
Memorable Occurrences

Brian Randell

School of Computing, Newcastle University, Newcastle upon Tyne, UK

Brian.Randell@ncl.ac.uk

My first interaction with Maciej Koutny was rather one-sided, and indeed unknown to me at

the time! This occurrence arose from a project that I initiated at Newcastle University in

1977, on the construction and exploitation of an experimental highly parallel real time control

system. The project involved a recently-purchased large collection of hardware that incorpo-

rated a half-a-dozen mobile actuators which were to be controlled by a minicomputer and

several microcomputers. The movements of the actuators were strictly constrained, and the

whereabouts of the actuators relative to their constraints could be monitored with the aid of

fifty or so fixed sensors. I should mention that uninformed spectators tended to view, and

refer to, this experimental highly parallel real time digital control system as a model railway

or train set, in which the movement constraints (which they termed “track sections”, which

were thirty-two in number) were also the means of delivering power to, and hence causing

movement of, selected actuators (or “trains”), between sensors (“stations”). It was as far as I

know the first such computer-controlled model railway, at least in any computer science de-

partment, anywhere. (The idea for it came from a computer-controlled model railway I’d

seen at Toronto University while on sabbatical there – but this was a much simpler system,

that merely demonstrated the speed control of just a single engine.)

This was long before the availability of model railways embodying a microprocessor in

each engine that could be controlled by signals sent along the rails. But we realised that just

a single computer selectively controlling the power supply to each of the set of electrically-

isolated track sections, so that a number of “dumb” trains (we acquired six) could be directed

to travel independently, would provide a challenging concurrent real time programming en-

vironment. In this environment each train (actually just an engine – we didn’t bother with

passenger carriages or goods wagons) was in effect an independent process, and one of the

most obvious interesting problems was how to control these “processes” so as to prevent

them from crashing into each other! In fact, potential collisions between the trains were fairly

easily prevented, at the cost of occasional partial or complete system deadlocks.

The problem of how to avoid such deadlocks, while facilitating multiple concurrent train

movements along pre-defined journeys, was one that Phil Merlin, a visiting colleague, and I

investigated and solved, fully and fairly quickly (albeit somewhat informally), using the con-

cepts of occurrence nets, the acyclic directed graph formalism, allied to Petri Nets, with

which he was already familiar [HOLT1968]. (Phil was a brilliant young researcher from IBM

Research and the Technion, Haifa, who was to die tragically young, just two years later. His

memory is honoured to this day at the Technion by the Annual Dr. Philip M. Merlin Memo-

rial Lecture and Prize Award.) We documented our solution in a brief technical note, and left

it at that.

A number of other people elsewhere took up the study of what came to be called “The

Merlin-Randell train control problem”. It was only years later that I learnt that Maciej Koutny

had taken this problem as the subject of his PhD research, and that I saw – I’m afraid I cannot

say I read – his impressively lengthy thesis O Problemie Pociago ́w Merlina-Randella

[KOUT1984A].

A year later, Maciej became a Research Associate at Newcastle, where his research career

– subsequently first as a Lecturer, then Reader, and since 2000 as a Professor of Computing

Science and head of Newcastle’s theoretical computing group – has flourished ever since.

For a while he continued his study of the Merlin-Randell problem — in [KOUT1985] he

provided perhaps the best informal statement of the problem in the following terms:

“There is a finite set of trains and a layout. The layout is represented by an

undirected graph, the nodes of which represent places where trains can re-

side (stations), the arcs of which represent possible moves. Each station can

hold only one train. Each train has a program to follow consisting of a di-

rected path through the graph. The train can leave a station when the station

it is immediately to travel to is empty. The problem is to find a synchronisation

among train movements which allows parallel movements where possible and

enables each journey to be completed.”

This problem of finding such sets of synchronised train movements, which was in essence

that of calculating a suitable occurrence net, remained in vogue for quite a while, much like

the “Dining Philosophers Problem” before it; I took no part in this research, but I did spend

quite a bit of time on various issues to do with controlling the train set, though my main

concern remained that of system dependability.

Newcastle’s First Train Set

Newcastle’s research on dependability started in 1970, and initially concerned the problem

of tolerating residual accidental design faults in simple sequential programs. (I had formed

the then unfashionable view that current work on proving programs correct would not suffice

for large complex programs, and could perhaps be usefully complemented by work on soft-

ware fault tolerance.) From this, we had soon moved on to considering the problems of hard-

ware and malicious faults, not just software faults, in concurrent programs, and then in dis-

tributed computing systems.

Phil Merlin enthusiastically joined in on this research while he was with us, and worked

with me on a particular (backward) error recovery problem, i.e. the task of restoring a dis-

tributed system to a previous state which it is believed or hoped preceded the occurrence of

any existing errors. Our work was based on the use of what we called “Occurrence Graphs”,

118 Brian Randell

which we described as similar to occurrence nets, differing mainly in that we viewed an oc-

currence graph as a dynamic structure that was “generated” as the system that it was model-

ling was executed, and which contained certain additional information indicating which prior

states have been archived and so were restorable.

