
EFFICIENT HANDLING OF SYNAPTIC UPDATES IN FPGA-BASED LARGE-SCALE
NEURAL NETWORK SIMULATIONS

Paul J Fox, Simon W Moore

Computer Laboratory
University of Cambridge

Cambridge, United Kingdom
email: {paul.fox, simon.moore}@cl.cam.ac.uk

ABSTRACT
We present novel methods for handling synaptic updates

in FPGA-based neural network simulations that are desig-
ned to makes efficient use available memory and to allow
for real-time simulation of large numbers of neurons and
synapses. Our methods allows simulations to scale using
networks of FPGAs, with little overhead and retaining real-
time performance. An implementation based on our meth-
ods has been built on our Bluehive multi-FPGA system, and
simulates 64k neurons with 64M synapses per FPGA in real-
time.

1. INTRODUCTION

We wish to simulate networks of many thousands (and ul-
timately millions and even billions) of neurons, with a fan-
out of around a thousand. Section 2 introduces the biolog-
ically plausible Izhikevich neural simulation algorithm [1],
which is suited to simulations of large numbers of neurons,
and analyses its communication and resource requirements,
showing that the majority of the complexity of the algorithm
(and neural simulation in general) results from the need to
communicate and apply synaptic updates rather than calcu-
lating the effects of each neuron in isolation. Hence it is
critical that a neural network simulator handles synaptic up-
dates efficiently if it is to scale to the size that we require.

Our analysis from Section 2 leads us to consider appro-
priate implementation platforms in Section 3. We select
an implementation platform based on a network of FPGA
boards for a number of reasons, particularly the availability
of high-speed serial and memory interfaces. However, using
FPGAs does bring some limitations compared to an ASIC
implementation, particularly limited on-chip memory.

If a simulation is to scale while remaining in real-time
then synaptic updates must introduce little latency and make
efficient use of both inter-FPGA communication and mem-
ory. As fan-out is high and we expect significant locality (As
discussed in Section 2), this would suggest using a multicast
algorithm, but this leads to inefficient use of both on- and

off-chip memories. In Section 4 we propose an alternative
algorithm which aims to provide a real-time, scalable sim-
ulation using a FPGA implementation. We evaluate this al-
gorithm against unicast and multicast in Section 5 and show
that it consistently makes more efficient use of communica-
tion and memory bandwidth.

We then present a FPGA implementation of a neural net-
work simulator which uses our algorithm in Section 6, fo-
cussing particularly on how synaptic updates are applied to
make maximal use of memory bandwidth.

Section 7 presents the results of simulating a network of
256k neurons with 256M synapses in real-time using four
FPGAs from our Bluehive multi-FPGA system. We discuss
how these results and our goals compare to other work in
Section 8 and provide conclusions in Section 9.

2. COMMUNICATION AND RESOURCE
REQUIREMENTS OF SPIKING NEURAL

NETWORK SIMULATION

We have selected the Izhikevich spiking-neuron algorithm
[1] for our neural network simulations as we believe that it
offers a good compromise between biological accuracy and
computational efficiency [2]. The next subsection briefly in-
troduces the algorithm from a computational point of view
before we analyse its communication and resource require-
ments. At this stage we identify optimisations that will assist
in achieving our goals of creating a large-scale, real-time
simulation, but without focussing on any particular imple-
mentation technology. We will assume that 105 neurons are
simulated per discrete device to allow us to provide resource
usage examples.

2.1. The Izhikevich spiking-neuron algorithm

The Izhikevich algorithm uses Equation (1) to simulate the
spiking behaviour of a neuron. This equation is designed to
be evaluated in continuous-time using floating-point arith-
metic, however it is possible to derive suitable discrete-time,

fixed-point alternatives, which will be evaluated every 1 ms,
matching prior work [3].

v′ =

{
0.04v2 + 5v + 140− u+ I v < 30mV

c v ≥ 30mV

u′ =

{
a(bv − u) v < 30mV

u+ d v ≥ 30mV
(1)

The variable v represents the membrane voltage of the
neuron and u the refractory voltage, with a to d being pa-
rameters which control the behaviour of the neuron. The
variable I represents the sum of the magnitudes of all spikes
arriving via the neuron’s dendritic inputs. The synapses,
which connect neurons together, are represented by tuples
of source neuron, target neuron, delay and weight.

