

John Bainbridge

Copyright Silistix

- Venture funded UK company founded in late 2003
 - Intel Capital is lead investor
- Spin-out of University of Manchester
 - Technical founders from Steve Furber's AMULET research group
- Presence in US, UK, Japan

20060310-bainbridge-date-noc-intro

Copyright Silistix

Silistix is an EDA company

CHAINworks

- CHAINworks fits easily within existing COT flows
 - Reduced power consumption
 - Reduced design effort / better reuse
 - Easier timing closure
- CHAINworks includes design and synthesis tools necessary to develop effective on-chip interconnect fabrics
 - Outputs systemC models
 - Outputs verilog netlists

4

A few details & screen shots

- CHAINworks supports graphical exploration of tradeoffs between architectural and implementation choices - minimize resource use whilst maximising performance
- NoC fabric uses self-timed technology
 - GALS approach to SoC design
- Protocol adapters supplied to support existing synchronous bus protocols
- Early evaluations underway release this year

Copyright Silistix

Silístix

Technion NoC group Haifa, Israel

4 Faculty members VLSI/Networking/System backgrounds

10 Graduate Students

Industrial liaison & funding SRC/Freescale, Intel, Ceva

Israel Cidon

EE Department Technion—Israel Institute of Technology

Technion NoC group focus: The Network Layer

- Quality of Service assurance in NoC
- On-chip Costs
 - Routers and buffers are expensive
 - Power considerations
- NoC services for mutli-core processors
- Heterogeneous design scenarios
 - Predefined \ unknown traffic
 - Predefined (e.g.FGPA) \ undefined net resources
- Utilizing long distance communication
 - Both link and network layers

Technion NoC group: Posters

QNoC architecture

•Allocating capacity to network links

•Curing hot spots

•Fast asynchronous link

STNoC An evolution towards MPSoC era

M. Coppola ⁽¹⁾, C. Pistritto ⁽²⁾, R. Locatelli ⁽¹⁾, A. Scandurra ⁽²⁾ AST – Grenoble / OCCS - Catania

STMicroelectronics

Starting Points & Strategy

HPC STBus On Chip Communication Experience AST NoC Research Experience

STNoc NoC Architecture

ArchitectureMicroarchitectureSystemC Models

•RTL Design
•FPGA Prototype
•Development Envr

ADVANCED SYSTEM TECHNOLOGY & ON CHIP COMMUNICATION SYSTEMS

To provide the advanced system knowledge able to establish ST as the system on a chip leading company in the market for the products of the next decade

ADVANCED SYSTEM TECHNOLOGY & ON CHIP COMMUNICATION SYSTEMS

HPC – OCCS (On Chip Communication System)

Mission:

To provide ST divisions and key customers with state of the art competitive technology and infrastructure for on chip communication systems and off chip memory access.

Team: Catania, Tunis, Grenoble, Noida

ADVANCED SYSTEM TECHNOLOGY & ON CHIP COMMUNICATION SYSTEMS

Project : Nano-architecture for Post Silicon (Toshiba with Stanford and Caltech)

Simulated Reality for Post Silicon

Toshiba's researchers=6

3D On-chip Crossbar Bus using Post Si

Ref. [1] K. Nomura et al. to be submitted.

Post Silicon for switching devices

Carbon Nanotube

SiGe, Ge Nanowire (III-V Compound Semiconductor)

a b Si Cito Si Cito 20 nm 5 nm 50x 60 Source Si0x 60 S

Gate

Drain

Ref. Science

Philips Æthereal Network on Chip

Kees Goossens kees.goossens@philips.com Embedded Systems Architectures on Silicon (ESAS) IC Design Philips Research

Philips Æthereal NOC group

- active since October 2001
- size of group varies
- Philips
 - Philips Research
 - IC Design Sector
 - Embedded Systems Architectures on Silicon (ESAS)
 - Digital Design and Test (DDT)
 - Philips Semiconductors
 - Philips Consumer Electronics
 - Silicon Hive

Philips Æthereal NOC focus

- focus of group listed as it changes over time
 - basic concepts [Progress'01]
 - QoS, transaction models, connections
 - programming models [Dekker'03, Kluwer'03, DT'05]
 - architecture [DATE'02, ISSS'05]
 - router architectures [DATE'03, CDT]
 - network interface architectures [DATE'04, TCAD'05]
 - NOC design flow [DATE'05]
 - NOC instantiation & simulation (SystemC, VHDL) [DATE'04]
 - performance verification
 - configuration
 - synthesis

• multi-mode / task graph / use cases [DATE'06, our poster today] DATE NOC workshop Kees Goossens, 2006-03-10 Philips Research

