
How to Mix Concurrency and Choice
and Not Explode?

Andrey Mokhov

Newcastle University, United Kingdom
andrey.mokhov@ncl.ac.uk

Abstract. This paper makes two observations. The first one may be
surprising but is probably useless. The second one may someday help
solve a real problem but is somewhat tedious. The reader is encouraged
to take note of the former and make use of the latter.
The first observation is that concurrency is wrongly blamed for the
dreadful state explosion problem. In fact, choice is a more explosive sub-
stance that should be handled with great care. Avoid mixing concurrency
and choice; but if you must, read on.
The second observation is that the old Divide and Conquer strategy can
be used to effectively deal with the mix of concurrency and choice. To
conquer concurrency, slash it into fine diamonds. To conquer choice, wield
the laws of thought. As a concrete demonstration, this paper presents a
compact encoding of the Concurrent Kleene Algebra using Conditional
Partial Order Graphs, where the explosion is avoided by dividing con-
currency from choice and using partial orders and Boolean algebra, re-
spectively, for their compact representation.

1 Introduction: Concurrency and Choice

Concurrent systems, which comprise multiple components that can operate and
interact simultaneously, are notoriously difficult to design, control and reason
about. The complexity of concurrent systems grows exponentially with the num-
ber of constituent components, and one way of coping with the complexity is to
employ formal models for describing the behaviour of concurrent systems.

State graphs have been used for formal description of behaviour for many
decades. However, state graphs of concurrent systems are not compact enough
due to the state space explosion problem [1], which is illustrated in Fig. 1: as
the number of concurrent events in a system increases by one, the state graph
describing possible orders of their occurrence doubles in size: the state graph of
a system with n concurrent events will therefore have 2n states.

More surprisingly, state space explosion may also occur in fully sequential
systems if they contain a lot of choices. In fact, as illustrated by Fig. 2, the
explosion due to choice is not bounded by O(2n), but can reach Θ(n2n) in some
cases. The state graphs in Fig. 2 model systems that, given an input choice of
one of 2n−1 possible behaviours, generate the corresponding birmutations on a
set of n events S = {e1, e2, · · · , en}, as defined below.

? This paper is dedicated to Prof Maciej Koutny on the occasion of his 60th birthday.

a b

ab

a b

ab

a b

ab

c

c

c ca

Fig. 1. State space explosion due to concurrency: 2n states for n events.

a b

ab

c

ab

a
b

a b

a b c ca

Initial choice states

Fig. 2. State space explosion due to choice: (n+ 3)2n−2 + 1 states for n events.

Definition 1 (Birmutations). The set of birmutations Bn comprises 2n−1

event sequences that are chosen out of n! permutations on n events. The chosen
subset is recursively defined as follows:

– There is one birmutation on the singleton set S = {e1}: the sequence e1.
That is, B1 = {e1}.

– When n > 1, Bn is obtained by inserting en either at the beginning or at
the end of all birmutations Bn−1. That is, Bn = (en ◦Bn−1) ∪ (Bn−1 ◦ en),
where ◦ denotes concatenation of an event to all sequences in a given set.

Birmutations B1···4 are given below in the lexicographic order. We use {a, b, c, d}
to denote events instead of ei for clarity.

– B1 = {a}.
– B2 = {ab, ba}.
– B3 = {abc, bac, cab, cba}.
– B4 = {abcd, bacd, cabd, cbad, dabc, dbac, dcab, dcba}.

A simple state graph representation of a system generating birmutations Bn
would explicitly enumerate all 2n−1 sequences, resulting in a state graph of size
1 + (n + 1)2n−1, where the leading 1 corresponds to the initial choice state,
and n + 1 states are used to model the generation of a sequence of n events.

106 Andrey Mokhov

This representation is clearly not the most compact one, because many of the
2n−1 sequences have common suffices which can be merged, thereby reducing
the size of the state graph. For example, sequences abcd and bacd have the same
suffix cd and can therefore be merged after the prefixes ab and ba. However, it
turns out that by merging common suffices one cannot achieve any asymptotic
improvement: the resulting state graph will still contain Θ(n2n) states.

More precisely, let Tn denote the smallest size of the state graph describing
birmutations Bn. Then Tn satisfies the following recurrence:

Tn = 2Tn−1 + 2n−2 − 1.

