On-Chip Interconnect: The Past, Present, and Future

Professor Eby G. Friedman

Department of Electrical and Computer Engineering University of Rochester

URL: http://www.ece.rochester.edu/~friedman

Future Interconnects and Networks on Chip 1st NoC Workshop – DATE '06

March 10, 2006

Agenda

- A historical perspective
- Where are we now ?
- Where are we going ?
- Conclusions

Agenda

- \Rightarrow A historical perspective
- Where are we now ?
- Where are we going ?
- Conclusions

Advances in IC Technologies

• A journey that started in 1959

First integrated circuit Fairchild Semiconductor 1959

First microprocessor Intel 4004 1971

Pentium 4 Intel Corporation 2002

Die Size Constraints

- Signals cannot travel across the entire die
 - Within a global clock cycle
- Example
 - 1.5 µm wire thickness
 - Reachable distance
 - Distance that can be traveled in 80% of the global clock cycle

Constraints in the routing distance of signal lines

*D. Sylvester and K. Keutzer, "A Global Wiring Paradigm for Deep Submicron Design," IEEE Tran. on CAD, February 2000

Trends in Interconnect Delay

2001 International Technology Roadmap for Semiconductors

- Interconnect delay dominates gate delay
 - Global interconnect delay continuously increasing
 - Need multiple clock cycles to cross chip die
 - Limits the performance of microprocessors

History of Interconnect Modeling

- Gate delay was dominant
 - Interconnect was modeled as short-circuit

- Interconnect capacitance became comparable to gate capacitance
- Interconnect resistance became comparable to gate resistance

Modeling Interconnect Inductance

$$C_{line} = Cl$$
 $R_{line} = Rl$ $L_{line} = Ll$

- Factors that make inductance effects important
 - Signal transition times are much shorter
 - Comparable to the signal time of flight
 - Faster devices
 - Reduction in interconnect resistance
 - Wide lines at higher metal layers
 - Introduction of low resistance materials for interconnect

Interconnect Models

Technology	> 1 µm	1.0 ~ 0.5 μm	0.5 ~ 0.25 μm	< 0.25 µm
	Ignored	Lumped	Distributed	Distributed
	Area Capacitance	Area, 2-D fringing	2/3-D fringing, Lateral coupling	Lateral coupling dominant
	Ignored	Ignored	lgnored	Important
	Lumped C	Lumped RC	Distributed RC	Distributed RLC

• Significant inductance effects with technology scaling

Crosstalk Between Coupled RLC Interconnects

- Significant inductive effects in the upper metal layers
 - Faster rise times
 - Lower resistance
 - Wider lines
 - Copper interconnect
- Capacitive/inductive coupling degrades the signal integrity
 - Crosstalk noise increases

Interconnect Networks

- Power distribution networks
 - Consume about 30% on-chip metal
 - IR, Ldi/dt noise
 - RLC resonances
- Clock distribution networks
 - Consume up to 70% of the total power
 - Clock skew, jitter
- Signals with multiple fan-out
- Large global busses
- Interconnect networks have become increasingly complicated with greater integration
 - Accurate and efficient models are required

Agenda

• A historical perspective

 \Rightarrow Where are we now ?

- Where are we going ?
- Conclusions

Problems in On-Chip Interconnect

ExtractionFigures of MeritModeling/SimulationDesign

Dependence of Impedance on Frequency: Multi-path Current Redistribution

- In a circuit with multiple current paths the distribution of the current flow is frequency dependent
 - Low frequency determined by the *resistance* of the paths
 - High frequency determined by the *inductance* of the paths

 This effect is the primary source of inductance variation with frequency in integrated circuits

* A. V. Mezhiba and E. G. Friedman, "Impedance Characteristics of Power Distribution Grids in Nanoscale Integrated Circuits," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, Vol. 12, No. 11, pp. 1148-1155, November 2004.

Figures of Merit to Characterize **On-Chip Inductance**

- Compare a distributed RLC model to a distributed RC
 - model

 $\frac{Rl}{2}\sqrt{\frac{C}{L}} > 1$

 $t_{r} > 2l\sqrt{LC} = 2T_{O}$

- *RC* model is sufficient if:
 - Attenuation is sufficient large to make reflections negligible
 - Waveform transition is slower than twice the time of flight

Interconnect and Substrate Coupling

- Crosstalk noise (line-to-line coupling)
 - Voltage variations
 - Delay uncertainty
 - Clock jitter
 - Depends upon wire layout and signal switching pattern
- Capacitive coupling
 - Short range effects
- Inductive coupling
 - Long range effects
 - Depend upon the current return path
- Substrate coupling
 - Significant issue in mixed-signal circuits
 - Developing issue in digital circuits