The range of these variables and parameters is bounded,
allowing us to use 16-bit fixed-point arithmetic, avoiding
complex floating-point units in our implementation. As de-
scribed in [4], Equation (1) is easily laid out as a pipelined
structure that can be clocked at 200 MHz. So if every neu-
ron is evaluated once every 1 ms, we can easily evaluate 105
neurons using just one copy of the evaluation pipeline. This
makes it clear that the problem is not compute bound, so it
surprises us that many people focus on optimising computa-
tion even for the comparatively simple Izhikevich model.

2.2. Communication requirements

In addition to evaluating Equation (1) for each neuron it is
necessary to communicate synaptic updates between neu-
rons, delay them and then sum their weights to provide the
I-value for every neuron at each time step. As the fan-in of
a neuron increases, the computational cost of summing I-
values dominates that of evaluating Equation (1), becoming
the critical inner loop of the algorithm. But the computa-
tion is just addition, so the real challenge is streaming the
weights through addition units.

Typically neurons have a fan-out and fan-in of around
1000. Fan-in mirrors the fan-out so let us focus on fan-out.
The mean firing rate for neurons is 10 Hz [5], so the fan-
out bandwidth for 105 neurons is 1000 × 10 × 105 = 109

events/s. In our model, each fan-out message consists of a
32-bit value to index the receiving neuron, 12-bits for the
weight and 4-bits for the delay giving 48-bits or 6-bytes per
event. So the mean fan-out bandwidth for 105 neurons is
6 GB/s.

Inter-device communication is governed by the locality
and overall size of the neural network. It has been shown
that interconnect in mammalian brains can be analysed us-
ing a variant of Rent’s rule which is often used to analyse
communication requirements in VLSI chips [6]. This anal-
ysis indicates that there is a great deal of locality. So, for

very large networks spanning many devices, we see a great
deal of communication between neighbouring devices and
very little communication travelling any distance provided
the communication topology has at least three dimensions.
To get an upper bound on the communication requirements,
we take the pathological case that all 105 neurons fan-out to
neurons off-device, with all target neurons being on different
devices. In this case all 6 GB/s of bandwidth is needed (cal-
culated in the previous paragraph), giving us an upper bound
on the bandwidth that an implementation of this simulation
will need between devices.

Communication latency is also an important considera-
tion. For real-time simulation we must deliver spike events
in well under a 1 ms simulation time-step.

2.3. Resource requirements

We now look at the data storage requirements of our exam-
ple of 105 neurons per device. The parameters of equation
(1) take for a single neuron take less than 16 bytes. So 105

neurons requires around 1.6 MB of storage.
With 105 neurons per node, a fan-out of 103 and 6 bytes

per event, we need 6×108 bytes of storage (0.6 GB) to store
the synaptic parameters.

As the memory bandwidth required is proportional to
both the number of neurons being simulated and (more sig-
nificantly) their fan-out, it is clear that memory bandwidth
provides a bound on the number of neurons we can simulate
in real-time per device.

We must also consider the memory requirements of ap-
plying synaptic updates. Since any incoming synaptic up-
date could target any neuron on the device and summing the
update with the current I-value is the critical inner loop of
the algorithm, the current I-value must be readily available.
This means that the current I-value for each neuron (16 bit)
must be stored in on-chip memory, providing another limit
to the number of neurons we can simulate in real-time per
device.

3. IMPLEMENTATION PLATFORMS FOR
SPIKING NEURAL NETWORK SIMULATION

Our choice implementation technology is governed by many
factors, including ability to implement the chosen simula-
tion at the chosen scale, cost and usability. It also affects the
design of parts of the implementation, particularly how syn-
aptic updates are routed and applied. The principle choice is
between using ASICs or FPGAs.

Given the volume of communication that we envisage
between devices, high-speed communication will be needed,
using serial transceivers. While it is possible to implement
high-speed serial transceivers in ASICs (remembering that
FPGAs are themselves a type of ASIC), this can only be
achieved using recent nanometre-scale processes, leading to

massively increased costs for small production volumes. In
comparison these transceivers are readily available in high-
end commercial FPGAs and so are available to us at sig-
nificantly less cost. FPGA evaluation boards which provide
access to high-speed communication links as well as other
resources such as DDR2 SDRAM are readily available off-
the-shelf, which avoids the need to create complex PCBs to
route high-speed signals, further lowering costs.

