
Interval Semantics Generalized

Thomas Chatain1, Stefan Haar1, Löıc Paulevé2, and Stefan Schwoon1

1 LSV, ENS Paris-Saclay, INRIA, CNRS, France
2 CNRS & LRI UMR 8623, Univ. Paris-Sud – CNRS,

Université Paris-Saclay, 91405 Orsay, France

1 Introduction

This article relates ideas published in [12], and which originated in joint work
with Maciej Koutny in [11]. In the latter, we had been investigating the pos-
sibilities of joint firing of transitions in contextual Petri nets, finding a firing
rule that goes beyond step semantics. The resulting interval semantics works
under the assumption that for every transition, some time passes between the
verification of input tokens, and their actual consumption (+ the production of
output tokens): an interval during which the same tokens may authorize firings
in parallel. By accounting for this, the interval semantics allows all transitions
possible under step and individual semantics, and further firings as well, making
new states and behaviours accessible.

Here, we transfer these ideas to the domain of boolean networks. Note that all
proofs can be found in [12]. Boolean networks model dynamics of systems where
several components (or nodes) interact. They specify for each node an update
function to determine its next value according to the configuration (global state)
of the network. Boolean networks are widely used to model dynamics of biological
networks, such as gene networks and cellular signalling pathways.

The scheduling of nodes updates is known to have a strong influence on the
reachable configurations of the networks. The relationships between different
updating modes received a lot of attention both in transition-centered models of
networks such as Petri nets on the one hand, [15,6,8,28,29] (in particular when
read arcs are used to model finely the update mechanisms), and function-centered
models such as cellular automata [23,5] and Boolean networks [16,26,13,3,19,20],
on which this article is focused. Notice that transformations exist from BNs to
Petri nets [24,9,10] showing the strong relationship between the two formalisms.

The updating modes usually considered for Boolean networks are the follow-
ing: the synchronous updating, where all nodes are updated simultaneously, gen-
erating a deterministic dynamics; the (fully) asynchronous updating, where only
one node can be updated at a time, this node being chosen non-deterministically.
Asynchronous updating generates non-deterministic dynamics due to the differ-
ent ordering of updates, which can be interpreted as considering in the same
model different update speeds. Then, the generalized asynchronous updating
allows all the combinations of simultaneous updates subsets of nodes, ranging
from single nodes (matching asynchronous transitions) to the full set of nodes
(matching synchronous transitions). Other updating modes like sequential or



block sequential have also been considered in the literature on cellular automata
and Boolean networks [5,3], and usually lead to transitions allowed by the gen-
eralized asynchronous updating.

When a Boolean network aims at modelling a dynamical system having time
features, as it is typically the case for biological systems, the choice of the up-
date mode is crucial as it determines the set of configurations reachable from a
given initial configuration. In applications, it is usual to assess the accordance
of a Boolean network with the concrete system by checking if the observed con-
figurations are indeed reachable in the Boolean network. Whenever it is not the
case, it typically means that the designed Boolean functions do not model the
system correctly, and thus should be modified before further model analysis.

Given that only partial information is available in general on the actual
velocity of different nodes and transitions in the concrete system, a common
approach is to choose the most general updating mode, i.e., the one entailing as
few constraints as possible regarding the unknown scheduling of node updates.
In such a setting, and because we abstract away many parameters of the system
dynamics, we expect that the Boolean network models an over-approximation of
possible transitions, i.e., that any reachable configuration in the concrete system
should be reachable in the Boolean network.

In this paper, we show that the generalized asynchronous updating, subsum-
ing synchronous and asynchronous updating, can miss transitions, hence reach-
able configurations, which correspond to particular, but plausible, behaviours.
Thus, the resulting analysis can be misleading on the absence of some behaviours,
notably regarding the reachability of attractors (configurations reachable on the
long-run), and may lead to reject valid models.

The proposed updating mode for Boolean networks, called interval seman-
tics, aims at enabling the reachability of configurations by considering a novel,
generalized update scheduling policy. Essentially, the interval semantics consid-
ers the possibility of a delay between the triggering of the update of a node, and
its actual completion: this models the case of species whose value changes can
be slow.