Note that sequences from the set L = Bn−1 ◦ en have no common suffices with
those from the set R = en ◦Bn−1, and their state graphs are therefore disjoint,
apart from the initial state – hence the term 2Tn−1 − 1. All sequences from the
set L have the common suffix en, which is merged; all sequences from the set
R have common prefix en, which cannot be merged, resulting in the term 2n−2.
The base case T1 = 3, as well as the cases T2 = 6 and T3 = 13 are illustrated in
Fig. 2. By solving the recurrence we obtain Tn = (n+ 3)2n−2 + 1 = Θ(n2n).

As state graphs grow, humans (and at some point machines too) lose the abil-
ity to comprehend them, which motivates computer scientists to search for more
compact models, such as partial orders [2], event structures [3], Petri nets [4],
structured occurrence nets [5], numerous process algebras [6], conditional partial
order graphs [7][8] and many others.

To deal with concurrency, a common approach is to dissect state graphs
into diamonds, i.e. sets of independent events, and represent these diamonds
compactly using partial orders. To deal with choices, one can employ Boolean
algebra [9] to compactly describe the conditions for generating particular events.
In this paper we demonstrate how these two approaches can be combined to
compactly describe systems with a mix of concurrency and choice.

2 Concurrent Kleene Algebra

Concurrent Kleene Algebra (CKA) was introduced by Hoare et al. [10] as a
unifying theory axiomatising the fundamental concepts of choice, sequential and
concurrent composition, and iteration. Many models of CKA have been studied
to date, e.g., see [11]. In this paper we show that the Conditional Partial Order
Graph (CPOG) formalism [7][8] is a compact model of CKA.

In this section we briefly recap basic CKA definitions [10]. We start by in-
troducing three common constants:

– Bottom ⊥ is a contradictory specification, which permits no behaviour and
can be equated to the predicate false.

– Skip 1 describes doing nothing. Note, that this is different from ⊥; indeed,
specification 1 is implementable (by doing nothing), while ⊥ is impossible to
implement (by its definition).

How to Mix Concurrency and Choice and Not Explode 107

– Top > is the opposite of bottom in the sense that it permits any behaviour;
it can be equated to the predicate true. Any behaviour, including doing
nothing, is an admittable implementation of >.

The algebra provides a rich collection of composition operators, the most impor-
tant of which are listed below.

– Sequential composition (p; q) describes the execution of both p and q, where p
finishes before q starts. Sequential composition is associative, has 1 as unit
and ⊥ as zero.

– Concurrent composition (p|q) describes the execution of both p and q, where p
and q can start and finish together (but not required to do so). During the
execution p and q are allowed to communicate with each other and with the
environment. This operator is both associative and commutative, has 1 as
unit and ⊥ as zero.

– Choice (p∪ q) describes the execution of either p or q. Choice is associative,
commutative and idempotent, has ⊥ as unit and > as zero. The operator is
also distributive by both sequential and concurrent composition:

p; (q ∪ r) = (p; q) ∪ (p; r) p|(q ∪ r) = (p|q) ∪ (p|r).
The notion of refinement, which is central for formal design and verification
methods, is defined as a reflexive and transitive relation p ⇒ q, which holds
iff p’s behaviour is included in that of q. This can be equivalently expressed
using the choice operator:

p⇒ q iff p ∪ q = q.

The refinement ordering has ⊥ as the minimum (empty) behaviour and > is
the maximum (any) behaviour and ⊥ ⇒ > (compare this to logical implication,
where false⇒ true).

An important law combining the above concepts is the exchange law, which
is the most general form of so-called concurrency reduction that is often used
when implementing a concurrent system using interleaving:

(p|q); (p′|q′) ⇒ (p; p′)|(q; q′).
An interesting consequence of the exchange law is

p; q ∪ q; p ⇒ p|q,
that is, one possible way to implement a concurrent composition is by combining
choice with sequential composition.

In this work we focus on the set of operations and laws defined above. We
refer the reader to [10][11], where a much broader exposition can be found.

3 Sets of Maximal Partial Orders

In this section we demonstrate that a set of maximal partial orders is a model
of CKA, which is our first step towards compact models introduced in §4.

108 Andrey Mokhov

3.1 CKA without choice

Consider a partial order P = (E,≺), where E ⊆ E , ≺ ⊆ E × E, and E is a
universe of events that can occur in all possible behaviours. We can define some
elements of CKA as follows:

– Skip 1 is the empty partial order:

1
df
= (∅, ∅).

– Sequential composition of P1 = (E1,≺1) and P2 = (E2,≺2) is

P1;P2
df
= (E1 ∪ E2,≺1 ∪ ≺2 ∪ E1 × E2).

