications [2].

3 Information Security Technologies and Policies

Information security technologies have been investigated and developed to keep
the data and information secure in cloud computing systems.

Large IT companies, like Microsoft, IBM and Google, provide authentication
technologies that only authorized users can access data resources and applica-
tions in the clouds. For example: Microsoft Azure develops Azure active directory
to ensure that only authorized users can access clients’ environments, data and
applications [3]. IBM provides identity and access management capabilities de-
signed to strengthen compliance management and reduce risk in today’s cloud
environments [4]. IBM Cloud lets users build authentication and authorization
into users’ cloud-native apps, and manage access to cloud resources [4]. Google
Cloud Identity offers the identity services and endpoint administration that are
available in G Suite as a stand-alone product [5].

Protocols are used to keep the data secure in the clouds. For example: Mi-
crosoft Azure uses industry standard protocols to encrypt data in transit. These
secure users’ data as their travel between devices and Microsoft datacenters [3].
IBM Cloud also provides encryption of data at rest and while data are mov-
ing across storage and data services, along with a key management service [4].
Google Cloud Platform, by default, encrypts customer data stored at rest, with-
out requiring any additional action from its users [5].
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Security analytics technologies are developed to monitor servers, networks
and applications in order to detect and respond to threats in the clouds. For
example: Microsoft Azure multipronged threat-management approach includes
technologies and processes to constantly strengthen Azure’s defenses and reduce
risks [3]. IBM Cloud provides a main set of network segmentation and net-
work security services to secure workloads from network threats [4]. IBM Cloud
has built in features that allow users proactively monitor and gain security in-
telligence across users’ hybrid cloud deployments [4]. Users, based on security
analytics, can detect and respond to threats quicker, dramatically accelerate in-
vestigation times and proactively manage compliance [4]. Google Cloud Security
Scanner is a web security scanner for common vulnerabilities in Google App
Engine application, which can automatically scan and detect common vulnera-
bilities [5].

One would notice that cloud leading companies are focusing on security tech-
nologies, data and application security in cloud computing systems. The cost and
benefit of executing these technologies and policies on cloud computing have not
been analyzed. Digital Institute Newcastle proposed [6] cost models for multi-
clouds systems, which considered the access control policies on the multi-clouds.
However, trade-off between running access control policies and potential cost in
the multi-clouds has not been considered. There are some cloud comparison web-
site companies (e.g., CloudOrado.com) that provide the information about basic
security policies/services/certifications of each cloud provider (e.g., encrypted
storage, ISO/IEC 27001, and Firewall). However, the security and cost of work-
flow deployment in these multi-clouds, and security metrics of the workflow have
not been considered.

In addition, there has not been an established systematic approach to quan-
titatively evaluate the project economics of information security technologies
in cloud computing systems, including their effectiveness, benefits and costs to
organizations, although information security researchers proposed various meth-
ods for addressing security investment problems. As a top security expert, Ross
Anderson at Cambridge University pointed out security researchers should con-
sider the costs of subsequent maintenance of the software. For example: security
protocols failures may be explained by economics. Especially, the failures of large
systems would cost industry billions.

4 Benefit and Cost Analysis

There are several different types of clouds which the clients can operate with
depending on their business model. Public clouds are the most commonly used;
their resources are made available to the general public by a particular provider,
such as Microsoft, IBM or Google. On the other hand, private clouds are oper-
ated for a single organization, which can be managed either internally or by a
third party, and can be hosted either internally or externally. Private clouds re-
quire a significant amount of engagement and re-evaluation of business strategy
to be used effectively. However, large organizations may wish to keep sensitive
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information on their more restricted servers, rather than in the public cloud.
This has led to the introduction of federated cloud computing, in which both
public and private cloud computing resources are used [6].