The interval semantics can be expressed as the asynchronous updating over a
Boolean network which encodes the decoupling of update triggering and update
application. Therefore, our approach allows the definition of an asynchronous
Boolean network which simulates the general asynchronous dynamics of the orig-
inal Boolean network, while including additional and plausible behaviours, and
still preserving important dynamical constraints on fixpoints and causality of
transitions: the fixpoints of the interval semantics form a one-to-one relationship
with the fixpoints of the generalized asynchronous updating.

We illustrate the benefit of the interval semantics on a small example of
Boolean network, which is actually embedded in many models of biological net-
works (e.g., [17,18,27]). Therefore, the analysis of dynamics of these biological
models can be substantially impacted by considering the interval semantics.

Outline. Sect. 2 gives the definitions of Boolean networks and their synchronous,
asynchronous, and generalized asynchronous updating. Sect. 3 gives a motivating

Interval Semantics Generalized 21



f1(x)
∆
= ¬x2

f2(x)
∆
= ¬x1

f3(x)
∆
= ¬x1 ∧ x2

(a)

010 110 011 111

000 100 001 101

(b)

0 time

quantity

1

species 2
species 1
species 3

(c)

Fig. 1. (a) Example BN f of dimension 3; (b) Transition relations between configu-
rations in B3 according to the generalized asynchronous updating of f ; (c) A possible
evolution of the quantities of the species (species 1 in dashed line, species 2 plain,
species 3 dotted).

example showing the limit of the generalized asynchronous updating. Sect. 4
introduces the interval semantics for Boolean networks by providing an encoding
as an asynchronous Boolean network and by establishing the relation with the
generalized asynchronous updating and consistency criteria. Further extensions
of the interval semantics are discussed in Sect. 5. Finally, Sect. 6 discusses the
relevance of the results for the analysis of biological models, and suggests further
work.

2 Definitions

We write B = {0, 1} and [n] = {1, . . . , n}. Given a configuration x ∈ Bn and
i ∈ [n], we denote xi the ith component of x, so that x = x1 . . . xn. Given two

configurations x, y ∈ Bn, the components that differ are noted ∆(x, y)
∆
= {i ∈

[n] | xi 6= yi}.

Definition 1 (Boolean network). A Boolean network (BN) of dimension n
is a collection of functions f = 〈f1, . . . , fn〉 where ∀i ∈ [n], fi : Bn → B.

Given x ∈ Bn, we write f(x) for f1(x) . . . fn(x).
Fig. 1 (a) shows an example of BN of dimension 3.
When modelling biological systems, each node i ∈ [n] usually represents

a biochemical species, being either active (or present, value 1) or inactive (or
absent, value 0). Each function fi indicates how the evolution of the value of i is
influenced by the current value of other components. However, this description

22 Thomas Chatain, Stefan Haar, Löıc Paulevé, and Stefan Schwoon



can be interpreted in several ways, therefore several updating modes coexist for
BNs, depending on the assumptions about the order in which the evolutions
predicted by the fi apply.

The asynchronous updating assumes that only one component is updated at
each time step. The choice of the component to update is non deterministic.

Definition 2 (Asynchronous updating). Given a BN f , the binary relation
f−−−→

async
⊆ Bn × Bn is defined as:

x
f−−−→

async
y

∆⇐⇒ ∃i ∈ [n], ∆(x, y) = {i} ∧ yi = fi(x) .

We write
f−−−→

async

∗ for the transitive closure of
f−−−→

async
.

The synchronous updating can be seen as the opposite: all components are
updated at each time step. This leads to a purely deterministic dynamics.

Definition 3 (Synchronous updating). Given a BN f , the binary relation
f−−−→

sync
⊆ Bn × Bn is defined as:

x
f−−−→

sync
y

∆⇐⇒ x 6= y ∧ ∀i ∈ [n], yi = fi(x) .

By forcing all the components to evolve synchronously, the synchronous up-
dating makes a strong assumption on the dynamics of the system. In many
concrete cases, for instance in systems biology, this assumption is clearly unre-
alistic, at least because the components model the quantity of some biochemical
species which evolve at different speeds.

