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Abstract — With the increase of system complexity in both platforms and 
applications, power modelling of heterogeneous systems is facing grand challenges 
from the model scalability issue. To address these challenges, this paper studies two 
systematic methods: selective abstraction and stochastic techniques. The concept of 
selective abstraction via black-boxing is realised using hierarchical modelling and 
cross-layer cuts, respecting the concepts of boxability and error contamination. The 
stochastic aspect is formally underpinned by Stochastic Activity Networks (SANs). 
The proposed method is validated with experimental results from Odroid XU3 
heterogeneous 8-core platform and is demonstrated to maintain high accuracy while 
improving scalability.

The Proposed Method
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Abstract model (1+1)
is the most abstract model with two meta-
cores, one representing the A7 domain, the 
other representing A15 (n = 2).

Cross-layer model (1+4)
is the model obtained using the proposed 
method of selective abstraction. Here, three A7 
cores are grouped into a single meta-core 
representing the entire domain (n = 5).

Detail model (3+4)
is the most detailed model considering each 
core separately (n = 7).

Motivation and Contributions

We developed new structuring 
methods to tackle complexity and 
scalability in modelling by providing 
a power-proportionality metric for 
selective abstraction and methods to 
retain accuracy by avoiding error 
contamination.

We validated these methods using 
power modelling in SANs and 
showed their effectiveness in 
improving the trade-offs between 
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Conclusions

We propose a new method for scalable power 
modelling of multi-core heterogeneous systems 
that:

– supports the systematic discovery of good trade-offs 
between modelling quality and model scalability;
– rationalises model sizes based on power 
proportional representation and stochastic modelling;
– identifies error contamination and determines 
boxability.

Selective Abstraction Metric

The goal of selective abstraction is to obtain a cut that provides the minimal model 
while its added error satises the given threshold ε: |ΔE| < ε.

|ΔE| = |Δex
px
p |

Δex is the local change of the percentage 
error, as a result of the black-boxing, in 
the part x being black-boxed;
px is the power consumed by this part;
p is the total power consumption.
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Hierarchical Modelling: Order Graphs (OGs)
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Order graph is:
– an infinite graph-like structure;
– any element of an order graph is an order graph;
– represents an inter-related family of graphs.

k-order graph
– is a specific projection defining a single graph;
– made of nodes and edges of order k;
– all higher orders are (temporarily) disregarded.

Relative graph orders: (k–1) sub-graph, (k+1) 
super-graph.

Inclusion / containment arc:
– connects nodes in different orders;
– form a tree.

Dependency arc:
– connects nodes of the same order.

Support arc:
– connects a node and a dependency arc in 
different orders.

Example of an OG with highlighed cross-layer cut, 
which joins elements from different orders (layers 
of abstraction).

Case Study: Odroid XU3 Platform

28nm 8-core Application Processor Exynos 5422, 
based on the ARM big.LITTLE architecture:
– high performance Cortex-A15 quad-core 
processor block,
– low power Cortex-A7 quad-core block,
– Mali-T628 GPU,
– 2GB LPDDR3 DRAM.

Realtime current sensors measuring four separate 
power domains: A7, A15, GPU and DRAM.
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Simulation Results

scen model pwr, W pwr var error sim, s

EQ 1+1 1.7662 0.0470 6.53% 2.535
1+4 1.7287 0.0424 4.27% 2.546
3+4 1.7215 0.0423 3.84% 2.764

meas. 1.6579 0.0572

CA 1+1 2.0205 0.0619 7.99% 2.545
1+4 1.9470 0.0468 4.06% 2.610
3+4 1.9421 0.0468 3.79% 2.764

meas. 1.8711 0.0385

TCA 1+1 2.0038 0.0608 10.41% 2.547
1+4 1.9274 0.0439 6.21% 2.613
3+4 1.9245 0.0440 6.05% 2.771

meas. 1.8148 0.0279
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The error added by moving from (3+4) to (1+4) 
model in comparison to going from (3+4) straight 
to (1+1) is proportional to the power output of A7 
domain in relation to the total power.
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SAN (1+1) model for the naïve scenario:

Corresponsing dependency graph with 
highlighted error contamination paths.

Error contamination
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SAN (1+1) model with fixed affinities:

Corresponsing dependency graph with 
highlighted error contamination paths.

No error contamination

Error contamination is a property of system design and not a model artifact. It can be detected through model analysis, 
and the design can be modified to provide boxability.
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The method is effective in:

– discovering  good trade-offs between 
modelling quality and model scalability;
– choosing the model size;
– reducing the designer's effort.