In words, assuming E1 ∩E2 = ∅ we schedule all events of P1 to occur before
all events of P2.

– Concurrent composition of P1 = (E1,≺1) and P2 = (E2,≺2) is

P1|P2
df
= (E1 ∪ E2,≺1 ∪ ≺2).

In words, assuming E1 ∩ E2 = ∅ events of P1 occur concurrently to events
of P2. (It is sometimes useful to consider the case when E1∩E2 6= ∅, where the
above formulation synchronises common events, thus making communication
between P1 and P2 possible.)

– Refinement P1 ⇒ P2 of P1 = (E1,≺1) and P2 = (E2,≺2) is

P1 ⇒ P2
df
= E1 = E2 ∧ ≺2 ⊆≺1,

which means that P1 permits less concurrency than P2.

Theorem 1. Both ; and | as defined above are associative and have 1 as unit;
furthermore, | is commutative, and the exchange law holds.

Proof. Follows from Theorem 3.5 of [11]: (p,s,c) is replaced by (E,≺,(E×E)\≺).

Similarly to the trace model [11], the partial order model of CKA is not powerful
enough for handling the choice operator. The next subsection shows that sets of
partial orders are sufficiently powerful.

3.2 Modelling choice

Consider a set of partial orders S = {P1, P2, ...}, where all constituent partial
orders Pk = (Ek,≺k) are defined on the universe of events E , that is Ek ⊆ E ,
and the set S is downward closed, i.e., if P ∈ S and P ′ ⇒ P then P ′ ∈ S. This
construction is inspired by [11]. The downward closure operation will henceforth
be denoted as dc.

We can now lift previously defined operations on partial orders to sets of
partial orders, as well as introduce the missing elements of CKA, namely ⊥, >
and the choice operator:

How to Mix Concurrency and Choice and Not Explode 109

– Bottom ⊥ is the empty set of partial orders:

⊥ df
= ∅.

– Skip 1 is the singleton set containing the empty partial order:

1
df
= {(∅, ∅)}.

– Top > is the set containing all possible partial orders that can be defined in
universe E .

– Sequential composition of S1 and S2 is

S1;S2
df
= dc ({ P1;P2 | P1 ∈ S1, P2 ∈ S2}) ,

where P1;P2 is sequential composition of partial orders defined previously.
– Concurrent composition of S1 and S2 is

S1|S2
df
= dc ({ P1|P2 | P1 ∈ S1, P2 ∈ S2}) ,

where P1|P2 is concurrent composition of partial orders defined previously.
– Choice between S1 and S2 is simply S1 ∪S2, where ∪ is the usual set union.
– Refinement can now be defined via choice as in Section 2:

S1 ⇒ S2
df
= S1 ∪ S2 = S2,

which can be further simplified to the set inclusion relation:

S1 ⇒ S2
df
= S1 ⊆ S2.

Theorem 2. Sets of downward closed partial orders is a model for CKA.

Proof. (Sketch.) Here we only prove the distributivity properties of ∪ and the
exchange law.

(1) We prove that choice ∪ is distributive by ; by using the definition of ;
splitting set q∪r into sets q and r, and using the properties of downward closure,
as shown in Fig. 3. The proof of choice distributivity by | is analogous.

(2) The exchange law is proved thanks to its linearity, which allows lifting the
law from partial orders to downward closed sets of partial orders as explained
in §3.2 and Appendix B of [11]. The rest of the laws can be verified analogously.

3.3 Reduction to maximal partial orders

As explained in the previous subsection, sets of downward closed partial orders is
a model of CKA. An explicit representation of such sets, however, is very ineffi-
cient and cannot be directly used for verification or synthesis; indeed, 6.6 trillion
different partial orders can be defined on just 10 events!

110 Andrey Mokhov

p; (q ∪ r) = (by definition of ;)
dc ({ a; b | a ∈ p, b ∈ q ∪ r }) = (splitting set q ∪ r into q and r)

dc ({ a; b | a ∈ p, b ∈ q } ∪ { a; b | a ∈ p, b ∈ r }) = (downward closure)
dc ({ a; b | a ∈ p, b ∈ q }) ∪ dc ({ a; b | a ∈ p, b ∈ r }) (by definition of ;)

(p; q) ∪ (p; r).

Fig. 3. Proof sketch for Theorem 2.

