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My first interaction with Maciej Koutny was rather one-sided, and indeed unknown to me at 

the time! This occurrence arose from a project that I initiated at Newcastle University in 

1977, on the construction and exploitation of an experimental highly parallel real time control 

system. The project involved a recently-purchased large collection of hardware that incorpo-

rated a half-a-dozen mobile actuators which were to be controlled by a minicomputer and 

several microcomputers. The movements of the actuators were strictly constrained, and the 

whereabouts of the actuators relative to their constraints could be monitored with the aid of 

fifty or so fixed sensors. I should mention that uninformed spectators tended to view, and 

refer to, this experimental highly parallel real time digital control system as a model railway 

or train set, in which the movement constraints (which they termed “track sections”, which 

were thirty-two in number) were also the means of delivering power to, and hence causing 

movement of, selected actuators (or “trains”), between sensors (“stations”). It was as far as I 

know the first such computer-controlled model railway, at least in any computer science de-

partment, anywhere. (The idea for it came from a computer-controlled model railway I’d 

seen at Toronto University while on sabbatical there – but this was a much simpler system, 

that merely demonstrated the speed control of just a single engine.) 

This was long before the availability of model railways embodying a microprocessor in 

each engine that could be controlled by signals sent along the rails. But we realised that just 

a single computer selectively controlling the power supply to each of the set of electrically-

isolated track sections, so that a number of “dumb” trains (we acquired six) could be directed 

to travel independently, would provide a challenging concurrent real time programming en-

vironment. In this environment each train (actually just an engine – we didn’t bother with 

passenger carriages or goods wagons) was in effect an independent process, and one of the 

most obvious interesting problems was how to control these “processes” so as to prevent 

them from crashing into each other! In fact, potential collisions between the trains were fairly 

easily prevented, at the cost of occasional partial or complete system deadlocks.  

The problem of how to avoid such deadlocks, while facilitating multiple concurrent train 

movements along pre-defined journeys, was one that Phil Merlin, a visiting colleague, and I 

investigated and solved, fully and fairly quickly (albeit somewhat informally), using the con-

cepts of occurrence nets, the acyclic directed graph formalism, allied to Petri Nets, with 

which he was already familiar [HOLT1968]. (Phil was a brilliant young researcher from IBM 

Research and the Technion, Haifa, who was to die tragically young, just two years later. His 

memory is honoured to this day at the Technion by the Annual Dr. Philip M. Merlin Memo-

rial Lecture and Prize Award.) We documented our solution in a brief technical note, and left 

it at that. 

A number of other people elsewhere took up the study of what came to be called “The 

Merlin-Randell train control problem”. It was only years later that I learnt that Maciej Koutny 

had taken this problem as the subject of his PhD research, and that I saw – I’m afraid I cannot 

say I read – his impressively lengthy thesis O Problemie Pociago ́w Merlina-Randella 

[KOUT1984A]. 



A year later, Maciej became a Research Associate at Newcastle, where his research career 

– subsequently first as a Lecturer, then Reader, and since 2000 as a Professor of Computing 

Science and head of Newcastle’s theoretical computing group – has flourished ever since.  

For a while he continued his study of the Merlin-Randell problem — in [KOUT1985] he 

provided perhaps the best informal statement of the problem in the following terms:  

“There is a finite set of trains and a layout. The layout is represented by an 

undirected graph, the nodes of which represent places where trains can re-

side (stations), the arcs of which represent possible moves. Each station can 

hold only one train. Each train has a program to follow consisting of a di-

rected path through the graph. The train can leave a station when the station 

it is immediately to travel to is empty. The problem is to find a synchronisation 

among train movements which allows parallel movements where possible and 

enables each journey to be completed.”  

This problem of finding such sets of synchronised train movements, which was in essence 

that of calculating a suitable occurrence net, remained in vogue for quite a while, much like 

the “Dining Philosophers Problem” before it; I took no part in this research, but I did spend 

quite a bit of time on various issues to do with controlling the train set, though my main 

concern remained that of system dependability.  