ASICs also give no scope for reprogramming, and hence
limited scope for fixing errors or altering many aspects of
system behaviour, meaning that massive effort needed for
design and testing and hardware cannot be altered to suit fu-
ture design requirements. In comparison FPGAs can be re-
programmed with little cost beyond the time taken to resyn-
thesise a design. This significantly lowers design and testing
effort.

Therefore we have chosen to implement our system us-
ing FPGAs. This means that our design must consider the
very limited amount of on-chip memory (Block RAM or
BRAM) available (2 MB for a Stratix IV 230). As discussed
in Section 2.3, the current I-value for each neuron must be
stored in BRAM to avoid a performance bottleneck. To en-
sure that the value being fed to Equation (1) is not affected
by race conditions we will actually store two copies of each
I-value, one to be fed to the equation and one which is be-
ing updated ready for the next time step. With two copies
of the I-values at 16 bit per neuron the absolute maximum
number of neurons that could be simulated on each FPGA is
2MB

16 bit×2 = 256k. However in practice FPGA designs cannot
make use of every available resource, and BRAM will also
be needed for many other purposes such as pipeline FIFOs
and DRAM controllers.

In view of this we propose to keep all data other than
I-values in off-chip RAM, giving the challenge of routing
massive volumes of synaptic update messages without mul-
ticast routing reliant on large amounts of BRAM. As will
be shown in Section 5, unicast routing is unsuitable as it
uses communication resources in direct proportion to fan-
out, and so we must design a routing algorithm for synaptic
updates that approximates multicast while using only off-
chip memory. This means that off-chip memory bandwidth
becomes the limiting factor to the volume of synaptic up-
dates that can be routed in real-time, and by extension the
size and scalability of the simulation as a whole. Our rout-
ing algorithm must be designed to make maximum use of
off-chip memory bandwidth, and this means making effi-
cient use of burst read transactions.

4. HANDLING SYNAPTIC UPDATES IN A
FPGA-BASED SIMULATION

Our synaptic update handling algorithm is designed to ap-
proximate multicast routing to allow efficient routing of syn-

aptic update messages with high fan-outs, while keeping all
data (other than current I-values and data being processed)
in off-chip memory to fit the resource constraints of a FPGA
implementation. If we are to meet our goal of a large, real-
time simulation the we must do everything we can to max-
imise use of memory bandwidth, and for DRAM this means
using burst reads.

Our implementation platform is the Altera DE4 230 de-
velopment board, which provides two independent DDR2
memory channels. Each channel supports burst reads of up
to 8 256 bit words at a local clock frequency of 200 MHz.
The latency between a burst read request and the first re-
sponse is around 10 clock cycles, after which the remaining
data is delivered on adjacent clock cycles. Requests for burst
reads can be queued in the memory controller for future ac-
tion even if all of the data from a previous burst read has not
been delivered.

4.1. Our synaptic update handling algorithm

Our algorithm applies the complete set of synaptic updates
that result from a neural spike by following a tree of pointers
through regions of off-chip memory. It proceeds as follows:

1. A pointer is found alongside the parameters of Equa-
tion (1) for the neuron that has spiked.

2. The pointer is used to burst read a set of fan-out tuples.
These tuples consist of either:

(a) destination FPGA, delay and a pointer to a set of
update tuples. or

(b) destination FPGA and a pointer to a further set
of fan-out tuples.

3. All tuples are transmitted to their destination FPGA.

4. Tuples of type 2a are delayed.

5. Tuples of type 2b repeat step 2.

6. After being delayed each fan-out tuple is used to burst
read a set of update tuples. These tuples consist of
target neuron number and weight. Each weight is ap-
plied to the target neuron to perform the synaptic up-
date.

Repetition of step 2 is conditional on the location of tar-
get neurons, and is suited to cases where a number of target
neurons are clustered on groups of FPGAs remote from the
source. A single message can be sent to one of the group,
with further fan-out then sending messages to the other FP-
GAs in the group. The path through memory for a single
synaptic update is shown in Figure 1.