The first step towards compact CKA models is to notice that it is sufficient to
keep only maximal partial orders and drop the requirement of downward closure.
A partial order P is maximal with respect to set S, if there is no partial order
P ′ ∈ S such that P 6= P ′ and P ⇒ P ′. Indeed, keeping only maximal partial
orders does not lead to any loss of information, because all omitted partial orders
can be restored by downward closure of the remaining maximal ones.

The above is a significant improvement; however, the number of maximal
partial orders is still exponential. The next section discusses two approaches
that can be used for compact representation of sets of partial orders.

4 Conditional Partial Order Graphs

A CPOG is a directed graph (V,E), whose vertices V and arcs E ⊆ V × V are
labelled with Boolean functions, or conditions, φ : V ∪ E → ({0, 1}X → {0, 1}),
where {0, 1}X → {0, 1} is a Boolean function on a set of Boolean variables X.

Fig. 4 (the top left box) shows an example of a CPOG H containing 4 vertices
V = {a, b, c, d}, 6 arcs and 2 variables X = {x, y}. Vertex d is labelled with
condition x+ y (i.e. ‘x OR y’), arcs (b, c) and (c, b) are labelled with conditions
x and y, respectively. All other vertices and arcs have trivial conditions 1 (trivial
conditions are not shown for clarity); we call such vertices and arcs unconditional.

There are 2|X| possible assignments of variables X, called codes. Each code
induces a subgraph of the CPOG, whereby all the vertices and arcs, whose
conditions evaluate to 0 are removed. For example, by assigning x = y = 0
one obtains graph H00 shown in the bottom right box in Fig. 4; vertex d and
arcs (b, c) and (c, b) have been removed from the graph, because their conditions
are equal to 0 when x = y = 0. Different codes can produce different graphs,
therefore a CPOG with |X| variables can potentially specify a family of 2|X|

graphs. Fig. 4 shows two other members of the family specified by CPOG H:
H01 and H10, corresponding to codes 01 and 10, respectively, which differ only
in the direction of the arc between vertices b and c. Codes will be denoted in a
bold font, e.g. x = 01, to distinguish them from vertices and variables.

It is often useful to focus only on a subset C ⊆ {0, 1}X of codes, which are
meaningful in some sense. For example, code 11 applied to CPOG H in Fig. 4
produces a graph with a loop between vertices b and c, which is undesirable if arcs
are interpreted as causality. A Boolean restriction function ρ : {0, 1}X → {0, 1}
can be used to compactly specify the set C = {x | ρ(x) = 1} and its complement

How to Mix Concurrency and Choice and Not Explode 111

Fig. 4. A CPOG and the associated family of graphs

DC = {x | ρ(x) = 0}, which are often referred to as the care and don’t care
sets [12]. By setting ρ = xy one can disallow the code x = 11 as ρ(11) = 0,
thereby restricting the family of graphs specified by CPOG H to three members
only, which are all shown in Fig. 4.

The size |H| of a CPOG H = (V,E,X, φ, ρ) is defined as:

|H| = |V |+ |E|+ |X|+
∣∣∣∣∣
⋃

z∈V ∪E
φ(z) ∪ ρ

∣∣∣∣∣ ,

where |{f1, f2, . . . , fn}| stands for the size of the smallest circuit [13] that com-
putes all Boolean functions in the set {f1, f2, . . . , fn}.

A CPOG H = (V,E,X, φ, ρ) is well-formed if every allowed code x produces
an acyclic graph Hx. By computing the transitive closure H∗x one can obtain
a strict partial order, an irreflexive and transitive relation on the set of events
corresponding to vertices of Hx.

We can therefore interpret a well-formed CPOG as a specification of a family
of partial orders. We use the term family instead of the more general term set to
emphasise the fact that partial orders are encoded, that is each partial order H∗x is
paired with the corresponding code x. For example, the CPOG shown in Fig. 4
specifies the family comprising the partial order H∗00, where event a precedes
concurrent events b and c, and two total orders H∗01 and H∗10 corresponding to
sequences acbd and abcd, respectively.

112 Andrey Mokhov

It has been demonstrated in [14][15] that CPOGs are a compact model for
representing families of partial orders. In particular, they can be exponentially
more compact than labelled event structures [3] and Petri net unfoldings [16].
Furthermore, for some applications CPOGs provide more comprehensible models
than other widely used formalisms, such as finite state machines and Petri nets,
as has been shown in [7] and [17].