 

Newcastle’s First Train Set 

Newcastle’s research on dependability started in 1970, and initially concerned the problem 

of tolerating residual accidental design faults in simple sequential programs. (I had formed 

the then unfashionable view that current work on proving programs correct would not suffice 

for large complex programs, and could perhaps be usefully complemented by work on soft-

ware fault tolerance.) From this, we had soon moved on to considering the problems of hard-

ware and malicious faults, not just software faults, in concurrent programs, and then in dis-

tributed computing systems.  

Phil Merlin enthusiastically joined in on this research while he was with us, and worked 

with me on a particular (backward) error recovery problem, i.e. the task of restoring a dis-

tributed system to a previous state which it is believed or hoped preceded the occurrence of 

any existing errors. Our work was based on the use of what we called “Occurrence Graphs”, 
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which we described as similar to occurrence nets, differing mainly in that we viewed an oc-

currence graph as a dynamic structure that was “generated” as the system that it was model-

ling was executed, and which contained certain additional information indicating which prior 

states have been archived and so were restorable.  

We tackled the problems arising from concurrency in their full generality, so as to deal 

with the possibility of there being multiple concurrent faults, some even occurring during 

error recovery. The solution we produced was a decentralized recovery mechanism that we 

entitled the “chase protocol”. We assumed that each node of a distributed system would hold 

a record of the part of the occurrence graph that related to its contribution to the overall 

system behaviour. Then each node would execute a protocol that had the effect of causing 

error recovery commands to “chase” through the dynamically-growing occurrence graph so 

as to overtake ongoing error propagations, and the nodes to co-operate in identifying a con-

sistent set of restorable states [MERL1978]. 

My third involvement with occurrence nets was in collaboration with Eike Best, whilst he 

was one of Peter Lauer’s PhD students, in Maciej’s research group at Newcastle. This re-

sulted in the development of a formal model of atomicity [BEST1981]. One of our starting 

points was David Lomet’s work on “Atomic Actions” [LOME1977]. This work was under-

taken during David’s sabbatical at Newcastle from the IBM Research Center at Yorktown 

Heights, and involved extending the recovery block concept [HORN1974]. (This involved 

the use of a “recovery cache” to provide programs with a means of undoing all of the effects 

of a recovery block after an error had been detected, in order that an alternative program 

strategy could be attempted.)  

“Atomic actions are similar to procedures . . . And in an isolated setting, they behave just 

like procedures. When concurrent activity is present, the body of an atomic action continues 

to behave as it did in isolation, while an ordinary procedure, if it accesses shared state, may 

behave very differently” [LOME1977].  

Thus atomic actions allowed the recovery block concept to work in the presence of con-

currently executing activities. (They can be viewed as the programming language equivalent 

to the transaction concept, an idea that the database community was also developing at this 

time [LOME2011].) 

Eike Best and I pursued this idea of an atomic action as a programming concept, rather 

than a “hardware feature” or a “synchronisation method”, and inspired by [MERL1978] were 

led to propose a formal model for atomic actions based on what we termed structured occur-

rence graphs. Using an occurrence net to represent a program’s activities, the dynamic struc-

ture arising from any single programmer-defined atomic action can be collapsed to a single 

event. Multiple co-existing such collapsings can be performed, as long as the graph remains 

cycle-free. The concept of structured occurrence graphs involves the imposition of a nested 

structure of possible collapsings, i.e. of atomic actions, on a conventional occurrence graph. 

Being nested, one can be sure that multiple co-existing collapsings of any the so-identified 

sub-graphs would not introduce any cycles into the graph. 

My most recent interactions with Maciej again have centred on occurrence nets. A very 

fruitful, indeed memorable, collaboration ensued when Maciej saw how I was using little 

occurrence net diagrams to explore whether and how such nets could be used to model the 

activity of an evolving system. I was actually reconsidering, yet again, the fundamental de-

pendability concepts and definitions that I and colleagues have developed over many years, 

and whose most complete description is in [AVIZ2004].  

