PRIME Power-efficient, Reliable, Many-core Embedded systems

Engineering and Physical Sciences Research Council

PER – Performance, Energy and Reliability

F. Xia, A. Rafiev, A. Aalsaud, M. Al-Hayanni, J. Davis, J. Levine, A. Mokhov, A. Romanovsky, R. Shafik, A. Yakovlev, S. Yang

Introduction

- Parallelization can help balance energy consumption and performance esp. in multiand many-core systems
- The interplay between performance and energy and their relationship with parallelization scaling are studied with the help of the reliable operation region (ROR)
- Theoretical and experimental explorations
- Cross-platform analysis through bi-normalization of the ROR
- Online web tool captures the concept of this interplay and finds optimal operating points

K-scaling

ROR

Perfect k-scaling is not possible as shown by Amdahl's law on the left, and idle power must also be considered as shown on the right.

PER tool workflow

The PER web tool can be used with pre-installed example data obtained from a number of platforms experimentally, or user-supplied data.

> **User-supplied** data can be either from experimental characterization or from design specifications

Tool availability

Cross-platform comparisons of the effectiveness of k-scaling

URL:

is possible in the bi-normalized F/V space. This concept is shown in the right-hand figure and the data is shown in the left-hand figure.

http://async.org.uk/prime/PER/

