Introduction

- Parallelization can help balance energy consumption and performance esp. in multi- and many-core systems
- The interplay between performance and energy and their relationship with parallelization scaling are studied with the help of the reliable operation region (ROR)
- Theoretical and experimental explorations
- Cross-platform analysis through bi-normalization of the ROR
- Online web tool captures the concept of this interplay and finds optimal operating points

K-scaling

Perfect k-scaling to theoretical switching power (left) compared to measured data, which pertains to total power (including leakage power).

Perfect k-scaling is not possible as shown by Amdahl’s law on the left, and idle power must also be considered as shown on the right.

ROR

Low voltage limit A, high voltage limit B, throughput requirement C, power limit D, and timing reliability limit (TRL) E together form the boundaries of the ROR.

PER tool workflow

The PER web tool can be used with pre-installed example data obtained from a number of platforms experimentally, or user-supplied data.

User-supplied data can be either from experimental characterization or from design specifications.

Tool availability

URL: http://async.org.uk/prime/PER/