We tackled the problems arising from concurrency in their full generality, so as to deal

with the possibility of there being multiple concurrent faults, some even occurring during

error recovery. The solution we produced was a decentralized recovery mechanism that we

entitled the “chase protocol”. We assumed that each node of a distributed system would hold

a record of the part of the occurrence graph that related to its contribution to the overall

system behaviour. Then each node would execute a protocol that had the effect of causing

error recovery commands to “chase” through the dynamically-growing occurrence graph so

as to overtake ongoing error propagations, and the nodes to co-operate in identifying a con-

sistent set of restorable states [MERL1978].

My third involvement with occurrence nets was in collaboration with Eike Best, whilst he

was one of Peter Lauer’s PhD students, in Maciej’s research group at Newcastle. This re-

sulted in the development of a formal model of atomicity [BEST1981]. One of our starting

points was David Lomet’s work on “Atomic Actions” [LOME1977]. This work was under-

taken during David’s sabbatical at Newcastle from the IBM Research Center at Yorktown

Heights, and involved extending the recovery block concept [HORN1974]. (This involved

the use of a “recovery cache” to provide programs with a means of undoing all of the effects

of a recovery block after an error had been detected, in order that an alternative program

strategy could be attempted.)

“Atomic actions are similar to procedures . . . And in an isolated setting, they behave just

like procedures. When concurrent activity is present, the body of an atomic action continues

to behave as it did in isolation, while an ordinary procedure, if it accesses shared state, may

behave very differently” [LOME1977].

Thus atomic actions allowed the recovery block concept to work in the presence of con-

currently executing activities. (They can be viewed as the programming language equivalent

to the transaction concept, an idea that the database community was also developing at this

time [LOME2011].)

Eike Best and I pursued this idea of an atomic action as a programming concept, rather

than a “hardware feature” or a “synchronisation method”, and inspired by [MERL1978] were

led to propose a formal model for atomic actions based on what we termed structured occur-

rence graphs. Using an occurrence net to represent a program’s activities, the dynamic struc-

ture arising from any single programmer-defined atomic action can be collapsed to a single

event. Multiple co-existing such collapsings can be performed, as long as the graph remains

cycle-free. The concept of structured occurrence graphs involves the imposition of a nested

structure of possible collapsings, i.e. of atomic actions, on a conventional occurrence graph.

Being nested, one can be sure that multiple co-existing collapsings of any the so-identified

sub-graphs would not introduce any cycles into the graph.

My most recent interactions with Maciej again have centred on occurrence nets. A very

fruitful, indeed memorable, collaboration ensued when Maciej saw how I was using little

occurrence net diagrams to explore whether and how such nets could be used to model the

activity of an evolving system. I was actually reconsidering, yet again, the fundamental de-

pendability concepts and definitions that I and colleagues have developed over many years,

and whose most complete description is in [AVIZ2004].

I had belatedly realised that our notions about ‘fault/error/failure chains’ did not cope well

with situations in which the set of components (i.e. sub-systems) in a system of systems was

Memorable Occurrences 119

for whatever reason changing. Examples include a large hardware system which suffers com-

ponent break-downs, reconfigurations and replacements, a large distributed system whose

software is continually updated (or patched), a multi-organisational computer system whose

human operators undergo regular re-training, or a typical large bureaucracy. However, the

little example I often used in my initial thought experiments was that of the confusion that

could be caused to someone struggling to create a WORD document when unaware of the

fact that the WORD system being used was itself suffering a succession of faults and up-

dates!)

I was trying to use occurrence nets to represent both the activities of such a system, and

of whatever was causing it to evolve. I was sketching diagrams that involved multiple inter-

related occurrence nets, the relationship I initially tried to formulate being that of “is a be-

haviour of”. The idea was that one occurrence net would portray the activity of the system

that was in fact evolving, and another net would portray the activity of the entity (system)

that was controlling this evolution. States portrayed in this second (in fact more abstract) net

corresponded to the different versions of the evolving system, and were related to the relevant

sections of the evolving system’s occurrence net. Maciej saw my diagrams, and said “That

looks interesting – can I join in?” Needless to say, I warmly welcomed this suggestion!

This led to a much-needed clarification, and a belated formalization, of the concept of

behaviour relations, and to our defining a number of other relations between occurrence nets

in order to produce what we called “Structured Occurrence Nets” (SONs), as a means of

describing the activities of an evolving system and aiding the analysis of its failures. The

other types of relations that we defined enabled the activities of separate sub-systems to be

distinguished from each other, and provided various means of abstraction, both temporal and

spatial, that aided the representation and analysis of complex systems. In total what we had

developed was a very general formal notation for representing and investigating complex

causalities, a notation that significantly extended the expressive power and practicality of

occurrence nets.