Problems in On-Chip Interconnect

Interconnect Design

- Simultaneous driver and wire sizing
 - Optimize
 - Delay
 - Signal transition time
 - Dynamic and short circuit power
- Repeater insertion
 - Linear delay with wire length
 - Tapering factor buffers
 - Optimal repeater sizing and spacing
- Active regenerators boosters
 - Support bi-directional wire behavior
 - No spacing constraints
 - High power dissipation

Shield Line Insertion for Coupled *RLC* Interconnects

- Shield line insertion can also control inductive crosstalk noise
 - In addition to reducing capacitive crosstalk noise
 - Provides a current return path through the shield line for both the aggressor and victim lines

Shielding Efficiency

- Achieves a target reduction in noise
 - Uses minimal metal line resources
- Shielding close to the driver may be redundant
 - When crosstalk occurs farther from the wire driver
 - Peak noise increases
- Shielding line density
 - Tradeoff between
 - Noise reduction
 - Wire routing area

* X. Huang et al. "RLC Signal Integrity Analysis of High-Speed Global Interconnects," IEEE International Electron Devices Meeting, 2000

- Dynamic power increases with line width
- Short-circuit power may decrease in underdamped highly inductive lines
- An optimum interconnect width exists
 - Minimum transient power

* M. A. El-Moursy and E. G. Friedman, "Power Characteristics of Inductive Interconnect," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems,* Vol. 12, No. 10, pp. 1295-1306, December 2004

Research Problems

- Develop methodologies to characterize interconnect impedances
- Co-design interconnect drivers with wires
 - Optimize
 - Signal delay
 - Signal transition time
 - Reduction in power dissipation
- Unusual physical structures
 - Next generation packaging chip interfaces
 - 3 D architectures

Agenda

- A historical perspective
- Where are we now ?
- \Rightarrow Where are we going ?
- Conclusions

Agenda

- A historical perspective
- Where are we now ?

\Rightarrow Where are we going ?

- One possible solution \rightarrow 3 D integration
- Conclusions

Three-Dimensional Integration

Area = L^2 , Corner to corner distance $\approx 1/2L$

*R. J. Gutmann *et al.*, "Three-dimensional (3D) ICs: A Technology Platform for Integrated Systems and Opportunities for New Polymeric Adhesives," *Proceedings of the Conference on Polymers and Adhesives in Microelectronics and Photonics*, pp. 173-180, October 2001.

Three-Dimensional Integrated Circuits

• Pros

- Reduced interconnect delay
- Disparate technologies
 - Non-silicon
- No yield compromise

Cons

- Difficult to model interconnects
- Crosstalk noise
- Inter-plane via density
- Thermal density

Three-dimensional Integration Pros

- Offers greater performance
- Substrate isolation between analog and digital circuits

Reduction of the length of the longest global interconnects
 Decrease in the number of the global interconnects

 The number of local interconnects increases

*J. Joyner *et al.,* "Impact of Three-Dimensional Architectures on Interconnects in Gigascale Integration," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems,* Vol. 9, No. 6, pp. 922-927, December 2001

Novel System-on-Chip Designs

Integrating

- Circuits from different fabrication processes
- Non-silicon technologies
- Non-electrical systems

Delay and Power Improvement from Optimum Via Placement

- Δx_i 's: available region for via placement between the *i* and *i*+1 physical plane
- Average delay improvement is 6% for n = 4 and 18% for n = 5
 - As compared to equally spaced interconnect segments
- Reduced power dissipation
 - Due to decrease in interconnect capacitance
 - 5% to 6% lower power
 - Independent of the number of planes

* V. Pavlidis and E. G. Friedman, "Via Placement for Minimum Interconnect Delay in Three-Dimensional (3-D) Circuits," *Proceedings of the International Symposium on Circuits and Systems,* May 2006.

Research Problems in 3-D Interconnect Design

- Interplane via placement to efficiently minimize delay
 - Interconnect tree structures across multiple planes
- Design expressions which consider inductance
- Optimum via location for lines with repeaters
- Clock distribution networks for 3 D ICs
- Power distribution structures for 3 D ICs
- Satisfy heating constraints without compromising performance
- 3 D NoC

Agenda

- A historical perspective
- Where are we now ?

\Rightarrow Where are we going ?

- One possible solution \rightarrow 3 D integration
- Another solution
 → Networks on Chip
- Conclusions

Network on Chip

• Pros

- Canonical interconnect structure
- Shared interconnect bandwidth
- Increased flexibility

Cons

- Intra-PE interconnect delay
- PE yield limitations
- Constrained to CMOS

Processing element (PE)	
Network router	

Agenda

- A historical perspective
- Where are we now ?