Fig. 1. Path of synaptic update handling algorithm through off-chip memory

4.2. Benefits of our algorithm

Our algorithm minimises use of on-chip BRAM, with all
data describing the network being simulated being stored in
off-chip memory. This facilitates its implementation using
FPGAs. We optimise the accesses to off-chip memory (and
hence maximise the number of neurons that can be simu-
lated per FPGA in real-time) in a number of ways:

• The pointer in step 1 is stored alongside the parame-
ters of Equation (1) and so an additional memory ac-
cess is not required to fetch it.

• Separate tuples from the fan-out stage for each pair of
destination FPGA and delay avoid an additional mem-
ory access at the destination FPGA before applying
delays.

• Our assumption of locality makes it likely that the ma-
jority of synaptic updates will be applied to neurons
which are either on the same FPGA as the source neu-
ron or on nearby FPGAs. Combined with our assump-
tion of high fan-out this means that there are a large
number of synaptic updates will be fetched by each
pointer from the fan-out stage, which makes efficient
use of burst memory accesses.

• The pointer needed by step 6 is supplied by the incom-
ing message, unlike multicast algorithms such as that
proposed in [3] that require memory accesses to de-
termine the pointer based on the identity of the source
neuron.

• If the size of an off-chip memory word is greater than
the size of a fan-out tuple (either type in step 2) then
multiple tuples can fit in a word.

• If the size of an off-chip memory word is greater than
the size of an update tuple then multiple updates can
be applied in parallel, making efficient use of both
time and off-chip memory bandwidth.

While the algorithm requires that three inter-dependent
regions of memory are populated before a simulation can be

run, this is a similar situation to populating the routing tables
used by multicast algorithms.

Finally, since all data required by a simulation is stored
in off-chip memory it is simpler to load a simulation since it
is not necessary to transfer routing data into on-chip mem-
ories before the simulation is run. Nor is it necessary to
resynthesise the FPGA design, as is the case with many pre-
vious FPGA implementations [7].

5. EVALUATION OF OUR ALGORITHM

To show the performance of our algorithm we compare it
to unicast and multicast algorithms using a mathematical
model of the number of clock cycles needed to handle the
synaptic updates produced by a single neural spike with a
fan-out of 1000. We count the cycles needed to transmit
inter-FPGA messages and to perform off-chip memory ac-
cesses. We use a number of distributions of target neurons
relative to the source neuron to provide several points of
comparison with varying degrees of locality.

5.1. Target neuron distribution

We assume that a network of FPGAs is arranged in a 2-D
mesh, with each FPGA having 4 neighbours. We distribute
a varying percentage of target neurons on FPGAs a given
distance from the source FPGA using the distributions in Ta-
ble 1. Table 2 shows the number of FPGAs at each distance
that hold target neurons and the number of target neurons on
each FPGA for distribution 3 from Table 1 as an example.

5.2. Off-chip memory accesses

We assume that off-chip memory has a word size of 256
bits, a burst size of 8 and a delay of 5 clock cycles between
a burst (or single access) being requested and the first word
being returned. A new read request can be made after the
last word of a burst has returned.

For our algorithm we assume that 4 fan-out tuples or 4
update tuples are stored in a word, and that these tuples are
accessed using burst reads. We assume that unicast performs
burst reads at the source FPGA to retrieve tuples of target

Distance 0 1 2 3 4 5
Id Percentage of targets
1 100 0 0 0 0 0
2 80 20 0 0 0 0
3 70 16 8 6 0 0
4 50 20 15 10 5 0
5 30 30 15 15 5 5

Table 1. Target distributions

Distance Percentage FPGAs Targets per FPGA
0 70 1 700
1 16 4 40
2 8 8 10
3 6 12 5

Table 2. Distribution of neurons for distribution 3 from Ta-
ble 1

FPGA, target neuron, delay and weight (again with 4 tuples
in a word), with no further memory accesses required. Mul-
ticast performs no memory accesses until each target FPGA,
where a lookup table needs to be scanned to find a pointer to
a region of memory containing tuples of target neuron, delay
and weight [3]. It is assumed that the lookup table contains
1000 entries (equal to the fan-in), and so traversing it takes
log2 1000 ≈ 10 memory cycles. Fetching tuples then takes
the same number of cycles as our algorithm.