As a result, the synchronous updating fails to describe some behaviours that
are possible in the asynchronous mode, such as the transition 010 → 011 rep-
resented in Fig. 1 (b) which represents the activation of species 3 when species
1 is inactive and species 2 is active (f3(010) = 1). There are also transitions
which are possible in the synchronous but not in the asynchronous updating,
for instance 000→ 110. Remark that 110 is not even reachable from 000 in the
asynchronous updating.

The generalized asynchronous updating generalizes both the asynchronous
and the synchronous ones: it allows updating synchronously any nonempty sub-
set of components.

Definition 4 (Generalized asynchronous updating). Given a BN f , the

binary relation
f−→⊆ Bn × Bn is defined as:

x
f−→ y

∆⇐⇒ x 6= y ∧ ∀i ∈ ∆(x, y) : yi = fi(x) .

Clearly, x
f−−−→

async
y ⇒ x

f−→ y and x
f−−−→

sync
y ⇒ x

f−→ y. The converse proposi-

tions are false in general. It is even false that x
f−→ y implies x

f−−−→
async

y∨x f−−−→
sync

y.

Interval Semantics Generalized 23



Note that we forbid “idle” transitions (x→ x) whatsoever the updating mode.

For each node i ∈ [n] of the BN, fi typically depends only on a subset of
nodes of the network. The influence graph of a BN (also called interaction or
causal graph) summarizes these dependencies by having an edge from node j
to i if fi depends on the value of j. Formally, fi depends on xj if there exists
a configuration x ∈ Bn such that fi(x) is different from fi(x

′) where x′ is x
having solely the component j different (x′j = ¬xj). Moreover, assuming xj = 0
(therefore x′j = 1), we say that j has a positive influence on i (in configuration
x) if fi(x) < fi(x

′), and a negative influence if fi(x) > fi(x
′). It is possible that

a node has different signs of influence on i in different configurations (leading
to non-monotonic fi). It is worth noticing that different BNs can have the same
influence graph.

Definition 5 (Influence graph). Given a BN f , its influence graph G(f) is
a directed graph ([n], E+, E−) with positives and negatives edges such that

(j, i) ∈ E+
∆⇐⇒ ∃x, y ∈ Bn : ∆(x, y) = {j}, xj < yj , fi(x) < fi(y)

(j, i) ∈ E− ∆⇐⇒ ∃x, y ∈ Bn : ∆(x, y) = {j}, xj < yj , fi(x) > fi(y)

A (directed) cycle composed of edges in E+ ∪ E− is said positive when it is
composed by an even number of edges in E− (and in number of edges in E+),
otherwise, it is negative.

The influence graph is an important object in the literature of BNs [25,2].
For instance, many studies have shown that one can derive dynamical features
of a BN f by the sole analysis of its influence graph G(f). Importantly, the
presence of negative and positive cycles in the influence graph, and the way
they are intertwined can help to determine the nature of attractors (that are the
smallest sets of configurations closed by the transition relationship) [22], and
derive bounds on the number of fixpoints and attractors a BN having the same
influence graph can have [21,1,4].

3 Motivating example

Fig. 1 shows an example of BN of dimension 3 and
f−→ relation between config-

urations. The BN shows that the quantity of 3 increases when 1 is absent and
2 is present. In any scenario starting from 000 where 3 eventually increases, 2
has to increase to trigger the increase of 3. Hence, according to the generalized
asynchronous updating, the only transition which represents an increase of 3 is
010→ 011. After this, no transition is possible.

But, assuming the BN abstracts continuous evolution of quantities, the fol-
lowing scenario, pictured in Fig. 1(c), becomes possible: initially, the absence of
species 1 causes an increase of the quantity of species 2, represented in plain line
on the figure. Symmetrically, the absence of species 2 causes an increase of the
quantity of species 1 (dashed line). This corresponds to the evolution described

24 Thomas Chatain, Stefan Haar, Löıc Paulevé, and Stefan Schwoon



by the arrow 000 → 110 in Fig. 1(b) and leads to a (transient) configuration
where species 1 and 2 are present.