Information flow refers to paths followed by data from their original positions
to the end users in computational processes [7]. Workflows are used to specify
the implementation of such processes [7]. Information flow security in software
engineering becomes an active topic, due to access control cannot control internal
information propagation once accessed. Information flow security is to ensure
that the information propagates throughout the execution environment will not
leak sensitive information to public. The large number of services and data on a
cloud system creates security risks, due to the dynamic movement of the services
and data resources on the cloud systems [7].

In our study, we introduce security lattices for the components of a federated
cloud system. Moreover, we assign security levels to individual services, data
resources and clouds, and sign clearance level to individual services. We also
assign clouds to individual services and data resources.

Then, we adopt the Bell-LaPadula multi-level control model into cloud com-
puting systems [6]. A service can only operate at a security level that is less than
or equal to its clearance [6, 7]. A service cannot read data that are at a higher
security level than its own clearance [6, 7]. A service cannot write data residing
at a lower security level [6, 7]. If an entity is located in a cloud, the security level
of the cloud must be higher or equal to the security level of the services and data
resources [6, 7].

4.1 Cloud Computing Trade-offs

After we adopt Bell-Lapadula multi-level control model into the systems, we will
have different valid mapping options of services and data resources to clouds [6].
In some cases, the performance and cost of private and public clouds are different.
The data size, the length of time the data are stored in the clouds also affect the
cost of the different options. CPU consumed in the execution of the services in
different clouds affects the cost of the systems. Furthermore, the complexity of
services in the system will affect system failure rate.

There are two parts we need to consider for analyzing the benefit and cost of
implementing information security technologies and policies in cloud computing
systems: 1) The value or benefit that information security technologies or policies
can bring to the organizations; 2) the cost and impact that information security
technologies and policies have on organizations.

Benefit Information is treated as a business asset with varying levels of com-
mercial values as introduced by [8]. Since it is usually difficult to measure the
benefits of information security technologies directly, costs of information disclo-
sure or modification are measured instead to quantify the benefits. Therefore,
the organization’s digital information assets should be evaluated and classified.
Information should be classified into different categories by their level of con-
fidentiality according to company policies. Then, they are assigned estimated
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values to digital information of each category. This information valuation pro-
cess should be based on the business needs of the organization [8].

For a cloud computing system, observing patterns of users’ behaviour can
lead to leakages of secure information. Information sharing means that the be-
haviour of one cloud user may appear visible to other cloud users or adversaries,
and observations of such behaviour can potentially help them to build covert
channels [9, 10]. We consider using opacity as a promising technique for analysing
information flow security. Opacity has been proposed as a uniform approach for
describing security properties of computing systems expressed as predicates [9,
10]. A predicate is opaque if an observer of the system is unable to determine
the truth of the predicate in a given system run [9, 10].

In a cloud computing system, the security policy is the architecture with
public/private clouds, yielding an observation function, and a predicate that
needs to remain opaque [10]. The cost of information leakage is based on the
assumption that there is a security policy and a competing cost of opacity. The
cost of the security policy is the financial cost of setting up and using a particular
architecture. The cost of opacity is the financial cost of leaking confidential
information that should remain hidden. The security policies play a key role in
determining the best design of the system. In addition, the security policies also
influence the opacity of the systems.

Due to the complexity of cloud computing systems and data distribution
on them, the risk of information loss is high. Cloud providers should be able
to provide techniques for detecting potential invisible malicious events in the
systems. These techniques can increase the dependability of their services, and
consequently organizations will feel more confident to use them. Thus, invisible
malicious events, which violate the proposed security policies in cloud computing
systems, must be detected. Diagnosis is the procedure of detecting abnormal be-
haviours of a system. A notion of diagnosability [17, 18] - an associated property
of diagnosis - can been used to detect such events in clouds.