Philips Æthereal NOC focus

- focus of group listed as it changes over time (cont'd)
 - "stuff around the network"
 - memory controllers
 - memory architectures, DMA/CA, subsystems/tiles
 - system-wide QoS (Hydra), data flow
 - extending NOC scope
 - NOC as TAM [ETS'06]
 - monitoring & debug [IEE comm.'03, HLDVT'04, ISCAS'06]
 - design time to run-time configuration, etc.
 - applications
 - TV & STB [Kluwer'04,DATE'06]

DATE NOC workshop Kees Goossens, 2006-03-10

Philips Research

Philips Æthereal NOC collaborations

- collaborations with
 - Technical University Eindhoven, Netherlands
 - KTH, Sweden
 - Technical University Twente, Netherlands
 - University of Lund, Sweden

- for more information
 - kees.goossens@philips.com
 - www.homepages.inf.ed.ac.uk/homepages/kgoossen

UBC ECE SOC 50+ graduate students 8+ faculty members UBC Vancouver 35,000 undergraduate students 8,000 graduate students 4,000 faculty members

UBC ECE

650 undergraduate students400+ graduate students50+ faculty members

Network on Chip: Enabling Infrastructure for SoCs

P. Pande (now Assistant Professor at WSU)
C. Grecu (PhD candidate)
A. Ivanov
R. Saleh

Inter *IP* **communication --- NoC to the rescue** ...

System On Chip

Different NoC Solutions/Architectures

Comparative Evaluation of NoC Infrastructures METRICS Throughput
Latency
Energy/Power
Area

Test, Fault Tolerance & Reliability & Benchmarks ...

- Test, Repair, Fault Tolerance & Reliability
 - Built-In Self-Test Methodology
 - Built-In Self-Repair
 - Error Control (Fault Tolerance)
 - Reliability assessment and improvement
 - See Poster --- C. Grecu et al.

- NoC Benchmark Initiative
 - Promote and enable NoC advances (Design, Test, Evaluation) through comparison, exchange, etc
 - Expressed interest (academic)
 - R. Marculescu (CMU)
 - J. Sparso (TUD)
 - A. Jantsch (KTH)
 - A. Pinto (UCB)
 - P. Pande (WSB)
 - A. Ivanov (UBC)
 - OCP-IP support
 - Meet later today -- Lunch...!

NoC Research at Jönköping University, Sweden

1

SCHOOL OF ENGINEERING

Research Overview

Delay Testing of NoC Interconnects

Region Concept & Deadlock Free Routing in NoC Our Contribution:

Dead lock free routing algorithm and evaluation of NoC with regions

Slack Time Aware Routing in Mixed QoS Traffic

Our Contribution:

Routing schemes to use over-reservation of GT paths for improving BE performance

Mapping Applications to Mesh NoC with MTPs

Our Contribution:

We demonstrate that MTP is a good resource for exploiting Thread Level Parallelism

Delay Testing of NoC Interconnects

Our Contribution:

An efficient method to test delay faults in NoC interconnects

Research Group

Arteris

NETWORK-ON-CHIP COMPANY

Performance and Cost optimization of application-specific Network-on-Chip

Philippe Martin, Arteris

Arteris Background

- Incorporated in February 2003, in Paris, France
 - Funded by leading international Venture Capital firms
- Management from leading semi, EDA and system companies
 - Successful track record with complex SoCs, IP products and services
 - 200 man years experience in SoC design and networking applications

• Deliver NoC solutions solving all on-chip traffic management challenges

- NoC provides a layered approach compatible with existing IP
- NoC brings best wire efficiency to transport transactions over complex SoC.
- NoC brings scalable on-chip communication platform to re-use IP through next generation of CMOS processes.
- Targets high-performance, IP-laden designs
 - operating frequency > 250MHz
 - complexity > 10Mgates & > 40 IPs
 - 130nm, 90nm, 65nm CMOS process

Arteris confidential - January 2006 2

Arteris enables application-optimized NoCs

SoC architecture constraints

Application constraints

- Reuse of existing IP cores
- System Performance (bandwidth, latency, QoS)
- SoC versatility (use cases)

• Physical constraints

- Process technology
- Floorplan constraints
 - I/Os, Clock and power domains

Cost constraints

Minimize number of gates and wires

NoC optimization variables

Network topology

- Shared or private links
- Multi-port network interfaces
- Arbitration schemes
- Buffering
- Packet serialization
- Operating frequency
- GALS and clock domains

NoCexplorer[™] - NoC topology exploration

High-level traffic modelling

- Stress and QoS requirements

• Simple topology entry

- NoC interface and architecture
- Fast, throughput-accurate simulations enable quick topology iterations

• SoC architects love it !