5.3. Inter-FPGA messages

We count the number of times that a message traverses a link
between two FPGAs, and assume that each message takes 10
clock cycles to traverse each link. Unicast sends one mes-
sage per target neuron, with many traversing more than one
link. Multicast sends messages in a minimum spanning tree
between the source and target FPGAs. Our algorithm sends
one message per target FPGA, with some traversing more
than one link.

5.4. Analysis

Figure 2 shows the total number of clock cycles needed to
apply synaptic updates for each algorithm, grouped by the
distributions of target neurons from Table 1.

It can be seen that our algorithm consistently uses fewer
clock cycles than either unicast or multicast, particularly
as locality decreases (higher-numbered distributions). This
means that it uses less communication and memory band-
width per set of synaptic updates, and makes it suited to im-
plementing a real-time, scaleable, multi-FPGA simulation.

The number of memory cycles for multicast is a result
of scanning lookup tables to find a pointer to the correct set

U
ni

ca
st

M
ul

tic
as

t
Pr

op
os

ed

U
ni

ca
st

M
ul

tic
as

t
Pr

op
os

ed

U
ni

ca
st

M
ul

tic
as

t
Pr

op
os

ed

U
ni

ca
st

M
ul

tic
as

t
Pr

op
os

ed

U
ni

ca
st

M
ul

tic
as

t
Pr

op
os

ed

0

5

10

15

1 2 3 4 5

Algorithm

Distribution

C
lo

ck
cy

cl
es

×
10
00

Message Cycles
Memory Cycles

Fig. 2. Total system clock cycles needed to apply synaptic
updates. Distribution refers to the distributions of target neu-
rons in Table 1

of update tuples. This takes 60 cycles per target FPGA, and
cannot take advantage of burst accesses.

6. FPGA IMPLEMENTATION

The implementation of our multi-FPGA system is presented
in our previous work [4]. As shown in Figure 3 there are
separate hardware blocks for fan-out, delay and accumula-
tion of synaptic updates. These handle steps 2, 4 and 6 of the
algorithm in Section 4 respectively. Computation of Equa-
tion (1) is performed by the equation block which also per-
forms step 1 of the routing algorithm. There are also hard-
ware blocks to record spike activity (spike auditor) and to
inject spikes (spike injector), the latter being used particu-
larly when the simulation starts.

The fan-out block is a simple implementation of step 2
of the algorithm. The delay block uses 16 FIFOs (one for
each permitted delay size) and a circular pointer to delay
each input tuple for the required time. We will focus on the
implementation of the accumulator block, as it is the most
interesting with regard to implementation of our algorithm
on FPGA

The accumulator block implements step 6 of our algo-
rithm. Since it occurs at the leaves of a tree with a high fan-
out it is the inner loop of the algorithm, which makes it the
most performance critical. Its input is a stream of pointers
to sets of update tuples from the delay block. A burst read
is used to fetch the tuples, which are packed in to 256 bit
words with up to 4 tuples per word. The tuples are fed into
the core of the accumulator block as shown in Figure 4.

Fig. 3. Block diagram of the complete multi-FPGA system

Update
Tuple

Update
Tuple

Update
Tuple

Update
Tuple

Read
Address

Read
Data

Store
I-Values

Schedule

Read

Add

Write

Store
I-Values

Schedule

Read

Add

Write

Store
I-Values

Schedule

Read

Add

Write

Store
I-Values

Schedule

Read

Add

Write

Bank
Selector

Bank
Selector

Bank
Selector

Bank
Selector

Read
Selector

Fig. 4. Layout of the accumulator block

The core of the accumulator consists of four blocks, each
containing the I-values for one quarter of the neurons hosted
by the FPGA in a BRAM, and associated logic to allow the
values to be accessed and updated. Neurons that are fre-
quently updated together (as a result of locality) are allo-
cated to different blocks so that they can be updated in par-
allel. Each input word causes synaptic updates to be applied
by:

1. Each of the four update tuples is fed to a block selec-
tor. This determines which of the four blocks hosts
the neuron which is updated by that tuple.

2. The tuple is routed to a FIFO queue in its target block.
There is one FIFO per block per position in the input
word to allow update tuples to appear in any position
in the input word. Without these FIFOs two update
tuples targeting the same block would cause a stall.