Assume that 1 and 2 increase slowly. After some time, however, the quantity
of 2 becomes sufficient for influencing positively the quantity of 3, while there
is still too little of species 1 for influencing negatively the quantity of 3. Species
3 can then increase. In the scenario represented in the figure, 3 (dotted line)
increases quickly, and then 1 and 2 continue to increase. In summary, the quantity
of species 3 increased from 0 to 1 during the increase of 1 and 2, which was not
predicted by the generalized asynchronous updating (Fig. 1(b)).

One could argue that in this case, one should better consider more fine-
grained models, for instance by allowing more than binary values on nodes in
order to reflect the different activation thresholds. However, the definition of
the refined models would require additional parameters (the different activation
thresholds) which are unknown in general. Our goal is to allow capturing these
behaviours already in the Boolean abstraction, so that any refinement would
remove possible transitions, and not create new ones.

4 Interval Semantics for Boolean Networks

Interval semantics has been proposed for Petri nets in [11] with the aim at
generalizing the notion of steps [14], that are sets of transitions that can be si-
multaneously fired. The interval semantics adds the possibility to trigger, within
a single step, transitions that become enabled by the firing transitions. The mo-
tivating example given in the previous section illustrates how this semantics can
augment the set of reachable configurations.

In this section, we propose an encoding of the interval semantics for Boolean
networks as an asynchronous Boolean network. Essentially, each node i ∈ [n]
is decoupled in two nodes: a “write” node storing the next value (2i − 1) and
a “read” node for the current value (2i). The decoupling is used to store an
ongoing value change, while other nodes of the system still read the current (to
be changed) value of the node. A value change is then performed according to
the automaton given in Fig. 2: assuming we start in both write and read node
with value 0, if fi(x) is true, then the write node is updated to value 1. The read
node is updated in a second step, leading to the value where both write and read
nodes are 1. Then, if fi(x) is false, the write node is updated first, followed, in
a second stage by the update of the read node.

Once the write node (2i − 1) has changed its value, it can no longer revert
back until the read node has been updated. Hence, if fi(x) become false in
the intermediate value 10, the read node will still go through value 1 (possibly
enabling transitions) before the write node can be updated to 0, if still applicable.

4.1 Encoding

From the automaton given in Fig. 2, one can derive Boolean functions for the
write (2i−1) and read (2i) nodes. It results in the following BN f̃ , encoding the
interval semantics for the BN f :

Interval Semantics Generalized 25



1 11

01

000

10

f i
(x

)

ε
¬f i

(x
)

ε

Fig. 2. Automaton of the value change of a node i in the interval semantics. The states
marked 0 and 1 represents the value 0 and 1 of the node. The labels fi(x) and ¬fi(x)
on edges are the conditions for firing the transitions; ε indicates that the transitions
can be done without condition. The states are labeled by the corresponding values of
nodes (2i− 1)(2i) in our encoding.

Definition 6 (Interval semantics for Boolean networks). Given a BN f
of dimension n, f̃ is a BN of dimension 2n where ∀i ∈ [n],

f̃2i−1(z)
∆
= (fi(γ(z)) ∧ (¬z2i ∨ z2i−1)) ∨ (¬z2i ∧ z2i−1)

f̃2i(z)
∆
= z2i−1

where γ(z) ∈ Bn is defined as γ(z)i
∆
= z2i for every i ∈ [n].

Given x ∈ Bn, α(x) ∈ B2n is defined as α(x)2i−1 = α(x)2i
∆
= xi for every i ∈ [n].

A configuration z ∈ B2n is called consistent when α(γ(z)) = z.

The function γ : B2n → Bn maps a configuration of the interval semantics
to a configuration of the BN f by projecting on the read nodes. The function
α : Bn → B2n gives the interval semantics configuration of a configuration of the
Boolean network f , where the read and write nodes have a consistent value.

Example 1. Applied to the BN f of Fig. 1, we obtain the following possible
sequence of asynchronous iterations of f̃ :

00 00 00
f̃−−−→

async
10 00 00

f̃−−−→
async

10 10 00
f̃−−−→

async
10 11 00

f̃−−−→
async

10 11 10
f̃−−−→

async
10 11 11

f̃−−−→
async

11 11 11

Therefore, with the interval semantics, the configuration 111 of f is reachable
from 000, contrary to the generalized asynchronous semantics. This is due to the
decoupling of the update of node 1: the activation of 1 is delayed which allows
activating node 3 beforehand.

