Networks and Applications: Are Application-Specific Networks Worth The Trouble?

Jiang Xu and Wayne Wolf
Dept. of EE
Princeton University
Outline

- Case studies of real applications
 - H.264 HDTV decoder system-on-chip
 - Smart camera system-on-chip
- Methodologies for application-specific NoC design
- A step back
Current on-chip communication architectures

- **On-chip bus**
 - CoreConnect, AMBA, Wishbone, μNetwork ...
 - Mature technology
 - Shared media

- **Regular-topology networks-on-chip**
 - RAW, CLICHÉ, Nostrum, Eclipse, aSoC, SPIN ...
 - From multi-computer networks
 - Designed for general-purpose and homogenous systems
Application-Specific Networks-on-Chip

- Customized on-chip network for each application
 - ASNoC brings significant performance improvements
- Irregular-topology and hierarchical
- For both homogenous and heterogeneous systems
- Based on a network component library
H.264 HDTV decoder system-on-chip: Behavior model & computation architecture

- Candidate for HDTV broadcast
- High compression rate: 2X of MPEG2
- High definition: 2 million pixel/frame
H.264 HDTV decoder system-on-chip: RAW vs. Application-Specific Networks-on-Chip

- ASNoC has two local networks
- RAW is implemented based on its design documentation
- Positions of computation nodes are optimized
- The same group of computation nodes
- Different communication architectures
- ASNoC has less switches and links
H.264 HDTV decoder system-on-chip: Results and comparison

- Higher performance: 201%
- Lower power: 61%
- Less area: 26% metal area, 41% silicon area
- Less network resource: 37% switch capacity, 31% link capacity
- Higher network utilization: 239% switch utilization, 331% link utilization
- ASNoC is better than regular-topology networks-on-chip
Smart Camera system-on-chip: Behavior model & computation architecture

- Real-time gesture recognition
- 150 frame/sec
- Dual-pipeline computation architecture

"Raised both hands."
Smart Camera system-on-chip: RAW vs. Application-specific Networks-on-Chip

- ASNoC has three local networks
- RAW is implemented based on its design documentation
- Positions of computation nodes are optimized in RAW
- The same group of computation nodes
- Different communication architectures
- ASNoC has less switches and links
Smart Camera system-on-chip: Results and comparison

- Higher performance: 196%
- Lower power: 40%
- Less area: 36% metal area, 49% silicon area
- Less network resource: 38% switch capacity, 33% link capacity
- Higher network utilization: 227% switch utilization, 316% link utilization
Communication analysis

- Communication graph
 - $G=(V,E)$ is weighted
 - $v \in V$ is a computation node
 - $e \in E$ is a connection between nodes
 - Weight $w(e)$ is the average comm. traffic in a fixed period of time

- Recorded comm. trace
 - from computation architecture simulation
 - One for each node
 - Control comm. behavior of node

```
struct trace_entry
{ unsigned int interval;
  unsigned int source;
  unsigned int destination;
  unsigned int operation_type;
  unsigned int address;
  unsigned int size;
}
```
ASNoC protocol design

- Deterministic routing (adaptive routing)
- Wormhole switching (packet switching and VCT switching)
- Packet format is adjusted based on applications

![Diagram of packet format]

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>size</th>
<th>control</th>
<th>source</th>
<th>dest</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>data 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>data 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>data n</td>
</tr>
</tbody>
</table>
Floorplan estimation

- Slicing floorplan
 - Considering network hierarchy
 - A method similar to [Yuen03]
- High-level planning
 - not detailed placement and routing
- Used to decide link length
 - Delay for performance analysis
 - Power and area analysis

Diagram:
- Processors labeled P0 to P6
- Connections and labels
- Dimensions marked as 2.5mm
Performance analysis

- Cycle-accurate simulation
 - Based-on cycle-accurate component models in the library
- Application-level performance
 - H.264 HDTV decoder: cycle/frame, 5 billion cycles
- OPNET, a network simulator, is adapted
 - Link, transmitter, receiver, clock
- Capacity and utilization for each network component
Power and area analysis

- Based on the network component library
 - Circuit model and layout for each component
- Power $P = \sum \sum N_{ij} \times E_{ij}$
 - N_{ij} is the number of a type of activity of a network component (performance analysis)
 - E_{ij} is the energy consumed by a type of activity of a network component (circuit model)
- Metal area and silicon area $A = \sum M_j \times S_j$
 - M_j is the number of a network component (floorplan estimation)
 - S_j is the area of a network component (layout)
- Most power are consumed by links
- Metal area is much larger than silicon area
But is it worth the effort?

- Performance/power is only one metric.
 - Must also consider design time, manufacturing volume.
- Design and mask costs push us toward fewer platforms.
- But those platforms have some common characteristics.
The multimedia processing funnel

- Data volume
- Data abstraction
- Edge extraction
- Pixel processing
- Principal component analysis, hidden Markov models
Scientific multiprocessing

- Traditional scientific algorithms perform numerical computations.
 - Single algorithm on large amounts of data.
- Scientific multiprocessors emphasize easy programming of a single data set over multiple CPUs.
Embedded vs. scientific applications

- Embedded applications provide task-level parallelism.
- Embedded applications run many different types of algorithms at once.
- Embedded applications need real-time and QoS.
Summary

- Application-specific networks can pay off in performance/energy.
 - Take more time to design, but may pay off.

- Methodology is very vertical:
 - Layout through architecture.