3. Update tuples are dequeued from the set of FIFOs in
each block in a round-robin fashion.

4. The current I-value for the target neuron is fetched
from BRAM.

5. The weight in the update tuple is added to the current
value.

6. The new value is stored to BRAM.

The accumulator block helps us to maximise off-chip
memory bandwidth efficiency and hence maximise the num-
ber of neurons that can be simulated per FPGA in real-time.

7. RESULTS

Given the absence of widely used neural netlist benchmarks,
we created our own networks to test our system. Initially
netlists were created using the PyNN [8] tool created by the
neuroscience community. Whilst PyNN can produce a range
of complete neural netlists, it appears not to scale much be-
yond 8k neurons, which is insufficient to demonstrate a 4-
FPGA system with 64k neurons per FPGA. Therefore we
created our own generator tool to produce a neural netlist
with biologically-plausible parameters – an average neuron
firing rate of 10 Hz and fan-out of 1000. Care had to be
taken to generate an appropriate network which neither ex-
tinguishes itself or explodes in activity. Chunks of 1000 neu-
rons were grouped into populations. This helped to achieve
our network activity goal by biasing synaptic connections
towards the next adjacent population whilst keeping the fan-
out constant. This results in a network where around 1%
of the neurons fire in any 1 ms time step, though this varies
slightly over time as shown in Figure 5.

Figure 5 presents a scatter plot (in fine red dots) showing
neuron firing events, and the total number of clock cycles
needed to complete each 1ms time step (black line). Figure 6
is a larger-scale copy of a small section of Figure 5 which
more clearly shows the neuron firing pattern.

Our aim is to build a real-time system (no faster, no
slower), and we can run our design at 200 MHz. Since the
maximum workload for any 1ms period is completed within
2× 105 clock cycles, we have met our target.

We also compared the performance of our FPGA-based
system to a CPU-based system using the same network. Our
single-threaded neural network simulator written in C re-
quired 48.8 s to calculate 300 ms of simulation time on a
single thread of a 16-thread, 4-core Xeon X5560 2.80 GHz
server with 48 GB RAM. So the four-FPGA version is 162
times faster than the software simulator, which has similar
performance to other reported software simulators [9].

8. RELATED WORK

Given the requirements in Section 2, current GPGPUs and
multicore CPUs do not have the communication bandwidth
needed for scalable massively-parallel spiking neuron simu-
lation (e.g. thousands of CPUs or GPUs). The custom SpiN-
Naker machine [3] scales to 106 ARM processors using a

Fig. 5. Graph showing per-neuron activity (fine red dots)
and the total number of cycles needed to complete every
1 ms step (black line). Real-time achieved if the total num-
ber of cycles per 1ms never exceeds 2 × 105, i.e. 200 MHz
operating rate.

!"#$$$$

!"#%$$$

!"#&$$$

!"#'$$$

!"#($$$

!"'$$$$

!"$$!"$% !"$& !"$' !"$(!""$
!"'#$$$

!")$$$$

!")#$$$

!"($$$$

!"(#$$$

*
+,
-.
/!
*
,0
1+
-

2
3.
45
!2
64
3+
7

890+!:!07

Fig. 6. Graph showing a small section of Figure 5 to more
clearly show the neuron firing pattern.

custom ASIC with custom interconnect providing a repro-
grammable platform suited to neural simulation. This is an
alternative approach to our proposed FPGA system but the
custom ASICs are likely to be moderately expensive for a
few thousand parts and will be on an implementation tech-
nology which is several generations behind FPGAs.

FPGAs pay a significant area and performance penalty
for being reconfigurable, however they can be produced cost
effectively using small feature-size processes (40 nm for Str-
atix IV parts), which allows integrated high-speed memory
interfaces and serial transceivers that are not possible using
older implementation technologies. Since large-scale neu-
ron simulation is communication-bound, FPGAs have an ad-
vantage. On the other hand, current FPGAs are more power

hungry than SpiNNaker chips. Given these advantages and
disadvantages it remains to be seen whether the SpiNNaker
approach is more competitive than FPGAs in this space for
large machines.

Much research has been undertaken on FPGA based ar-
tificial neural-network simulators, often for multi-layer per-
ceptron models [10]. In contrast, our work is focused on
spiking neuron models [2]. Often research focuses on sin-
gle FPGA implementations [7] where we are interested in
parallel FPGA machines, for example Thomas and Luk [9]
present an implementation of 1k Izhikevich neurons run-
ning 100× faster than real-time whereas we have focuses
on real-time simulation and can easily manage 64k neurons
per FPGA. We achieve comparable performance but with a
design scalable to far more neurons per FPGA and many
FPGAs.