Any transition of the generalized asynchronous semantics can be simulated
by the interval semantics.

26 Thomas Chatain, Stefan Haar, Löıc Paulevé, and Stefan Schwoon



Theorem 1. For all x, y ∈ Bn,

x
f−→ y ⇒ α(x)

f̃−−−→
async

∗ α(y) .

4.2 Consistency

The above theorem shows that the asynchronous semantics of the Boolean net-
work encoding our interval semantics can reproduce any behaviour of the gen-
eralized asynchronous semantics. The aim of this section is to show that the
interval semantics still preserves important constraints of the BN on its dynam-
ics. In particular, we show the one-to-one relationship between the fixpoints
of the BN and its encoding for interval semantics; and that the influences are
preserved with their sign.

Lemma 1 states that from any configuration of encoded BN, one can always
reach a configuration which corresponds to a configuration of the original BN
(i.e., a configuration z ∈ B2n such that α(γ(z)) = z):

Lemma 1 (Reachability of consistent configurations). For any z ∈ B2n

such that α(γ(z)) 6= z, ∃y ∈ Bn : z
f̃−−−→

async

∗ α(y).

The one-to-one relationship between fixpoints of f and fixpoints of f̃ is given
by the following lemma:

Lemma 2 (Fixpoint equivalence). ∀x ∈ Bn, f(x) = x ⇒ f(α(x)) = α(x);
and ∀z ∈ B2n, f̃(z) = z ⇒ α(γ(z)) = z ∧ f(γ(z)) = γ(z).

5 Further Extensions

Our interval semantics decouples the update of a node in order to allow the
interleaving of transitions during the interval when the next value has been
computed (write node) but not applied yet (read node still with the before-
update value). This also implies that, during this interval, the other nodes have
access only to the before-update value. A third feature of the interval semantics
is the enforcement of the update application: once an update is triggered (write
node gets a different value than the read node), no further update on the same
node is possible until the update has been applied. Thus, if for instance the
update triggers a change of value from 0 to 1, the interval semantics guarantees
that the read node will eventually have the value 1.

These two aspects, restricted access to the before-update value of nodes and
enforcement of update application, were essentially motivated by our choice that
our interval semantics should simulate the synchronous update of nodes used
in the classical synchronous and generalized asynchronous semantics, as stated
in Theorem 1. However, one could go further and consider extended interval
semantics which relax either the restricted access to the before-update value of
nodes, or the enforcement of update application, or both. We will see that these
relaxations of our interval semantics still preserve the consistency properties
stated in Sect. 4.2.

Interval Semantics Generalized 27



1 11

01

000

10

f i
(x

)

¬f i
(x

)

ε

¬f i
(x

)

f i
(x

)

ε

Fig. 3. Automaton of the value change of a node i in the extended interval semantics
where the update can be canceled if fi(x) changes of value during the interval of update.
Notations follow the ones of Fig. 2

5.1 Update cancellation

The relaxation of the enforcement of update application can be interpreted as the
ability to cancel an ongoing update when fi changes of value during the interval
of update. This can be described by the automaton of Fig. 3, and encoded by
removing ¬z2i and z2i−1 from the definition of f̃2i−1 in Def. 6.

Theorem 1 and the lemmas in previous section are still verified with update
cancellation.

5.2 Reading from either the before-update or after-update values

In terms of modeling, the restriction to before-update values can be seen as
an asymmetry in the consideration of transitions: the resource modified by the
transition is still available during the interval of update, whereas the result is
only available once the transition finished. When modelling biological systems,
it translates into considering only species which are slow to reach their activity
threshold.

Actually, the choice of whether the before-update, after-update or both values
are available during the update may be done according to the knowledge of
the modeled system. Our construction can easily be adapted for giving access,
depending on the node, to the after-update value instead of the before-update
value. For instance, if the node i should follow closely value changes of node i,
then node j should access the after-update value (write node) of i, whereas, as
in our motivating example, if i is slow to update compared to j, node j should
access the before-update value (read node) of i.