I had belatedly realised that our notions about ‘fault/error/failure chains’ did not cope well 

with situations in which the set of components (i.e. sub-systems) in a system of systems was 
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for whatever reason changing. Examples include a large hardware system which suffers com-

ponent break-downs, reconfigurations and replacements, a large distributed system whose 

software is continually updated (or patched), a multi-organisational computer system whose 

human operators undergo regular re-training, or a typical large bureaucracy. However, the 

little example I often used in my initial thought experiments was that of the confusion that 

could be caused to someone struggling to create a WORD document when unaware of the 

fact that the WORD system being used was itself suffering a succession of faults and up-

dates!)  

I was trying to use occurrence nets to represent both the activities of such a system, and 

of whatever was causing it to evolve. I was sketching diagrams that involved multiple inter-

related occurrence nets, the relationship I initially tried to formulate being that of “is a be-

haviour of”. The idea was that one occurrence net would portray the activity of the system 

that was in fact evolving, and another net would portray the activity of the entity (system) 

that was controlling this evolution. States portrayed in this second (in fact more abstract) net 

corresponded to the different versions of the evolving system, and were related to the relevant 

sections of the evolving system’s occurrence net. Maciej saw my diagrams, and said “That 

looks interesting – can I join in?” Needless to say, I warmly welcomed this suggestion! 

This led to a much-needed clarification, and a belated formalization, of the concept of 

behaviour relations, and to our defining a number of other relations between occurrence nets 

in order to produce what we called “Structured Occurrence Nets” (SONs), as a means of 

describing the activities of an evolving system and aiding the analysis of its failures. The 

other types of relations that we defined enabled the activities of separate sub-systems to be 

distinguished from each other, and provided various means of abstraction, both temporal and 

spatial, that aided the representation and analysis of complex systems. In total what we had 

developed was a very general formal notation for representing and investigating complex 

causalities, a notation that significantly extended the expressive power and practicality of 

occurrence nets. 

These ideas have been documented in a number of papers, e.g. [RAND2007], 

[KOUT2009], [RAND2011], and Maciej has led an EPSRC-sponsored research project with 

the rather contrived title and acronym “UNderstanding Complex eVolution through struc-

tured behaviours (UNCOVER)”. This project extended the initial definitions of SONs with 

new features related to alternate behaviours and timing information [BHAT2016], and im-

plemented all the basic functionalities in a protoype tool called SONCraft [LIRA2018]. This 

tool, which was designed and implemented by Bowen Li, provides a user-friendly graphical 

interface which facilitates model entry, supports interactive visual simulation, and enables 

the use of a set of analytical tools, e.g. for reachability analysis. (SONCraft is based on Work-

craft, a framework for interpreted graph models, a product of Newcastle’s joint EEE/CS 

Asynchronous Systems Laboratory – see http://workcraft.org/, which provides download 

links for SONCraft.)  

The original motivation for SONs and for building SONCraft was the problem of analyz-

ing the causes of failures in complex computer systems. But in fact the SON ideas, and the 

SONCraft tool are as indicated above very general in nature, and essentially just about the 

representation of causality. Indeed one of the application areas we found ourselves concen-

trating on was in fact criminal investigation. This involved our viewing criminals or criminal 

gangs as ‘systems’, and their crimes as ‘failures’! Our view is that portrayals of the criminal 

activities that result in crimes, i.e. of the observed or inferred causality links between crimi-

nals’ various actions, are potentially useful both for identifying the criminals, and for por-

traying and explaining the evidence-based reasoning that will later be needed to convict them.  
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The UNCOVER project has thus had numerous very useful interactions with a number of 

police and other investigative agencies, and tool suppliers to these agencies. As a result, ra-

ther pleasingly, support has recently been obtained from Innovate UK for a two-year 

“Knowledge Transfer Project” that will enable the collaborative incorporation by the Bristol-

based company Clue Computing Co. of SONcraft-like facilities into their CLUE investiga-

tion support system. 

In fact our work together on SONs has been the most memorable of the various occur-

rences I have described here of my very fruitful interactions with Maciej over the years. What 

is particularly pleasing is that it is still continuing, as we explore the possible ramifications 

of what we have come to call “structured causality”. 
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