\Rightarrow Where are we going ?

- One possible solution \rightarrow 3 D integration
- Another solution
 → Networks on Chip
- Why not 3 D NoC ?
- Conclusions

3-D NoCs

• Pros

- Reduced interconnect delay
- Canonical interconnect structure
- Integration of dissimilar systems and technologies
- No yield limitations
- Flexibility

3 – D NoC

Three Dimensional IC – NoC Design

3-D IC

Reduced interconnect delay

*J. Joyner, et al., "Impact of Three-Dimensional Architectures on Interconnects in Gigascale Integration," *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, Vol. 9, No. 6, pp. 922-927, December 2001

3-D NoC

Decreased number of hops

• Maximum number of physical planes = 16

Various Topologies for 3-D Mesh IC - NoC

Zero-Load Latency for 3-D NoC

- For small N
 - Latency reduction due to hop decrease is smaller than that due to channel length reduction
 - 3D IC 2D NoC outperforms 2D IC 3D NoC
- For large N
 - Latency reduction due to hop decrease is greater than that due to channel length reduction
 - 2D IC 3D NoC outperforms 3D IC 2D NoC

Zero-Load Latency for 3-D NoC

- Optimum topology 3D IC 3D NoC
 - Available physical planes of the stack are optimally distributed to
 - Reduce number of hops
 - Reduce communication channel length

Optimum Number of Nodes per Dimension for 3-D NoC

- Infeasible for some network sizes
 - Due to discrete nature of the variables
 - $-n_3$ should be greater than $n_{1,2}$
 - Greater n₃ exploits smaller communication channel delay

Agenda

- A historical perspective
- Where are we now ?
- Where are we going ?
- \Rightarrow Conclusions

Conclusions

- The trends are clear
 - Interconnect now dominates the design process
- Different aspects of the interconnect design process
 - Figures of merit
 - Extraction
 - Modeling and simulation
 - Interconnect-aware design methodologies
- 3 D integration is coming
 - NoC is here and important for on-chip global data transfer
- 3 D NoC
 - A natural evolution

Any Questions ?

Back-Up Viewgraphs

Aluminum vs Copper Characteristics

- Aluminum lines
 - Larger coupling capacitance
 - Larger coupling noise
- Copper lines
 - Lower resistance
 - Inductance effects are more significant in wider lines

* X. Huang et al., "RLC Signal Integrity Analysis of High-Speed Global Interconnects," IEEE International Electron Devices Meeting, 2000

Importance of Interconnect

- With technology scaling
 - Gate delay decreases
 - Wire length increases
 - Wire cross sectional area decreases
- Wire delay increases polynomially with technology scaling

Dependence of Inductance on Frequency

• Skin Effect

- Low frequency
 - Current flow is uniformly distributed within the wire
- High frequency
 - Current flow concentrates at the wire surface
- Proximity effect
 - No effect at low frequency
 - High frequency
 - Return current concentrates along the edges

Effects of On-Chip Interconnect Inductance on Circuit Design Methodologies

Optimum sizing of RLC line with repeaters

Minimum Interconnect Power with Bandwidth Constraints

- Minimum power can be reached with minimum sized repeaters
 - Total delay and area, however, are unpractical large
- Multiple constraints should be considered

Current Research Plans

- Shielding for high speed interconnect
 - Develop crosstalk noise model and shielding techniques for coupled *RLC* interconnects
 - Develop shielding techniques to minimize power and delay under crosstalk noise constraints
 - Develop a shielding methodology to minimize delay and crosstalk noise

Via Drilling and Filling

*Tru-Si Technologies, www.trusi.com

Drilling

Filling

*Tru-Si Technologies, *www.trusi.com*

Grind, ADP Etching & Stacking

Existing Work in 3-D Integration

- Fabrication techniques

 Copper wafer bonding
 Adhesion with polymers
- Heating Effects and Constraints

High Performance Digital IC Design Challenges

• Primary objectives

Shielding Design Methodologies for High Speed Interconnects

• Shielding design methodologies for coupled *RC* interconnects

• Crosstalk analysis for coupled *RLC* interconnects

Effect of Ground Connections on Reducing Crosstalk

- The effect of the shield line on reducing crosstalk depends upon the number of ground connections tieing the shield line to the power/ground grid
- A shield line is not an ideal ground due to the interconnect resistance
 - -Coupling noise to the signal line
- The more ground connections, the smaller the coupling noise on the victim signal

Repeater Insertion with Delay Constraints

- A design space of repeaters is determined by delay constraint
- With T_{req} T_{min}, design space converges to the delay optimum repeater system (h_{opt}, k_{opt})