Finally, one could also consider a more permissive symmetric version which
would allow the access of both before-update and after-update values. This choice
may be very reasonable when not much is known about the system, for instance
about the relative speed of the nodes.

28 Thomas Chatain, Stefan Haar, Löıc Paulevé, and Stefan Schwoon



5.3 Comparison with multi-valued networks

Multi-valued networks [7] are an extension of Boolean networks where the do-
main of each node i ∈ [n] ranges over a finite discrete ordered domain Di. The
value changes of the nodes are specified using a function gi : D1 × · · · × Dn →
{−, 0,+} which determines the direction of the value change.

Thus, a strong constraint of this semantics is that value changes are always
unitary: a transition will either change the value to the smallest higher one, or
the highest smaller one, if it exists. However, one can remark that the automaton
modeling the value change with the interval semantics (Fig. 2) does not satisfy
such a constraint, and hence cannot be encoded as a single multi-valued node.

6 Discussion

As shown in our motivating example in Sect. 3, the interval semantics can en-
able the reachability of configurations that are not allowed in other updating
modes, notably asynchronous or generalized asynchronous. This can be prob-
lematic when expecting Boolean networks to produce an over-approximation of
reachable configurations due to the abstraction of parameters related to speed
and activity threshold of components, as it is usually assumed when modelling
biological networks. It appears that the Boolean network in Sect. 3 is embedded
in numerous actual models of biological networks (e.g., [17,18,27]). Therefore,
the result of analysis of the transient dynamics of these models may be deeply
impacted by using the interval semantics, which had never been considered pre-
viously.

The transitions enabled by the interval semantics are due to nodes which
update slowly: whenever committed to a value change, in the meantime of the
update application, the other nodes of the network still evolve subject to its
before-update value. This time scale consideration brings an interesting feature
when modeling biological networks which gathers processes of different nature
and velocity. Our encoding allows the application of the interval semantics only
to a subset of nodes, offering a flexible modelling approach.

Future work consider determining semantics of Boolean networks which guar-
antee the formal simulation of hybrid and continuous network dynamics.

Acknowledgements

The authors acknowledge the support from the French Agence Nationale
pour la Recherche (ANR), in the context of the ANR-FNR project “Algo-
ReCell” ANR-16-CE12-0034, from the Labex DigiCosme (project ANR-11-
LABEX-0045-DIGICOSME) operated by ANR as part of the program “In-
vestissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02), from the
INRIA Associated Team LifeForm, and from Paris Ile-de-France Region (DIM
RFSI/FormaReBio).

Interval Semantics Generalized 29



References

1. J. Aracena. Maximum number of fixed points in regulatory boolean networks.
Bulletin of Mathematical Biology, 70(5):1398–1409, 2008.

2. J. Aracena, J. Demongeot, and E. Goles. Positive and negative circuits in discrete
neural networks. IEEE Transactions of Neural Networks, 15:77–83, 2004.

3. J. Aracena, E. Goles, A. Moreira, and L. Salinas. On the robustness of update
schedules in Boolean networks. Biosystems, 97(1):1 – 8, 2009.

4. J. Aracena, A. Richard, and L. Salinas. Number of fixed points and disjoint cycles in
monotone boolean networks. SIAM Journal on Discrete Mathematics, 31(3):1702–
1725, 2017.

5. J. Baetens, P. V. der Weeën, and B. D. Baets. Effect of asynchronous updating
on the stability of cellular automata. Chaos, Solitons & Fractals, 45(4):383 – 394,
2012.

6. P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures, and processes. Information and Computation, 171(1):1–49, 2001.

7. G. Bernot, F. Cassez, J.-P. Comet, F. Delaplace, C. Müller, and O. Roux. Seman-
tics of biological regulatory networks. Electronic Notes in Theoretical Computer
Science, 180(3):3 – 14, 2007.

8. N. Busi and G. M. Pinna. Non sequential semantics for contextual P/T nets. In
Application and Theory of Petri Nets, volume 1091 of Lecture Notes in Computer
Science, pages 113–132. Springer, 1996.