In common with [7, 11], we time-multiplex the hardware
and stream neuron parameters from external memory but we
have a multi-FPGA implementation allowing more neurons
to be simulated in real-time (for the same complexity of neu-
ronal algorithm, numerical precision used and fan-in:neuron
ratio).

9. CONCLUSION

Three contributions are made in this paper:
Firstly we characterise large-scale, real-time neural net-

work simulation and provide reasons why FPGAs are an
appropriate implementation platform, along with the chal-
lenges that must be faced to make such an implementation a
reality, particularly the available memory hierarchy.

Secondly we propose a synaptic update handling algo-
rithm which makes efficient use of the resources available to
FPGAs and compare it to multicast and unicast algorithms.
We find that our algorithm is suited to implementing large-
scale, real-time simulations on FPGA as it makes more ef-
ficient use of communication and memory bandwidth than
either of the other algorithms.

Thirdly we present details of the implementation of our
algorithm on FPGA, focussing on our accumulator block,
which optimises the critical inner loop of the algorithm. We
present results from a simulation of a network of 256k neu-
rons and 256M synapses in real-time which utilises a net-
work of 4 FPGAs.

10. REFERENCES

[1] E. Izhikevich, “Simple model of spiking neurons,” Neural
Networks, IEEE Transactions on, vol. 14, no. 6, pp. 1569–
1572, Nov. 2003.

[2] ——, “Which model to use for cortical spiking neurons?”
Neural Networks, IEEE Transactions on, vol. 15, no. 5, pp.
1063–1070, Sept. 2004.

[3] X. Jin, S. Furber, and J. Woods, “Efficient modelling of spik-
ing neural networks on a scalable chip multiprocessor,” in
Neural Networks, 2008. IJCNN 2008. (IEEE World Congress
on Computational Intelligence). IEEE International Joint
Conference on, 1-8 2008, pp. 2812–2819.

[4] S. W. Moore, P. J. Fox, S. J. Marsh, A. T. Markettos, and
A. Mujumdar, “Bluehive - a field-programable custom com-
puting machine for extreme-scale real-time neural network
simulation,” in Field-Programmable Custom Computing Ma-
chines (FCCM), 2012 IEEE 20th Annual International Sym-
posium on, 29 2012-may 1 2012, pp. 133 –140.

[5] C. Mead, “Neuromorphic electronic systems,” Proceedings
of the IEEE, vol. 78, no. 10, pp. 1629–1636, Oct. 1990.

[6] D. S. Bassett, D. L. Greenfield, A. Meyer-Lindenberg, D. R.
Weinberger, S. W. Moore, and E. T. Bullmore, “Efficient
physical embedding of topologically complex information
processing networks in brains and computer circuits,” PLoS
Comput Biol, vol. 6, no. 4, p. e1000748, 04 2010.

[7] L. P. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Be-
latreche, and J. Harkin, “Challenges for large-scale imple-
mentations of spiking neural networks on FPGAs,” Neuro-
comput., vol. 71, no. 1-3, pp. 13–29, 2007.

[8] A. P. Davison, D. Bruderle, J. M. Eppler, J. Kremkow,
E. Muller, D. Pecevski, L. Perrinet, and P. Yger, “PyNN: a
common interface for neuronal network simulators,” Fron-
tiers in Neuroinformatics, vol. 2, no. 11, 2009.

[9] D. Thomas and W. Luk, “FPGA accelerated simulation of
biologically plausible spiking neural networks,” in Field Pro-
grammable Custom Computing Machines, 2009. FCCM ’09.
17th IEEE Symposium on, 2009, pp. 45–52.

[10] A. R. Omondi and J. C. Rajapakse, FPGA Implementations
of Neural Networks. Springer, 2006.

[11] J. Martinez-Alvarez, F. Toledo-Moreo, and J. Ferrandez-
Vicente, “Discrete-time cellular neural networks in FPGA,”
in Field-Programmable Custom Computing Machines, 2007.
FCCM 2007. 15th Annual IEEE Symposium on, 2007, pp.
293–294.