These ideas have been documented in a number of papers, e.g. [RAND2007],

[KOUT2009], [RAND2011], and Maciej has led an EPSRC-sponsored research project with

the rather contrived title and acronym “UNderstanding Complex eVolution through struc-

tured behaviours (UNCOVER)”. This project extended the initial definitions of SONs with

new features related to alternate behaviours and timing information [BHAT2016], and im-

plemented all the basic functionalities in a protoype tool called SONCraft [LIRA2018]. This

tool, which was designed and implemented by Bowen Li, provides a user-friendly graphical

interface which facilitates model entry, supports interactive visual simulation, and enables

the use of a set of analytical tools, e.g. for reachability analysis. (SONCraft is based on Work-

craft, a framework for interpreted graph models, a product of Newcastle’s joint EEE/CS

Asynchronous Systems Laboratory – see http://workcraft.org/, which provides download

links for SONCraft.)

The original motivation for SONs and for building SONCraft was the problem of analyz-

ing the causes of failures in complex computer systems. But in fact the SON ideas, and the

SONCraft tool are as indicated above very general in nature, and essentially just about the

representation of causality. Indeed one of the application areas we found ourselves concen-

trating on was in fact criminal investigation. This involved our viewing criminals or criminal

gangs as ‘systems’, and their crimes as ‘failures’! Our view is that portrayals of the criminal

activities that result in crimes, i.e. of the observed or inferred causality links between crimi-

nals’ various actions, are potentially useful both for identifying the criminals, and for por-

traying and explaining the evidence-based reasoning that will later be needed to convict them.

120 Brian Randell

The UNCOVER project has thus had numerous very useful interactions with a number of

police and other investigative agencies, and tool suppliers to these agencies. As a result, ra-

ther pleasingly, support has recently been obtained from Innovate UK for a two-year

“Knowledge Transfer Project” that will enable the collaborative incorporation by the Bristol-

based company Clue Computing Co. of SONcraft-like facilities into their CLUE investiga-

tion support system.

In fact our work together on SONs has been the most memorable of the various occur-

rences I have described here of my very fruitful interactions with Maciej over the years. What

is particularly pleasing is that it is still continuing, as we explore the possible ramifications

of what we have come to call “structured causality”.

References

[AVIZ2004] A. Avizienis A, J.-C. Laprie, B. Randell, C. Landwehr: Basic concepts and taxonomy of

dependable and secure computing. IEEE Transactions on Dependable and Secure Compu-

ting 2004, 1(1), pp.11-33.

[BHAT2016] A. Bhattacharyya, B. Li, B. Randell: Time in Structured Occurrence Nets. In: Interna-

tional Workshop on Petri Nets and Software Engineering (PNSE’16), pp.35-55.

[BEST1981] E. Best, B. Randell: A Formal Model of Atomicity in Asynchronous Systems. Acta Infor-

matica 16 (1981) pp. 93-124.

[HOLT1968] A.W.Holt, R.M.Shapiro, H.Saint, S.Marshall. Information System Theory Project. Report

RADC-TR-68-305, US Air Force, Rome Air Development Center (1968).

[HORN1974] J.J. Horning, H.C. Lauer, P.M. Melliar-Smith, B. Randell: A Program Structure for Error

Detection and Recovery, in International Symposium on Operating Systems: Theoretical and Practical

Aspects. (Springer Verlag, 1974), pp. 171-187.

[KOUT1984A] M. Koutny: O Problemie Pociago ́w Merlina-Randella (in Polish). PhD Thesis, De-

partment of Mathematics, Warsaw University of Technology, Warsaw, Poland (1984)

[KOUT1984] M. Koutny: On the Merlin-Randell Problem of Train Journeys. In: Proc. of 6th Interna-

tional Symposium on Programming, Springer Verlag, Lecture Notes in Computer Science 167 (1984)

179–190.

[KOUT2009] M. Koutny, B. Randell: Structured Occurrence Nets: A formalism for aiding system fail-

ure prevention and analysis techniques. Fundamenta Informaticae 2009, 97(1-2), 41-91.

[LIRA2018] B. Li, B. Randell, A. Bhattacharyya, T. Alharbi, M. Koutny: SONCraft – A Tool for Con-

struction, Simulation and Analysis of Structured Occurrence Nets. In: Proc. ACSD (2018).

[LOME1977] D.B. Lomet: Process Structuring, Synchronization and Recovery Using Atomic Actions.

In: Language Design for Reliable Software, pp. 128-137.

[LOME2011] D.B. Lomet: Transactions: From Local Atomicity to Atomicity in the Cloud. In Depend-

able and Historic Computing. Springer (2011) pp.38-51.

[MERL1978] P. Merlin, B. Randell: State Restoration in Distributed Systems. In: FTCS-8, IEEE Tou-

louse (1978) pp. 129-137.

[RAND2007] B. Randell, M. Koutny: Failures – Their Definition, Modelling and Analysis. In: Theo-

retical Aspects of Computing: 4th International Colloquium (ICTAC). 2007, Macao, China: Springer-

Verlag.

[RAND2011] B. Randell: Occurrence Nets Then and Now – The Path to Structured Occurrence Nets.

In: Application and Theory of Petri Nets. 2011, Springer-Verlag.

Memorable Occurrences 121