4.1 CPOGs as a compact model for CKA

CPOGs are capable of representing arbitrary sets of partial orders compactly
and can therefore be considered a compact CKA model. Below we establish a
correspondence between CPOG and CKA constructs. Bear in mind that a CPOG
is a quintuple H = (V,E,X, ρ, φ).

– Bottom ⊥ is the empty set of partial orders, which can be obtained by setting
the restriction function ρ to false:

⊥ df
= (∅, ∅, ∅, 0, ∅).

– Skip 1 is the singleton set containing the empty partial order, which should
be permitted by setting ρ = true:

1
df
= (∅, ∅, ∅, 1, ∅).

– Top> is the set containing all partial orders that can be defined in universe E :

> df
= (E , E × E , X, 1, φ),

where X contains a variable vz for each vertex and arc z in the graph, and
φ(z) = vz. In words, top > is described by a most general CPOG that
has different single-literal conditions on every graph element, which allows
to obtain any possible subgraph from it by setting variables vz accordingly.
This definition demonstrate compactness of CPOGs: the size of the definition
is quadratic in E , yet it describes an exponential number of different partial
orders that can be defined on the events in E .

– Sequential composition of CPOGs Hk = (Vk, Ek, Xk, ρk, φk) for k ∈ {1, 2} is

H1;H2
df
= (V1 ∪ V2, E1 ∪ E2 ∪ E1 × E2, X1 ∪X2, ρ1 ∧ ρ2, φseq),

where φseq can be defined as follows:

φseq(v) =

{
φ1(v) if v ∈ V1,
φ2(v) if v ∈ V2.

φseq(u→ v) =

φ1(u→ v) if u→ v ∈ E1,

φ2(u→ v) if u→ v ∈ E2,

1 if u ∈ V1, v ∈ V2,
0 otherwise.

We assume that V1 ∩ V2 = ∅ as before, and X1 ∩X2 = ∅ (the latter may be
relaxed in case we want to allow H1 and H2 to synchronise on their choices).

How to Mix Concurrency and Choice and Not Explode 113

Fig. 5. CPOG models for birmutations B1, B2 and B3.

– Concurrent composition of CPOGs is

H1|H2
df
= (V1 ∪ V2, E1 ∪ E2, X1 ∪X2, ρ1 ∧ ρ2, φpar),

where φpar can be defined as follows:

φpar(v) =

{
φ1(v) if v ∈ V1,
φ2(v) if v ∈ V2.

φpar(u→ v) =

φ1(u→ v) if u→ v ∈ E1,

φ2(u→ v) if u→ v ∈ E2,

0 otherwise.

We assume that V1 ∩ V2 = ∅ as before (unless we want to allow H1 and H2

to synchronise on their events), and X1 ∩X2 = ∅ (unless we want to allow
H1 and H2 to synchronise on their choices).

– Choice between H1 = (V1, E1, X1, ρ1, φ1) and H2 = (V2, E2, X2, ρ2, φ2) is

H1 ∪H2
df
= (V1 ∪ V2, E1 ∪ E2, X1 ∪X2, ρ1 ⊕ ρ2, φpar),

where X1 ∩X2 = ∅ (this requirement can be relaxed if ρ1 ∧ ρ2 = 0, that is
H1 and H2 do not share any codes).

– RefinementH1 ⇒ H2 forH1 = (V1, E1, X1, ρ1, φ1) andH2 = (V2, E2, X2, ρ2, φ2)
can be defined as

H1 ⇒ H2
df
=

∧
v∈V1

ρ1φ1(v)⇒ ρ2φ2(v)
∧∧

u→v∈E2
ρ2φ2(u→ v)⇒ ρ1φ1(u→ v).

In words, if an event v appears in H1 it must also appear in H2, and if there
is a dependency constraint u→ v in H2 then it must also exist in H1.

The above completes the correspondence between CPOGs and CKA. Impor-
tantly, the defined constructs are very compact: they are either linear (parallel
composition, choice, refinement) or quadratic (sequential composition, due to
quadratic explosion of newly added arcs E1×E2; see [17], where this issue is re-
solved by using dummy vertices), despite potentially operating on exponentially
large families of partial orders.

Fig. 5 shows compact CPOG models for birmutations: Bn is described by a
CPOG with n vertices, n2−n arcs, and n− 1 variables X = {x1, x2, · · · , xn−1},
such that each birmutation corresponds to one possible code. For example, the
code of the birmutation cab ∈ B3 is (x1, x2) = 01. The construction is a direct
translation of the recursive case Bn = (en◦Bn−1)∪(Bn−1◦en) from Definition 1.