^{*} G. Chen and E. G. Friedman, "Low Power Repeaters Driving *RC* Interconnects with Delay and Bandwidth Constraints," *Proceedings of the SOC Conference*, pp. 335-339, September 2004

Minimum Power with Both Delay and Bandwidth Constraints

 Satisfactory design occurs at the intersection of the two design spaces with delay and bandwidth constraints

Interconnect Capacitive Coupling

• Fringing capacitance increases with scaling

- Spacing between lines decreases
- Capacitive voltage divider creates coupling
 - Produces uncertainty in the signal delay

Capacitive Coupling Noise

• Signal coupling

- Crosstalk
- Aggressor victim model
 - Aggressor: line generating noise
 - Victim: noise sensitive line

• Variations in signal delay

- Simultaneous switching noise
- Variations in effective coupling capacitance

Inductive Coupling

• On-chip inductance effects

- Increasing importance
 - Faster edge rates
 - Longer interconnect lengths on-chip
- Mutual inductive coupling
 - Strongly depends upon the current return path
 - Return path can vary dynamically

Interconnect Shielding

Insert power lines among signal lines

- Isolates an aggressor (noisy) line from sensitive neighboring lines
- Increases the noise tolerance of a sensitive line
- om Signal V_{DD} Signal GND Signal line line line line line
- Reduces capacitive coupling
 - The voltage of the shield lines typically does not switch
 - Reduces variations of the effective line capacitance
 - Reduced delay uncertainty
- Controls mutual inductance effects
 - The current return path is clearly determined

Geometric Wire Characteristics

- Narrow lines
 - RC dominant
 - Quadratic delay with line length

- Wide lines
 - Less noise at the far end
 - Delay is linearly dependent on line length
 - Inductive behavior

* X. Huang et.al. "RLC Signal Integrity Analysis of High-Speed Global Interconnects," IEEE International Electron Devices Meeting, 2000

Standard Techniques for Reducing Line-to-Line Crosstalk

- Techniques to reduce crosstalk between coupled interconnects
 - -Increase separation
 - -Insert a shield line
- Inserting a shield line is more effective in reducing crosstalk than increasing the separation

* J. Zhang and E. G. Friedman, "Crosstalk Noise Model for Shielded Interconnects in VLSI-Based Circuits," *Proceedings of the IEEE International SOC Conference*, pp. 243-244, September 2003

Effect of Shield Insertion on Reducing Crosstalk Noise

Three interconnect structures of one/two/three shield lines

- Three shield structure has the least crosstalk noise
- Two shield structure reduces the crosstalk noise to a level comparable to three shield structure
- One shield structure has lower noise than two shield structure
 - Without considering other neighboring lines

	Effective Inductance (nH)					Crosstalk Noise $(\%V_H)$			
No. of Shields	Mutual			Self					
	Analytic	FastHenry	Error	Analytic	FastHenry	Error	Analytic	SPICE	Error
No shield	2.655	2.655	0.00%	4.839	4.839	0.00%	38.66%	36.83%	4.73%
One shield	0.086	0.089	3.37%	2.269	2.273	0.18%	14.38%	15.15%	5.08%
Two shields	0.437	0.437	0.00%	2.115	2.118	0.14%	16.10%	15.06%	6.91%
Three shields	-0.048	-0.045	6.67%	1.634	1.636	0.12%	10.83%	9.61%	12.70%

Delay Improvement from Optimum Via Placement

Length	T _{el} (equally spaced)	<i>T_{el}</i> *[ps]	Improvement	n		
[mm]	[ps]		[%]			
1.560	56.11	52.40	7.08	10		
1.609	58.78	10.59	10.59	10		
2.383	75.00	64.11	16.99	10		
1.665	60.36	50.10	20.48	10		
1.749	63.10	52.42	20.37	10		
1.233	35.92	33.11	8.49	7		
1.167	34.97	31.43	10.12	7		
1.132	34.26	30.28	11.62	7		
1.933	45.23	34.65	23.39	7		
1.716	46.18	37.18	19.49	7		
2.428	29.03	23.89	17.71	4		
1.875	44.28	38.73	12.53	4		
2.121	34.56	25.62	25.86	4		
3.429	56.11	42.47	24.31	4		
1.701	27.34	25.69	6.03	4		
Average Improvement 15.67						

• $r_v = 6.7 \,\Omega/\text{mm}$

$$c_v = 6 \text{ pF/mm}$$

$$R_{s} = 15$$

•
$$C_1 = 50 \, \text{fF}$$

•
$$I_{v} = 20 \ \mu m$$

V. Pavlidis and E. G. Friedman, "Interconect Delay Minimization through Interlayer Via Placement in 3-D ICs," *Proceedings of the ACM Great Lakes Symposium on VLSI,* pp. 20-25, April 2005.