Cost Cloud costs are measured using the metrics by which cloud providers
allocate charges and impact of the allocated strategies [6], which are affected
by information security technologies and policies. Some costs are tangible, for
example, the capital expenditures on information security technologies and as-
sociated hardware, software and daily operational expenditures associated with
maintenance. These tangible costs are readily to be accounted for in monetary
terms. There are also some intangible costs. For example, it has been digital doc-
umented that implementing a strict security mechanism will reduce the efficiency
of the organization [11]. One of the impacts of information security technologies
on staff productivity is quantified in terms of non-productive time [11].

In our study, the tangible costs of a cloud computing system include: purchase
of security technologies/policies and any associated costs to upgrade hardware
and software, the cost of the data stored in the clouds, the cost of CUP consumed
in the execution of services, and data transfer costs [6].
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The intangible costs of a cloud computing system include: employee non-
productive loss, administrator costs, and training employees.

Non-productive time [11] incurred as the result of the reduction in organiza-
tion efficiency after the implementation of cloud computing security technologies
and policies. The more services and security technologies are deployed on a sys-
tem, the more complex the system will be. In general, increasing the complexity
of services in the system will increase the rate of failure. System failure will affect
the productivity of the organization. For many projects, this is a conservative
estimate, because of high daily operational rates. For example, the daily rates
of drilling rigs in oil and gas industry.

Administrators have to be hired to handle the cloud computing systems and
the requests in the organization.

Cost of training and education of employees. It has been reported that most
security incidents are caused by human errors instead of technology failures,
although security incidents can result from nature disasters, technical issues and
human acts. Therefore, the organization should provide information security
training to employees.

5 Quantitative Evaluation Methodologies

We consider that Petri nets and the associated verification techniques can be
used to analyze the cloud computing security.

Petri nets are a graphical modelling tool for a formal description of systems
whose dynamics are characterized by concurrency, synchronization, mutual ex-
clusion and conflict [12]. In particular, they have been widely used for structural
modelling of workflows and have been applied in a wide range of qualitative and
quantitative analysis [12, 13].

A basic Petri net consists of places, transitions, a set of arcs and the initial
marking. Places represent possible states of the system, transitions are events or
actions which cause the change of state, and every arc simply connects a place
with a transition or a transition with a place. A change of state is denoted by
consuming/producing tokens (black dots) from places to places, and is caused
by the firing of a transition. The firing represents an occurrence of the event or
an action taken. The firing is subject to the input conditions, denoted by token
availability. A transition is firable or enabled when there are sufficient tokens in
its input places. After firing, tokens will be consumed from the input places, and
be produced to the output places. For example: in [7], Petri nets are introduced
to diagnose the possible malicious behaviour in the cloud computing systems. In
[9, 10], Petri nets are used to capture the invisible workflow in cloud computing
systems.

Coloured Petri nets allow the modeler to use a number of different colour
sets, making it possible to represent data values in a more intuitive way instead
of having to encode all data into a single shared set [14]. Coloured Petri nets
introduce a set of coloured tokens that can be distinguished from one another,
unlike the indistinguishable black tokens in the basic Petri nets, and use arc
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expressions to define how transitions can occur in different ways depending on
the colours of input and output tokens. Coloured Petri nets can be used to
capture the security policies in cloud computing systems. In [7], coloured Petri
nets are used to capture the Bell-LaPadula rules and cloud security rules. The
security policies for services migration and data migration can be captured by
the functions associated with transitions.

Stochastic Petri nets are an extension of classic Petri nets [15], and Stochastic
Activity Networks are a class of stochastic Petri nets [16]. One can associate a
firing delay with each transition of a Petri net; such a delay specifies the time that
the transition has to be enabled before it can actually fire. If the delays are given
by a random distribution function, we obtain a stochastic Petri net. A stochastic
Petri net model includes a set of ordered activities to be undertaken by humans or
other resources of the organization or a system. A stochastic Petri net model is a
structure for actions and implies on how work is done within an organization or a
system. These actions are work activities across time and space, with a beginning
and an ending. In [11], non-productive time associated with information security
technologies are captured by the firing delay of the transitions, and the system
failure rate can be captured by the probability associated with the transitions.
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