114 Andrey Mokhov

5 Final Remarks

The paper has demonstrated that choice can lead to larger state space explosion
compared to concurrency, and showed how to avoid the state explosion by com-
bining partial orders with Boolean algebra. As a concrete example, the paper
described how CPOGs can be used as compact CKA models with potential ap-
plications in verification and synthesis of CKA specifications. Partial automation
has already been implemented and reported in [14][17]. The future work includes
validation of the approach on real-life case studies.

Algebra of Parameterised Graphs [17] provided an algebraic characterisation
for CPOGs; the algebra satisfies the CKA laws defined in Section 2, thereby
providing an alternative demonstration that CPOGs are a model for CKA.

CPOGs have been used in a number of applications, in particular for compact
representation of processor instruction sets [7], synthesis of on-chip communica-
tion controllers [18], and in process mining [19], where they have shown superior
performance compared to conventional approaches due to their compactness. We
conjecture that CPOGs may be a generally useful CKA model that can lead to
efficient verification and synthesis algorithms.

Acknowledgement

This work was conducted during a 6-month research visit to Microsoft Research
Cambridge that was funded by Newcastle University, EPSRC (grant reference
EP/K503885/1), and Microsoft Research. The author would like to thank Tony
Hoare for his comments on an earlier draft of this paper.

References

1. A. Valmari. The state explosion problem. In Lectures on Petri nets I: Basic models,
pages 429–528. Springer, 1998.

2. A. Mazurkiewicz. Trace theory. In Petri nets: applications and relationships to
other models of concurrency, pages 278–324. Springer, 1987.

3. M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains,
part I. Theoretical Computer Science, 13:85–108, 1981.

4. J. Esparza. Decidability and complexity of petri net problem – an introduction.
In Lectures on Petri Nets I: Basic Models, pages 374–428. Springer, 1998.

5. Maciej Koutny and Brian Randell. Structured occurrence nets: A formalism for
aiding system failure prevention and analysis techniques. Fundamenta Informati-
cae, 97(1-2):41–91, 2009.

6. R. Milner. A calculus of communicating systems, volume 92. Springer Verlag
Berlin, 1980.

7. A. Mokhov. Conditional Partial Order Graphs. PhD thesis, Newcastle University,
2009.

8. A. Mokhov and A. Yakovlev. Conditional partial order graphs: Model, synthesis,
and application. IEEE Trans. Computers, 59(11):1480–1493, 2010.

9. George Boole. An investigation of the laws of thought: on which are founded the
mathematical theories of logic and probabilities. Dover Publications, 1854.

How to Mix Concurrency and Choice and Not Explode 115

10. T. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene Algebra and
its Foundations. The Journal of Logic and Algebraic Programming, 80(6):266–296,
2011.

11. T. Hoare, S. van Staden, B. Möller, G. Struth, J. Villard, H. Zhu, and P. O’Hearn.
Developments in concurrent kleene algebra. pages 1–18, 2014.

12. Giovanni de Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill
Higher Education, 1994.

13. Ingo Wegener. The Complexity of Boolean Functions. Johann Wolfgang Goethe-
Universitat, 1987.

14. H. Ponce de León and A. Mokhov. Building bridges between sets of partial orders.
In International Conference on Language and Automata Theory and Applications
(LATA), 2015.

15. Hernán Ponce de León and Andrey Mokhov. Compact and efficiently verifiable
models for concurrent systems. Formal Methods in System Design, pages 1–25.

16. K. McMillan. Using unfoldings to avoid the state explosion problem in the veri-
fication of asynchronous circuits. In Computer Aided Verification, pages 164–177.
Springer, 1993.

17. A. Mokhov and V. Khomenko. Algebra of Parameterised Graphs. ACM Transac-
tions on Embedded Computing, 13(4s), 2014.

18. Crescenzo D’Alessandro, Andrey Mokhov, Alex Bystrov, and Alex Yakovlev. De-
lay/phase regeneration circuits. In 13th IEEE International Symposium on Asyn-
chronous Circuits and Systems (ASYNC), 2007., pages 105–116. IEEE, 2007.

19. Andrey Mokhov, Josep Carmona, and Jonathan Beaumont. Mining conditional
partial order graphs from event logs. In Transactions on Petri Nets and Other
Models of Concurrency XI, pages 114–136. Springer, 2016.

116 Andrey Mokhov