9. C. Chaouiya, A. Naldi, E. Remy, and D. Thieffry. Petri net representation of
multi-valued logical regulatory graphs. Natural Computing, 10(2):727–750, 2011.

10. T. Chatain, S. Haar, L. Jezequel, L. Paulevé, and S. Schwoon. Characterization
of reachable attractors using Petri net unfoldings. In Computational Methods in
Systems Biology, volume 8859 of Lecture Notes in Computer Science, pages 129–
142. Springer, 2014.

11. T. Chatain, S. Haar, M. Koutny, and S. Schwoon. Non-atomic transition firing in
contextual nets. In Applications and Theory of Petri Nets, volume 9115 of Lecture
Notes in Computer Science, pages 117–136. Springer, 2015.

12. Th. Chatain, S. Haar, and L. Paulevé. Beyond Generalized Asynchronicity.
In J. Baetens and M. Kutrib, editors, Proceedings of the 24th Annual Inter-
national Workshop on Cellular Automata and Discrete Complex Systems (AU-
TOMATA’18), Lecture Notes in Computer Science, Ghent, Belgium, June 2018.
Springer. To appear.

13. A. Garg, A. Di Cara, I. Xenarios, L. Mendoza, and G. De Micheli. Syn-
chronous versus asynchronous modeling of gene regulatory networks. Bioinfor-
matics, 24(17):1917–1925, 2008.

14. R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and Compu-
tation, 123(1):1–16, 1995.

15. R. Janicki and M. Koutny. Fundamentals of modelling concurrency using discrete
relational structures. Acta Inf., 34:367–388, 1997.

16. S. A. Kauffman. Metabolic stability and epigenesis in randomly connected nets.
Journal of Theoretical Biology, 22:437–467, 1969.

17. Z. Mai and H. Liu. Boolean network-based analysis of the apoptosis network: Irre-
versible apoptosis and stable surviving. Journal of Theoretical Biology, 259(4):760
– 769, 2009.

18. P. Mart́ınez-Sosa and L. Mendoza. The regulatory network that controls the dif-
ferentiation of t lymphocytes. Biosystems, 113(2):96 – 103, 2013.

30 Thomas Chatain, Stefan Haar, Löıc Paulevé, and Stefan Schwoon



19. M. Noual and S. Sené. Synchronism versus asynchronism in monotonic boolean
automata networks. Natural Computing, 2017.

20. E. Palma, L. Salinas, and J. Aracena. Enumeration and extension of non-equivalent
deterministic update schedules in boolean networks. Bioinformatics, 32(5):722–
729, 2016.

21. E. Remy, P. Ruet, and D. Thieffry. Graphic requirements for multistability and
attractive cycles in a Boolean dynamical framework. Advances in Applied Mathe-
matics, 41(3):335 – 350, 2008.

22. A. Richard. Negative circuits and sustained oscillations in asynchronous automata
networks. Advances in Applied Mathematics, 44(4):378 – 392, 2010.

23. B. Schönfisch and A. de Roos. Synchronous and asynchronous updating in cellular
automata. Biosystems, 51(3):123 – 143, 1999.

24. L. J. Steggles, R. Banks, O. Shaw, and A. Wipat. Qualitatively modelling and
analysing genetic regulatory networks: a petri net approach. Bioinformatics,
23(3):336–343, 2007.

25. D. Thieffry and R. Thomas. Dynamical behaviour of biological regulatory networks
– II. Immunity control in bacteriophage lambda. Bulletin of Mathematical Biology,
57:277–297, 1995.

26. R. Thomas. Boolean formalization of genetic control circuits. Journal of Theoretical
Biology, 42(3):563 – 585, 1973.

27. P. Traynard, A. Fauré, F. Fages, and D. Thieffry. Logical model specification aided
by model-checking techniques: application to the mammalian cell cycle regulation.
Bioinformatics, 32(17):i772–i780, 2016.

28. W. Vogler. Partial order semantics and read arcs. Theoretical Computer Science,
286(1):33–63, 2002.

29. J. Winkowski. Processes of contextual nets and their characteristics. Fundamenta
Informaticae, 36(1), 1998.

Interval Semantics Generalized 31