Arteris confidential - January 2006 4

SLD:: System Level Design Group

Carnegie Mellon

System Level Design Group

Dept. of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, PA 15213, USA

Members

Faculty: Radu Marculescu Phd Students: Umit Y. Ogras Chen-linc Chou Timothy Hou

NoC Design Space Description

NoC architecture can be characterized by the triple

$N(A(R,Ch), \mathfrak{R}, \Omega(C))$

1. A(R,Ch): the communication infrastructure

- The set of routers and their interconnections
- *R* and *Ch* can have multiple attributes (*e.g. buffer depth, channel width*)

2. \mathfrak{R} : the communication *paradigm*

- The routing policy at a router given the source, destination, and congestion
- The *switching* technique

3. $\Omega(C)$: the *mapping* of IP cores to the network

Application Mapping to Regular Architectures

R. Marculescu – DATE 2006

Communication Paradigm

-*If dist < R* : send to node with minimum congestion and when there are multiple alternatives, make a random decision

-else: send through the shortest path

Deterministic routing

- Lower latency at low levels of congestion
- Performance degrades fast when congested
- Adaptive routing
 - Higher bandwidth saturation point
 - Higher latency at low levels of congestion
 - Deadlock issue

Tampere University of Technology Institute of Digital and Computer Systems Tampere, Finland

NoC research in the group of Prof. Jari Nurmi

Institute and group briefly

- Institute consists of 4 professors + about 100 researchers/assistants
- Typical annual production 100 international papers, 20 MSc, 5 PhD
- SoC/NoC research group of about 25 people since 1999

Background of Prof. Nurmi

- 19 years research on processors, ASIC/SoC for DSP/communication apps, on-chip communication/NoC
- Chairman of International Symposium on System-on-Chip since 2003 (SoC Seminar 1999-2002)
- Chairman of FPL 2005, TPC co-chair NORCHIP 2005, EWME 2006
- Co-editor of *Interconnect-Centric Design for Advanced SoC and NoC*, Kluwer Academic Publishers, 2004.
- Nokia Educational Award 2004
- Conference organizer of the year in Tampere 2005

NoC workshop

NoC research topics at TUT

PROTEO flexible packet-switched NoC scheme (originally ring topology)

OIDIPUS network generation and optimization tool

XGFT (extended generalized fat tree) networks

Fault detection and repair in XGFT and Mesh NoCs

CDMA-based NoC concept

Latest: Hierarchical scheme for NoC

Computational elements around NoC

- COFFEE RISC Core[™] (see coffee.tut.fi)
- COFFEE-based multiprocessor platforms (with NoC)
- · Work on DSP and VLIW processors, co-processors, accelerators

Applications

- GPS and GALILEO positioning
- Multimedia applications
- RSA cryptography

TAMPERE UNIVERSITY OF TECHNOLOGY

NoC workshop

Poster titles in this workshop

Presented by researcher Tapani Ahonen:

PROTEO – A Flexible Network-on-Chip Scheme

Network-on-Chip Generation and Optimization Tool

NoC-Based Platform Implementation on FPGA

A Hierarchical Approach to Network-on-Chip

Presented by Prof. Jari Nurmi:

Exploration of CDMA-Based Network-on-Chip

SystemC Simulation Model of a Flexible Network-on-Chip

Versatile XGFT Network-On-Chip with Improved Fault-Tolerance for Multi-Processor Systems-on-Chip

Fault-Diagnosis-And-Repair System for Improving the Fault-Tolerance and Manufacturability of MPSoCs

NoC workshop

PICMOS Photonic Integration on CMOS STReP FP6-2002-IST-1-002131

Ian O'Connor

Ecole Centrale de Lyon - LEOM

http://picmos.intec.UGent.be

PICMOS consortium

Research focus

 evaluate suitability of on-chip optical interconnect for data transport applications

Some results and conclusions

- optical interconnect compares favourably for longer link lengths and more advanced technology (particularly true for gate area, also to some extent for delay and total power)
- design technology developed enables us to look at optical interconnect in various application contexts

Future Interconnects and Networks on Chip

Introduction to KAIST BONE Project

Kangmin Lee, Se-Joong Lee, Donghyun Kim, Kwanho Kim, Juyoung Kim, and Hoi-Jun Yoo

Presented by Ju-Ho Sohn Korea Advanced Institute of Science and Technology (KAIST)

BONE Project since 2002

- Realizes new NoC technology through <u>IMPLEMENTATION</u>!
- Covers
 - circuit-level designs,
 - architectural and protocol researches,
 - system integration on NoC Platform.

→ Further Information → http://ssl.kaist.ac.kr/ocn

Thanks!