Standards for NoC: What can we gain?

Axel Jantsch

Royal Institute of Technology, Stockholm

March 2006
What Kind of Standards

- Informal Standards are a set of assumptions shared and agreed upon in a community
- Industrial standards are set by companies that guess right
- Formal standards (IEEE, ISO, ...) are usually preceded by an informal consensus
Standards vs. Creativity
Standards vs. Creativity
Standards vs. Creativity
Standards vs. Creativity
Standardizing Interfaces and Protocols

- Pins
- Data link
- Transactions
- End-to-end communication services
- Functionality + performance contracts
Standardizing Interfaces and Protocols

We gain:

- Reuse of IPs
- Reuse or verification
- Outsourcing and specialization
- Separation of
 - Physical design issues
 - Communication design
 - Component design
 - Verification
 - System design

- Pins
- Data link
- Transactions
- End-to-end communication services
- Functionality + performance contracts

A. Jantsch, KTH
Standardization of Design Methodologies

- Reuse of concepts
- Methodologies
- Methods
- Design languages
- Tools

Reuse, separation of concerns and specialization are driving forces
We can build on top of standards

Assuming we have standard communication services, we build on top of them:
We can build on top of standards

Assuming we have standard communication services, we build on top of them:

- Design tools:
 - System performance analysis
 - Formal communication verification
 - Allocation, mapping, and scheduling
 - etc.
We can build on top of standards

Assuming we have standard communication services, we build on top of them:

- **Design tools:**
 - System performance analysis
 - Formal communication verification
 - Allocation, mapping, and scheduling
 - etc.

- **New services:**
 - Dynamic resource allocation and management
 - Dynamic power management
 - On-line testing and diagnostics
 - Off-chip communication services
 - etc.
Standardization of Performance Metrics
Standardization of Performance Metrics

- Benchmark applications and Stochastic micro-benchmarks
Standardization of Performance Metrics

- Benchmark applications and Stochastic micro-benchmarks
- Packet level and Transaction level
Standardization of Performance Metrics

- Benchmark applications and Stochastic micro-benchmarks
- Packet level and Transaction level
- Unloaded and Loaded case
Standardization of Performance Metrics

- Benchmark applications and Stochastic micro-benchmarks
- Packet level and Transaction level
- Unloaded and Loaded case
- Various temporal and Spatial distributions of traffic
Standardization of Performance Metrics

- Benchmark applications and Stochastic micro-benchmarks
- Packet level and Transaction level
- Unloaded and Loaded case
- Various temporal and Spatial distributions of traffic
- Best effort and Guaranty services
Standardization of Performance Metrics

- Benchmark applications and Stochastic micro-benchmarks
- Packet level and Transaction level
- Unloaded and Loaded case
- Various temporal and Spatial distributions of traffic
- Best effort and Guaranty services
- Sizes between 16 and 200 nodes
Unloaded Case

<table>
<thead>
<tr>
<th></th>
<th>Delay</th>
<th>Bandwidth</th>
<th>Energy</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read 16/32/64b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write 16/32/64b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close Stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message 1/4/16/32B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Loaded Case

<table>
<thead>
<tr>
<th></th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_n</th>
<th>Sustained bandwidth</th>
<th>Energy /byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Transaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read 16/32/64b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write 16/32/64b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close Stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message 1/4/16/32B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 \(-10^{-i}\) of all packets p: $\frac{\text{delay}(p)}{\text{mindelay}(p)} \leq D_i$

$D_1 : 90\%$, $D_2 : 99\%$, $D_3 : 99.9\%$, $D_n : 100\%$

A. Jantsch, KTH
Temporal Distributions

- Uniform
- Bursty traffic according to the B-Model: $B_{0.2}$, $B_{0.3}$, $B_{0.4}$
Spatial Patterns

- Uniform
- Uniform with locality
- Bit Rotate
- Bit Complement
- Hot Spot
- Fork-Join Pipeline

A. Jantsch, KTH
Spatial Patterns

- Uniform
- Uniform with locality
- Bit Rotate
- Bit Complement
- Hot Spot
- Fork-Join Pipeline
Spatial Patterns

- Uniform
- Uniform with locality
- Bit Rotate
- Bit Complement
- Hot Spot
- Fork-Join Pipeline
Spatial Patterns

- Uniform
- Uniform with locality
- Bit Rotate
- Bit Complement
- Hot Spot
- Fork-Join Pipeline
Spatial Patterns

- Uniform
- Uniform with locality
- Bit Rotate
- Bit Complement
- Hot Spot
- Fork-Join Pipeline
Size

Number of nodes: 8, 16, 25, 40, 60, 80, 100, 150, 200
Data Points for Stochastic Micro Benchmarks

- Temporal distribution: $4 \times$
- Spatial patterns: $12 \times$
- Unloaded case: $((14 \times 4) +$
- Loaded case: $((14 \times 6)) \times$
- Size: $9 = 60480$
D_1 versus network size in Nostrum

![Graph showing normalized delay versus number of nodes for different uniform distributions with varying percentages.](image-url)
D_2 versus network size in Nostrum

A. Jantsch, KTH
D_3 versus network size in Nostrum

![Graph showing D_3 versus network size in Nostrum with different load configurations.](image-url)
D_n versus network size in Nostrum

A. Jantsch, KTH
Summary

- Standards are crucial and complementary to innovative research
- Let’s standardize performance metrics